TOPOLOGICAL OPTIMIZATION OF VEHICLE JACK FOR WEIGHT PERFORMANCE

CHONG SHENG WAH

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SUPERVISOR DECLARATION

"I confess that I have read this thesis and in my opinion this work is sufficient in terms of scope and quality for the award Bachelor of Mechanical Engineering (Design and Innovation)."

Signature	:	
Author	:	DR. MOHD NIZAM BIN SUDIN
Date	:	

TOPOLOGICAL OPTIMIZATION OF VEHICLE JACK FOR WEIGHT PERFORMANCE

CHONG SHENG WAH

This report is submitted in fulfilment of the requirements for the award Bachelor of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2015**

TOPOLOGY OPTIMISATION OF VEHICLE JACKS FOR WEIGHT PERFORMANCE

CHONG SHENG WAH B041110012 BMCD Email: cswah91@gmail.com

Draft Final Report Projek Sarjana Muda II

Supervisor: DR. MOHD NIZAM BIN SUDIN

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

JUNE 2015

DECLARATION

"I hereby declare that the work in this report "TOPOLOGY OPTIMISATION OF VEHICLE JACKS FOR WEIGHT PERFORMANCE" is my own except for summaries and quotations which have been duly acknowledge."

Signature	:	
Author	:	
Date	:	

ii

ACKNOWLEDMENT

I would like to take this opportunity to show my utmost appreciation to my family for their support and encouragement while I am preparing this Project. In addition, my deepest gratitude for my supervisor, Dr. Mohd Nizam bin Sudin who has been guided and assisted me in completing this report.

Lastly, I would also like to thank my friends and acquaintances whom I know and have helped me a lot during the writing process of this report. I am grateful to have them to assist me in my project.

ABSTRAK

Pada masa yang terkini, industri automotif telah menumpukan kepada berat kenderaan kerana kajian menunjukkan bahawa kenderaan yang ringan dapat menjimatkan minyak. Oleh itu, kebanyakan kajian tertumpu kepada mengurangkan berat kereta melalui reka bentuk struktur kenderaan. Bahan binaan kereta dam struktur turut dikaji selidik untuk menghasilkan produk yang paling ringan. Model yang dipilih dalam kajian ini ialah jek kereta kerana berat jek kereta ini akan meningkatkan beban kereta secara tidak langsung. Oleh itu, teknik pengoptimuman topologi digunakan untuk mengurangkan berat jek kereta. Bahan asal dikenal pasti sebagi keluli. Akan tetapi, cara yang paling baik untuk mencapai pengurangan berat ialah menggunakan cara pengoptimuman topologi. Reka bentuk jek kereta dilukis dengan menguunakan CATIA V5R20 supaya ia dapat dioptimumkan dengan menggunakan perisian Altair Optistruct. Dalam Optistruct, ia mencadangkan reka bentuk jek kereta supaya berat jek kereta dapat dikurangkan dengan berkesan. Analisis statik linear turut dijalankan untuk mengkaji ketahanan jek kereta selepas daya dikenakan ke atas jek kereta tersebut. Berat asal jek kereta ialah 2.5 kg dan selepas ia dioptimumkan, berat jek yang baharu telah dikurangkan kepada 2.22 kg atau sebanyak 11%.

ABSTRACT

Nowadays, automotive industry is focusing more on lightweight vehicle because the weight of the vehicle can affect efficiency of the car itself. Therefore, to improve the weight of the car, it is a good idea to design a vehicle, which is high efficiency and lightweight by doing the research on material of existing car so that other material could be used to replace the existing material. Besides that, the structure of the car can be change so that it can achieve the target of lightweight vehicle. In this project, scissor car jack is chose as the subject that its weight should be reduced so that at the same time it can reduce the burden of the car. Moreover, topology optimization technique is used to solve the weight reduction of scissor car jack. The material of the existing scissor car jack will not be change in order to reduce the weight of the scissor car jack in the aspect of topology optimization only. The scissor car jack is developed to 3D model before it can be optimized using the Altair Optistruct software. The design of the scissor car jack will be recommended from the software after the constraint and boundary conditions are set in the software. Linear static analysis is performed to study the deflection of the scissor car jack after a set of load is applied on the jack. In this project, the design constraints are displacement and stress while the objective function is volume fraction of the model. Lastly, the original weight of the scissor car jack is 2.5 kg and after it undergoes topology optimization, the weight of the new design is 2.22 kg where the weight of the original design is reduced around 11%.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGES
	DECLARATION	ii
	ACKNOWLEDMENT	iii
	ABSTRAK	iv
	ABSTRACT	v
	TABLE OF CONTENT	vi
	LIST OF TABLE	x
	LIST OF FIGURE	xi
	LIST OF EQUATION	xiv
	LIST OF NOMECLATURE	XV
	APPENDIX	xvi

CHAPTER 1 INTRODUCTION

1.0	Introduction	1
1.1	Problem Statement	2
1.2	Objective	3
1.3	Scope	3
1.4	Component Overview	4
1.5	Flow Chart	5
1.6	Significant Of The Project	6

1.7	Conc	lusion

CHAPTER 2 LITERATURE REVIEW

2.0	Introduction		7
2.1	History	History	
2.2	Structu	ral Optimisation	9
2.3	Туре С	Of Structural Optimization	10
	2.3.1	Shape Optimization	10
	2.3.2	Size Optimization	12
	2.3.3	Topology Optimization	13
2.4	Conce	ot Of Topology Optimisation	16
2.5	Topolo	Topology Optimisation Application	
2.6	Topolo	ogy Optimization Software	19
	2.6.1	Genesis	19
	2.6.2	Nx Nastran	20
	2.6.3	Altair Optistruct	21
2.7	Case S	tudy	23
	2.7.1	Optimize Weight And Material Usage Of The Elt Pulley	24
	2.7.2	Reducing Weight And Maximising Fuel Efficiency Of Car With Optistruct	27
2.8	Conclu	ision	28

CHAPTER 3 METHODOLOGY

3.0	Introduction	29
3.1	Literature Search	30
3.2	Measuring Of Scissor Car Jack	31
3.3	Calculating The Angle Of Inclination, A	31
3.4	Developing 3d Model Of Scissor Car Jack	33
3.5	Geometry In Hypermesh	35

6

3.6	Generating Mid Surface Of The Model		
3.7	Geometry Cleanup 3		
3.8	Creating Design Space And Non-Design Space	37	
3.9	Meshing	39	
	3.9.1 Creating 2-D Element Shape	39	
	3.9.2 Improve Meshing Of The Hole	40	
3.10	Element Quality Check	43	
	3.10.1 Warpage	44	
	3.10.2 Aspect Ratio	44	
	3.10.3 Skewness	45	
	3.10.4 Jacobian	46	
3.11	Material And Property Information	47	
3.12	Boundary Condition	49	
	3.12.1 Rigid Body Element	50	
	3.12.2 Force And Constraint	50	
	3.12.3 Loadstep	51	
3.13	Topology Optimization	52	
	3.13.1 Design Variable	53	
	3.13.2 Design Constraint And Response	53	
	3.13.3 Objective Of Topology Optimization	54	
3.14	Develop Concept In 2d Topology Ptimization	55	
3.15	Conclusion 56		

CHAPTER 4 DATA AND RESULT

4.0	Introduction	57
4.1	Output Result	58
4.2	Before Optimization: Result Of Maximum Eflection And Von Misses Stress	59
4.3	After Optimization: Result Of Maximum Deflection And Von Misses Stress	60

	4.3.1	Displacement Contraint	61
	4.3.2	Stress Constraint	62
4.4	Topolog	gy Optimization	63
4.5	Weight	Reduction	65
4.6	Factor S	Safety Of The Model	66
4.7	Justifica	ation Of Result	68

CHAPTER 5 DISCUSSION AND ANALYSIS

5.0	Geometry Interpretion	71
5.1	Meshing Properties	72
5.2	Force	73
5.3	Maximum Deflection And Von Misses Stress	74

CHAPTER 6 CONCLUSION AND RECOMMENDATION

6.0	Conclusion and Recommendations	75
REF	ERENCES	77
APPI	ENDIX A	80
APPI	ENDIX B	82

ix

LIST OF TABLE

NO TITLE

PAGE

1.1	Description of the model of the scissor car jack	2
3.1	Properties of the material	47
3.2	Unit that used in the HyperMesh	48
4.1	Expected result for the weight of car jack	58

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURE

NO

PAGES

1.1	Scissor car jack	4
1.2	Flow Chart of the Project	5
2.1	Technique of structural optimization	10
2.2	Shape of the beam-structure in term of function $\eta(x)$	11
2.3	Shape optimisation	12
2.4	Sizing optimization	12
2.5	Topology optimization	13
2.6	Examples of microstructure with rotation in 2D	15
2.7	Example of topology optimization process	18
2.8	Belt pulley of the washing machine	24
2.9	Process flow of topology optimization for the belt pulley	25
2.10	Optimized pulley shows ten percent weight saving	26
2.11	Model with manufacturing constraints applied	27
3.1	Flow Chart of research activities	30
3.2	Force that applied in the scissor car jack members	32
3.3	CAD of scissor car jack in CATIA V5R20	33
3.4	CAD of original design for lifting member in CATIA V5R20	34
3.5	CAD of modified design for lifting member in CATIA V5R20	34
3.6	Dimension of the lifting member	34
3.7	Lifting member model in the format of IGES	35

3.8	Mid surface of lifting member	36
3.9	Quick edit for geometry clean up	37
3.10	Geometry edition of creating design and non-design space	37
3.11	Solid edit on the mid surface of the lifting member	38
3.12	Design and non-design space of lifting member	38
3.13	Difference between the component in real life and finite element analysis	39
3.14	2 dimensional meshing for lifting member	40
3.15	Element size page of 2 dimensional meshing	40
3.16	Washer split page to create the shape of circle surrounding the hole	41
3.17	Difference of the washer-split surface and original surface	41
3.18	Before 2-D meshing is applied on the surface of the hole	42
3.19	After 2-D meshing is applied on the surface of the hole	42
3.20	2-D element quality check up	43
3.21	Clean-up tools for 2-D quality index.	43
3.22	Warpage result	44
3.23	Aspect ratio result	45
3.24	Skewness of the triangular element	45
3.25	Skewness result	46
3.26	Jacobian result	47
3.27	Material classification of Steel AISI 1045	48
3.28	Property of the model	49
3.29	RBE 2 for the pivot of lifting member	50
3.30	Force and constraint that applied on the model	51
3.31	Load step of the lifting member	52
3.32	Set the design variable for optimization	53
3.33	Design constraint of the lifting member	54
3.34	Topology Optimization Procedure	55
4.1	Output result from analysis page.	58
4.2	Maximum deflection of the lifting member before optimization	59
4.3	Result of Von misses stress before optimization	60
4.4	Maximum deflection of model for displacement constraint	61
4.5	Result of Von misses for displacement constraint	61
4.6	Maximum deflection of model for stress constraint	62
4.7	Result of Von misses for stress constraint	62

4.8	2D view of the result of topology optimization from OptiStruct	63
4.9	3D view of the result of topology optimization from OptiStruct	63
4.10	Suggested model by using OptiStruct	64
4.11	After the model is redesign using CATIA V5R20	64
4.12	Mass calculation of the lifting member before optimization	65
4.13	Mass calculation of the lifting member after optimization	66
4.14	Von misses stress of the model before optimization	67
4.15	Von misses stress after optimization (displacement constraint)	67
4.16	Von misses stress after optimization (stress constraint)	68
4.17	Maximum deflection result for redesign the lifting member	69
4.18	Von misses stress results for redesign the lifting member	69
4.19	Final concept of the scissor car jack	70
5.1	FBD of the scissor car jack	73

xiii

LIST OF EQUATION

$$\sigma = C \varepsilon$$
 17

3.1
$$\alpha = \cos^{-1}\left(\frac{e}{2L}\right)$$
 32

$$F_1 = \frac{F}{2\cos\alpha}$$
 32

LIST OF NOMECLATURE

AMSES	-	Automated Multi-level Sub-structuring Eigen Solver
BDOT	-	Big Design Optimisation Tool
CAD	-	Computer Aided Drawing
DOFs	-	Degree Of Freedom
DOT	-	Design Optimisation Tool
F	-	Force
FEM	-	Finite Element Method
ISE	-	Isotropic Solid or Empty
NVH	-	Noise Vibration Harshness
RON	-	Research Octane Number
SIMP	-	Solid Isotropic Material Penalization
FBD	-	Free Body Diagram
RBE	-	Rigid Body Element
QUAD	-	Quadrilateral
TRIA	-	Triangle

APPENDIX

NO	TITLE	PAGE	
А	Gantt Chart PSM I	80	
В	Drafting of the CAD drawing	82	

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

Based on the research done by The Information Centre For and About The Global Auto Industry (WARDSAUTO), the numbers of vehicles have surpassed 1 billion since 2010 and it is obviously to see that vehicle is essential for human being since there are many benefits of vehicle.

Vehicle is the transportation of property or people from a place to a place and it brings many ease to people by reducing the usage of time to reach a destination or transferring property therefore the demand of the car increases annually. Uprising of the industry of automotive has also bring up the industry of oil and gas. Fuel is very important because it acts as the source of energy of the vehicle. In Malaysia, Research Octane Number (RON) 95 is introduced from the year of 2009 and it costs RM 1.75/litre. At 2011, the price of the RON 95 is RM 1.90/litre and it is increased to RM 2.10/litre on 2013. Then the price continues to raise until RM 2.30/litre on 2014. There is a dramatic increase in the fuel price due to demand is higher than supply thus it is important to reduce the fuel consumption of the vehicle. There are many ways to reduce the fuel consumption of the vehicle but the most effective way is to consider the weight of the vehicle.

So far, lightweight vehicle is the most successful production nowadays with the approach from topology optimization. This optimization method would be applied on scissor car jack because it is the component that can be found in boot of the car. Scissor car jack is a mandatory component in the car which cannot be neglected for emergency purposes. Its function is to lift up the car to ease the user while changing the tyre that has problem. Thus, this study will focus on reducing weight of the scissor car jack by using topology optimization.

1.1 PROBLEM STATEMENT

Fuel is the power source for a car to function yet it can be diminished in one day. Hence, it is important to save the fuel consumption. There are many methods taken to save the fuel consumption, such as change the car shape, reduce the car weight and improve the car engine. In fact, fuel consumption is affected by the weight of the car since the heavier the car, the more the power required to move a car.

Furthermore, the most common example that we could encounter is, the existence of the vehicle jack which may cause the difference in the fuel usage. When the car jack is removed from the boot of the car, the weight of car would be reduced and it may bring down the fuel consumption as well. Therefore, the easiest way is to

reduce the weight of the car jack that can be found in car boot and it is used to lift up a car when changing tyre. Software of Optistruct is the analysis solver that can be used to solve problems under static and dynamic loadings for a lightweight design and it can be used to improve the weight of the car jack by reducing the volume of the car jack without changing the layout of the carjack.

1.2 OBJECTIVE

To reduce the weight of an existing car jack using optistruct software for reducing fuel consumption.

1.3 SCOPE

To develop a 3D design of car jack using CATIA V5 R20 and get the best layout of the car jack that facilitated by Optistruct with the given set of load and boundary condition. Linear static analysis of the structure and optimize the topology using optistruct.

1.4 COMPONENT OVERVIEW

Car jack is a mechanical jack and device that helps human to lift a vehicle by manual force alone. Scissor car jack as shown in Figure 1.1 is a standard equipment where can be find in the boot of every car because it plays an important role when there are emergency. User can use it to lift the car up and change the tyre in the middle of road. The mass of the scissor jack is in the range of 2.5 kg and it is easy to use and small enough to store in the boot. However, there are many types of scissor car jack and it can be categorizes according to the load that it can support. There are 1 ton, 1.5 ton, and 2 ton of car jack where it is based on the weight of the car.

Figure 1.1: Scissor car jack (Source: Banzai Ltd, 2010)

Model	P-10
Capacity	600 kg
Minimum height	100 mm
Maximum height	390 mm
Mass	2.5 kg

Table 1.1 Description of the model of the scissor car jack(Source: Banzai Ltd, 2010)

From the Table 1.1, it shows that the maximum load that can be supported by the car jack is 600 kg and it has mass of 2.5 kg. Height of the car jack is defined as the height from the ground until the loading bracket. In this project, the scissor car jack chosen is the same as the research that done by Mehmet Bariskan in 2014.

Figure 1.2: Flow Chart of the Project