APPLICATION OF TAGUCHI METHOD IN THE OPTIMIZATION

OF THE SOI MOSFET

SITI RAFIAH BINTI AB RASHID

This report is submitted in partial fulfilment of the requirements for the Bachelor of Electronic Engineering (Computer Engineering) with Honors

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2015

C Universiti Teknikal Malaysia Melaka

HULL MALAYSIA ARE PRA	UNIVE FAKULTI KEJURUTE BO	ERSTI TEKNIKAL MALAYSIA MELAKA RAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER PRANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek : Sesi Pengajian :		
 Saya mengaku membenari syarat-syarat keguna 1. Laporan adalah 2. Perpustakaan di 3. Perpustakaan di institusi pengaji 4. Sila tandakan (kan Laporan Projek S an seperti berikut: hakmilik Universiti Te benarkan membuat s benarkan membuat s an tinggi. ✔):	(HURUF BESAR) barjana Muda ini disimpan di Perpustakaan dengan beknikal Malaysia Melaka. salinan untuk tujuan pengajian sahaja. salinan laporan ini sebagai bahan pertukaran antara
SULIT*	*(Meng kepenti RAHSIA	andungi maklumat yang berdarjah keselamatan atau ngan Malaysia seperti yang termaktub di dalam AKTA RASMI 1972)
TERHAD*	* **(Men organisa	gandungi maklumat terhad yang telah ditentukan oleh asi/badan di mana penyelidikan dijalankan)
	RHAD	
		Disahkan oleh:
(TANDATA	NGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)

DECLARATION

I declare that this thesis entitle "Application of Taguchi Method in the Optimization of the SOI MOSFET" is the result of my own research except as cited in the references. The thesis has been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	·
Date	:

SUPERVISOR VERIFICATION

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) with Honors.

Signature	<u></u>
Supervisor's Name	: DR FAUZIYAH BINTI SALEHUDDIN
Date	·

Dedicated to my beloved family especially my parents, supervisor, lecturers and all my friends who helping me whether directly or indirectly.

ACKNOWLEGEMENT

I have absolutely no doubt that doing a Bachelor degree was one of the best decisions of my life. This four-year-long journey has not always been smooth and easy. A mixture of happiness, sadness, excitement and stress, made this an unforgettable adventure. There are so many people I am grateful for who have made this journey easier and more enjoyable for me. I am glad that I have now the opportunity to express my sincere gratitude to all of them.

I would like to express my most sincere gratitude to my supervisors, Dr. Fauziyah Binti Salehuddin, for her inspiration, guidance and support throughout the entire project. Her patience, enthusiasm, immense knowledge and encouragements have carried me through to the end of the journey. Thank you for being the greatest mentor. This dissertation would not have been possible without them. I am grateful to my thesis member as known as Master Student: Muhammad Nazirul Ifwat Bin Abd Aziz for his constructive tutoring to me. He also teach me how to do Taguchi Methods for my project. He uses very good ways to teach me about coding of SILVACO since I'm not familiar with that software. He is very talented about the code too. I'm so proud being under Master Student like him. Very helpful. For me, he is a kind person with good attitude. From Universiti Teknikal Malaysia Melaka, I'm deeply indebted to Nor Fatihah binti Razali for her help in fixing and setting up SILVACO TCAD Tools to my computer. Also thanks for Dr. Fauziyah Binti Salehuddin because of the numerous fruitful discussions, and help in the thesis submission.

My special thanks go to Noor Munirah Binti Mohamad. Thank you Munirah for proof-reading parts of this manuscript. It has been my greatest pleasure to have friends like you! Thank you! I believe I owe my deepest thanks to my family for their love and support throughout my life. Thank you for always believing in me and encouraging me to pursue my dreams. Mom and siblings, your unconditional love has helped me through so many tough times and has made me the person I am today. Amirah, thank you for being a wonderful loving and caring sister. For Ibaree, Ikhsani and Aiman, thank you for always being there for me as a brother, a mentor and a close friend.

ABSTRACT

This project is about the optimization of Silicon-On-Insulator (SOI) MOSFET device by applying Taguchi Method. Silicon-On-Insulator (SOI) wafers are bound to play a key role in next generations Complementary Metal Oxide Semiconductor (CMOS) nanometre technology. This method was used to analyse the experimental data in order to get the optimum results. In this paper, there are four factors were varied for 3 levels to perform 9 experiments which are Pocket-Halo Implant Dose, Pocket-Halo Implant Energy, Source/Drain Implant Dose and also Source/Drain Implant Energy. The traditional SOI structure consists of a silicon dioxide layer sandwiched between a top thin silicon layer in which devices are built and the silicon substrate. Meanwhile, SILVACO TCAD tools will be used to design SOI Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The aim of this project is to design an 10nm SOI MOSFET device by using SILVACO TCAD tool, to analyse the electrical characterization of SOI MOSFET by using ATLAS SILVACO TCAD tool and to optimise the performance of SOI MOSFET device by applying Taguchi Method. One of the way to optimize the performance of the SOI MOSFET is to alter the SOI layer thickness and the electrical characteristic degraded when the effective gate length of SOI MOSFET was reduced. The best thickness is 10nm thickness layer of SOI MOSFET.

ABSTRAK

Projek ini adalah mengenai pengoptimuman peranti Silikon Pada Penebat (SOI) MOSFET dengan menggunakan Kaedah Taguchi. Wafer Silikon Pada Penebat (SOI) terikat memainkan peranan penting dalam generasi seterusnya Komplementari Metal Oxide Semiconductor (CMOS) teknologi nanometer. Kaedah ini telah digunakan untuk menganalisis data ujikaji untuk mendapatkan hasil yang optimum. Dalam kertas ini, terdapat empat faktor yang telah diubah untuk 3 peringkat dengan melaksanakan 9 eksperimen seperti Pocket-Halo Dos Implan, Pocket-Halo Implan Tenaga, Sumber / Parit Dos Implan dan juga Sumber / Parit Tenaga Implan. Struktur SOI tradisional terdiri daripada lapisan silikon dioksida yang diapit di antara bahagian atas lapisan silikon nipis di mana peranti dibina dan substrat silikon. Sementara itu, alat TCAD SILVACO akan digunakan untuk mereka bentuk SOI Metal Oxide Semiconductor Field Kesan Transistor (MOSFET). Tujuan projek ini adalah untuk mereka bentuk alat 10nm SOI MOSFET dengan menggunakan alat SILVACO TCAD, untuk menganalisis pencirian elektrik SOI MOSFET dengan menggunakan alat ATLAS SILVACO TCAD dan mengoptimumkan prestasi peranti SOI MOSFET dengan menggunakan Kaedah Taguchi. Salah satu cara untuk mengoptimumkan prestasi SOI MOSFET adalah dengan mengubah ketebalan lapisan SOI dan ciri-ciri elektrik dibina apabila panjang pintu berkesan SOI MOSFET dikurangkan. Ketebalan terbaik adalah lapisan yang berketebalan 10nm pada SOI MOSFET.

TABLE OF CONTENTS

CHAPTER TITLE

PAGES

PROJECT TITLE	i
REPORT STATUS FORM	ii
DECLARATION	iii
SUPERVISOR VERIFICATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENT	ix-xii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv-xv
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii

1

INTRODUCTION

1.1 Background	1-4
1.2 Objectives of the project	4
1.3 Problem Statement	5
1.4 Scope of the PROJECT	5
1.5 Project Outline	6

C Universiti Teknikal Malaysia Melaka

LITERATURE REVIEW

2.1 Introduction of MOSFET (Metal-Oxide-	
Semiconductor Field Effect Transistor)	7-8
2.1.1 Electrical Characteristic of MOSFET	8-9
2.2 Silicon-On-Insulator (SOI) MOSFET Design	9-10
2.3 Short-Channel Effect	11
2.4 Floating Body Charge on SOI	11-12
2.5 Kink Effect	12
2.6 Improved sub threshold Characteristics	13
2.7 SOI Fabrication Materials	13
2.71 Separation of Implantation of Oxygen	14
2.72 Wafer Bonding (WB)	14
2.8 Fully-Depleted (FD) SOI MOSFET and Partially-	
Depleted (PD) SOI MOSFET	15
2.9 Ion Implantation	16
2.10 Halo Implantation	16-17
2.11 Source Drain Implantation	17-18
2.12 Taguchi Method	18
2.12.1 Orthogonal Array	18

3

2

METHODOLOGY

3.1 Introduction	19
3.2 Simulation Using TCAD Tools	20-21
3.3 Basic flowchart of NMOS transistor	22
3.4 Formation of SOI MOSFET	23

3.5 Fabrication and Design of 10nm

Silicon-On-Insulator (SOI) MOSET	24
3.5.1 Mesh Initialization	25
3.5.2 Well Oxidation	26
3.5.3 BOX Formation	27
3.5.4 Mask Nitride Deposition	28

3.5.5 Photoresist Layer Etching	29
3.5.6 Setup a Silicon Trench Machine	30
3.5.7 Trench Sidewall Passivation	31
3.5.8 Chemical Mechanical Polishing (CMP)	32
3.5.9 Sacrificial Oxidation	33
3.5.10 Gate Oxide Growth	34
3.5.11 Threshold Voltage Adjustment Implantation	35
3.5.12 Polysilicon Gate Deposition	36
3.5.13 Halo Implantation	37
3.5.14 Sidewall Spacer	38
3.5.15 Source/Drain Implantation	39
3.5.16 Silicide Growth	40
3.5.17 PMD & BPSG Oxide Deposition	41
3.5.18 Pattern Source/Drain Contact and	
Compress Implantation	42
3.5.19 Aluminium Metallization	43
3.5.20 Aluminium Etching	44
3.5.21 Mirror SOI MOSFET structure	
and Define Electrode	45
3.6 Identification of Process Parameters and	
their levels	46
3.7 Optimization Approach	46-47
3.7.1 Optimization Process Flow	47-48
3.8 Taguchi Method Approach	49
3.9 Selection of Orthogonal Array (OA)	50

RESULT AND DISCUSSION

4.1 Bulk MOSFET	51-53
4.2 Silicon-On-Insulator (SOI) MOSFET	54-56
4.3 Comparison between Bulk MOSFET and	
10nm SOI MOSFET	56-57

4.4 Optimization of V_{TH} , V_{SS} , I_{ON} and I_{OFF} using	
L9 Orthogonal Array (OA	57-58
4.5 L9 Array Design of Taguchi Method	58-59
4.6 VTH, IOFF, ION, VSS values Acquisition	59-61
4.7 Taguchi Method Analysis on Response V_{TH} , I_{OFF}	,
I_{ON} , and V_{SS}	62
4.8 Signal to Noise Analysis	62-65
4.9 Prediction S/N Ratio	65-71
5.0 Analysis of Variance (ANOVA)	71-72
5.1 Confirmation Test for Response V_{TH}	72-74

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion	75-76
5.2 Recommendation and Future Development	76
REFERENCES	77-80

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO	TITLE	PAGES	
3.1	Process Parameters and their levels of 10nm SOI-MOSFET		
3.2	L9 Orthogonal Array Layout		
4.1	Comparison between SOI MOSFET and Conventional Bulk		
	MOSFET	57	
4.2	Process Parameter and their levels of 10nm SOI-MOSFET	58	
4.3	Noise Parameter and their levels		
4.4	Taguchi Experimental Layout using L9 Orthogonal Array (OA)	59	
4.5	Threshold Voltage (V_{TH}) Values for 10nm SOI MOSFET		
	Device	60	
4.6	Subthreshold Voltage (V_{SS}) Values for 10nm SOI MOSFET	60	
4.7	Drive Current (I _{ON}) Values for 10nm SOI MOSFET Device	61	
4.8	Leakage Current (I _{OFF}) Values for 10nm SOI MOSFET Device	61	
4.9	Mean, Variance, and S/R ratio of Threshold Voltage, (V_{TH}) .	63	
4.10	S/N ratio of Subthreshold Voltage (V _{SS})	64	
4.11	S/N ratio of Drive Current, (I _{ON})	64	
4.12	S/N ratio of Leakage Current, (I _{OFF})	65	
4.13	Prediction S/N ratio for Nominal-The-Best of V_{TH}	69	
4.14	Prediction S/N ratio for Smaller-The-Best of V_{SS}	69	
4.15	Prediction S/N ratio for Smaller-The-Best of ION	70	
4.16	Prediction S/N ratio for Smaller-The-Best of I _{OFF}	71	
4.17	Results of ANOVA for NMOS Device	72	
4.18	V _{TH} Response for Confirmation Test	73	
4.19	Result of the Confirmation Experiment	74	

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

NO	TITLE	PAGES	
1.1	The basic structure of the MOSFET	2	
1.2	SOI MOSFET structure	3	
2.1	Basic structure of MOSFET device	7	
2.2	MOSFET Operation Modes	8	
2.3	Physical Structure of Basic SOI MOSFET Device	10	
2.4 - a	Partially-depleted	15	
2.4-b	Fully-depleted		
3.1	SILVACO Simulation Flowchart		
3.2	Basic NMOS Process Simulation Flowchart	22	
3.3	Flowchart of SOI MOSFET Design	24	
3.4.1	P-type Substrate Doping Concentration	25	
3.4.2	MOSFET structure after Oxide Deposition	26	
3.4.3	BOX Formation of SOI MOSFET	27	
3.4.4	Nitride Deposition and Photoresist	28	
3.4.5	Photoresist Etching	29	
3.4.6	Nitride Etching and Photoresist removal	30	
3.4.7	New Oxide Layer Deposition	31	
3.4.8	Chemical Mechanical Polishing (CMP)	32	
3.4.9	Sacrificial Oxidation	33	
3.4.10	Gate Oxide Growth	34	
3.4.11	Threshold Voltage Adjustment Implantation	35	
3.4.12	MOSFET structure after Polysilicon Gate Deposition	36	
3.4.13	Halo Implantation	37	

3.4.14	Depositing and Etching Nitride	38
3.4.15	Source/Drain Implantation	39
3.4.16	Silicide growth	40
3.4.17	BPSG process	41
3.4.18	Compensate Implantation	42
3.4.19	Aluminium Metallization	43
3.4.20	Aluminium Etching	44
3.4.21	Mirroring process	45
3.5	Optimization Process flowchart	48
3.6	Major steps of implementing the Taguchi Method	49
4.1	Bulk MOSFET	51
4.2	Contour of 10nmConventional Bulk MOSFET	52
4.3	Graph I_D - V_D for Bulk MOSFET	52
4.4	Graph I_D - V_G for Bulk MOSFET	53
4.5	Output window of Bulk MOSFET	53
4.6	SOI MOSFET structures	54
4.7	Characteristic value of SOI MOSFET	54
4.8	Contour of 10nm SOI MOSFET	55
4.9	Graph I _D -V _D for SOI MOSFET	55
4.10	Graph I _D -V _G for SOI MOSFET	56
4.11	S/N graph of Threshold Voltage for 10nm SOI MOSFET	66
4.12	S/N graph of Subthreshold Voltage for 10nm SOI MOSFET	66
4.13	S/N graph of Drive Current for 10nm SOI MOSFET	67
4.14	S/N graph of Leakage Current for 10nm SOI MOSFET	68

LIST OF ABBREVIATIONS

SOI	-	Silicon-On-Insulator
MOSFET	-	Metal-Oxide Semiconductor Field Effect Transistor
ITRS	-	International Technology Roadmap Semiconductor
SIO ₂	-	Silicon Dioxide
TCAD	-	Technology Computer Aided System
SNR	-	Signal to Noise Ratio
Nm	-	Nanometre
NMOS	-	N-Channel MOSFET
PMOS	-	P-Channel MOSFET

LIST OF SYMBOLS

ID	-	Drain Current
I _{OFF}	-	Leakage Current
V _{DS}	-	Drain to Source Voltage
V _G	-	Gate Voltage
V _{TH}	-	Threshold Voltage
I _{ON}	-	Drive Current
V _{SS}	-	Subthreshold Voltage
S/N	-	Signal to Noise

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Background.

Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) is a unique form of Field-Effect Transistor (FET) that works by electronically varying the width of a channel along which charge carriers (electrons or holes) flow. The wider the channel, the better the device conducts. The charge carriers enter the channel at the source, in addition to exit over the drain. The width of the channel is controlled by the voltage on an electrode called as the gate, which are located bodily between the supplier as well as the drain. The Gate is insulated from the channel by an exceedingly thin layer of metal-oxide.

There are two ways of MOSFET can be functioning. Firstly, the MOSFET is known as depletion mode. When there is no voltage on the gate he channel demonstrates its maximum conductance. Since the voltage about the gateway is actually increased, the channel conductivity can reduce. Secondly, a MOSFET can work that called as enhancement mode. When there is no voltage on the gate, the device does not conduct. A channel is produced by the application of a voltage to the gate. As a conclusion, the greater the gate voltage, the better the device conducts. The MOSFET has several advantages than the conventional junction FET or JFET. The gate of the MOSFET is insulated electrically from the channel, no current flows between the gate and also the channel. So, the MOSFET has pretty much infinite impedance. This makes MOSFETs very useful for power amplifiers. The device also suitable to high-speed switching applications. Some integrated circuit (ICs) contains MOSFET and used in computers.

Figure 1.1: The basic structure of the MOSFET.

Silicon-On-Insulator (SOI) is a new way of starting the chip making process, by replacing the bulk silicon wafers (approximately 0.75 mm thick) with wafers which consist three layers of Handle layer, Buried Oxide layer (BOX) and Device layer. Handle layer, also known as a thin surface layer of silicon (from a few hundred Angstroms to several microns thick) where the transistors are formed, an underlying layer of insulating material and a support or "handle" silicon wafer. The Buried Oxide layer (BOX) also known as an insulating layer, usually made of silicon dioxide is usually a few thousand Angstroms thick. When transistors are built within the thin top silicon layer, they switch signals faster, run at lower voltages and much less vulnerable to signal noise from background cosmic ray particles. Since on an SOI wafer each transistor has been isolated from its neighbour by a complete layer of silicon dioxide, they are immune to "latch-up" problems and can spaced closer together than transistors built on bulk silicon wafers. Latch-up is a type of short circuit which can occur in an improperly designed Integrated Circuit (IC). Building circuits on SOI allows for more compact chip designs, resulting in smaller IC devices (with higher production yield) and more chips per wafer (increasing fab productivity). SOI enables increased chip functionality without the cost of major process equipment changes (such as higher resolution lithography tool). The advantages of IC devices built on SOI wafers (mainly faster circuit operation and lower operating voltages) have produced a powerful surge in the performance of high-speed network servers and new designs for handheld computing and communication devices with longer battery life. Advanced circuits, using multiple layers if SOI-type device silicon, can lead the way to a coupling of electrical and optical signal processing into a single chip resulting in a dramatic broadening of communication bandwidth with new applications such as global ranging, direct-link entertainment and communication with handheld devices. Figure 1.1 shows that Silicon-On-Insulator (SOI) in MOSFET layer.

Figure 1.2: SOI MOSFET structure.

The purpose of this research is to design and analyse the application of Taguchi Method within the search engine optimization associated with Silicon-On-Insulator (SOI) Metal-Oxide-Semiconductor Field Effect transistor (MOSFET) performance using Technology Computer-Aided Design (TCAD) tool. TCAD tool is a program that's been made to allow the creation, fabrication, and simulation of semiconductor devices. This TCAD tool is used for designing various applications for semiconductor device. Silicon-On-Insulator (SOI) device is a silicon-based device built upon insulating substrate.

1.2 Objectives of the project.

The main goal of this research is to apply the Taguchi Method in the optimization of SOI MOSFET. Specifically, the objectives are:

- I. To analyse the characterization of SOI MOSFET by using the ATLAS SILVACO TCAD tool.
- II. To compare the electrical characteristic between SOI MOSFET and conventional bulk MOSFET.
- III. To design an initial SOI-MOSFET device design by applied of Taguchi Method.

1.3 Problem Statement.

In the material universe, before certain MOSFET device, proceed with the fabrication process the SILVACO TCAD tool (virtually fabrication tool) will be used to design it at the first hand. This will make the cost of production been minimized effectively. In current MOSFET devices, there is physical limitation, which is the short channel effect that is found in conventional MOSFETs as the gate length is further downsized. SILVACO TCAD tool (virtually fabrication tool) will be used to design the MOSFET device at the first hand before certain devices proceed with the fabrication process. This will make the cost of production been minimized effectively. In current MOSFET devices, there is physical limitation, which is the short channel effect that is found in conventional MOSFETs as the gate length of the fabrication process. This will make the cost of production been minimized effectively. In current MOSFET devices, there is physical limitation, which is the short channel effect that is found in conventional MOSFETs as the gate length is further downsized.

There are also a few problems in device performance for such an example, switching effect, which came from the higher leakage current (IOFF) [1]. Besides, the high-power usage and low speed characteristic of conventional circuit MOSFET must be improved to a new level so that this device can improve and be a lot more useful for future. Hence, the new device concept that has more improved than conventional MOSFET is introduced. That device calls Silicon-On-Insulator (SOI) MOSFET. To prove that statement, research has been conducted to analyse the characteristic of SOI MOSFET by applying the Taguchi Method.

1.4 Scope of the project.

This research mainly focused on the application of Taguchi Method in the optimization of Silicon-On-Insulator (SOI) MOSFET. Other than that, this project was conducted by using SILVACO's TCAD tool. The SILVACO's TCAD simulation tool is software that simulates and design device structures to minimize the cost of fabrication. This project consists of ANTHENA and ATLAS TCAD tool.

1.5 Project Outline.

This project contains five chapters. Chapter One is describes about the introduction of Silicon-On-Insulator MOSFET by applying the Taguchi Method that will be studied in the research, problem statement of the project, objective of the project, the aim of the project that describe the cause for developing this project, the scope of the project and organization of the project.

Chapter Two is a literature review about Taguchi Method and Silicon-On-Insulator MOSFET. This chapter reviews on previous research about the topic related to the task. Several method and approaches that related to the project are discussed and critiqued.

Chapter Three explains the methodology of the project. This project will use ATHENA and ATLAS simulation tool. The flow chart of the project and the algorithms use is explained in this chapter. This is also where the MOSFET structure is designed and produced using the SILVACO software.

Chapter Four is discussing on the TCAD simulation and elaboration regarding the results obtained and to more specifically be the characteristic of SOI MOSFET. In the conclusion of the report writing Chapter Five will concludes the project findings and recommendation for the further work.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction of MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).

The Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is very common and widely utilized in electronic fabrication. This device are uses in microprocessor and semiconductor memories. This MOSFET also an important power device in industry. Figure 2.1 shows basic structure of MOSFET device [4].

Figure 2.1: Basic structure of MOSFET device.

🔘 Universiti Teknikal Malaysia Melaka