

C Universiti Teknikal Malaysia Melaka

We hereby declared that we have read this Bachelor Degree Dissertation (BDD) and in our opinion this BDD is sufficient in terms of scope and quality for the award of the Bachelor Degree of Technopreneurship with Honors.

Signature Name of Supervisor Date

: DR CHEW BOON CHEONG 3/7/2015

DR. CHEW BOON CHEONG Timbalan Dekan (Penyelidikan & Pengajian Siswazah) Fakulti Pengurusan Teknologi Dan Teknousahawanan Universiti Teknikal Malaysia Melaka

Signature Name of Panel

317/2015

Date

: DATIN SURAYA BINTI AHMAD Pensyarah Kanan Fakulti Pengurosari Teknologi dan Teknoùsaliawanan Universiti Teknikal Malaysia Melaka

ADOPTION OF PIEZOELECTRIC TILES AS AN ALTERNATIVE ENERGY SOURCES: A CASE STUDY IN KLIA 1, SEPANG

IZYAN ADILAH BINTI BOHARI

A project report submitted in fulfillment of the requirement for the award of Bachelor Degree of Technopreneurship with Honors

> Faculty of Technology Management & Technopreneurship Universiti Teknikal Malaysia Melaka

> > JUNE 2015

C Universiti Teknikal Malaysia Melaka

"I declared that thesis entitle Adoption of Piezoelectric Tiles as an Alternative Energy Sources: A Case Study in KLIA 1, Sepang is the result of my own research except as cited in the references"

Signature	mp.
Name	: IZYAN ADILAH BINTI BOHARI
Date	03.07.2015

ii

DEDICATION

I lovingly dedicate this dissertation to my beloved parent, Mr. Bohari and Mrs. Sara; my supportive Supervisor, Mr. Chew Boon Cheong; and my helpful friends who supported me along the way.

ACKNOWLEDGEMENTS

In the Name of ALLAH, the Most Gracious, the Most Merciful. Alhamdulillah, all praises to ALLAH for the strengths and His blessing for me to complete this Bachelor Degree Dissertation. I would like to express my deepest gratitude to all my family members and friends who were always supporting me and encouraging me with their best wishes.

I am so grateful to the Faculty of Technology Management & Technopreneurship at UTeM for making it possible for me to study here. Special appreciation goes to my supervisor, Dr. Chew Boon Cheong, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing the research. His invaluable help of constructive comments and suggestions throughout the dissertation works have contributed to the success of this research. Not forgotten, my appreciation to my presentation panel Datin Suraya binti Ahmad upon seminar PSM I and Mr. Ismi Rajiani panel for PSM II for their valuable comments.

I am also deeply thankful to all respondents and staffs of Malaysia Airports Holdings Berhad (MAHB) who directly and indirectly involved especially Madam Norhidayati, upon their cooperate to help me in order to collect primary data in the organization. Their valuable information have helped me to complete this dissertation regarding 'Adoption of Piezoelectric Tiles as an Alternative Energy Sources: A Case Study in KLIA 1, Sepang'. May ALLAH bless all of you. Thank you.

ABSTRACT

Nowadays, the extensive fossil fuel exploitation has led to some unwanted atmospheric and environmental pollution to fulfill almost all human activities for energy consumption. Moreover, the recent fluctuations on the price of petroleum have affected worldwide economics which has forced an increased in the price of all goods. Piezoelectric is a mechanism to transfer ambient vibrations into electrical energy when subjected to mechanical stress. The objectives of this study are; (1) to examine the factors that will foster piezoelectric tiles adoption as an alternative energy sources for KLIA 1, Sepang, (2) to assess the strategies for KLIA 1, Sepang in adopting piezoelectric tiles in the airport, and (3) to propose innovative suggestions to improve or enhance piezoelectric tiles adoption in KLIA 1, Sepang, after some innovative suggestions will be made to overcome the negative factors for the ease of this technology adoption. Although KLIA 1, Sepang already fostering solar energy as alternative energy source, by adopting the piezoelectric tiles there is a variation of an alternative energy sources mix in KLIA 1, Sepang in order to enhance energy efficiency. In this study, the researcher will conduct the case study in qualitative research method, which included the semi-structured questionnaires technique to investigate the factors and strategies for the adoption of piezoelectric tiles as an alternative energy source at KLIA 1, Sepang. As a conclusion, by adopting piezoelectric tiles at KLIA 1, Sepang might raise economic growth in high technology industry to positioning Malaysia as one of the advanced country in Asean region.

Keyword: KLIA 1, adoption, piezoelectric tiles, alternative energy

v

ABSTRAK

Pada masa kini, eksploitasi bahan api fosil yang luas telah membawa kepada beberapa pencemaran atmosfera dan alam sekitar yang tidak diingini bagi memenuhi hampir semua aktiviti manusia untuk penggunaan tenaga. Lebih-lebih lagi, turun-naik harga petroleum telah menjejaskan ekonomi di seluruh dunia yang telah menyebabkan peningkatan harga semua barang-barang. Piezoelectric adalah satu mekanisme untuk memindahkan getaran ambien (persekitaran) kepada tenaga elektrik apabila berlakunya tekanan mekanikal. Objektif kajian ini ialah; (1) untuk mengkaji faktor-faktor yang akan menggalakkan penggunaan jubin piezoelectric sebagai sumber tenaga alternatif bagi KLIA 1, Sepang, (2) untuk menilai strategistrategi bagi KLIA 1, Sepang mengguna pakai piezoelectric jubin di lapangan terbang, dan (3) untuk mencadangkan cadangan yang inovatif bagi memperbaiki atau meningkatkan penggunaan jubin piezoelectric di KLIA 1, Sepang, selepas beberapa cadangan yang inovatif akan dibuat untuk mengatasi faktor-faktor yang negatif bagi memudahkan penggunaan teknologi ini. Walaupun KLIA 1, Sepang telah memupuk tenaga suria sebagai sumber tenaga alternatif, dengan menggunakan jubin piezoelectric dapat mempelbagaikan sumber tenaga alternatif di KLIA 1, Sepang bagi meningkatkan kecekapan tenaga. Dalam kajian ini, penyelidik akan menjalankan kajian kes dengan menggunakan kaedah penyelidikan kualitatif, termasuk teknik soal-selidik semi berstruktur bagi menyiasat faktor-faktor dan strategi penggunaan jubin piezoelectric sebagai sumber tenaga alternatif di KLIA 1, Sepang. Kesimpulannya, dengan menggunakan jubin piezoelectric di KLIA 1, Sepang mungkin meningkatkan pertumbuhan ekonomi dalam industri teknologi tinggi untuk meletakkan Malaysia sebagai salah satu negara maju di rantau Asean.

Kata Kunci: KLIA 1, adaptasi, jubin piezoelectric, tenaga alternatif

TABLE OF CONTENTS

CHAPTER	TITLE	PAGES
	TITLE RESEARCH	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	xiv
	LIST OF APPENDICES	xvi
CHAPTER 1	INTRODCUTION	
	1.1 Introduction	1
	1.2 Research Questions	2
	1.3 Research Objectives	3
	1.4 Scope	3
	1.5 Importance of the Study	4
	1.6 Summary	5
CHAPTER 2	LITERATURE REVIEW	
	2.1 Introduction	6

TITLE		PAGES
2.2 Techn	ology Adoption	6
2.3 Factor	rs of Technology Adoption in Malaysia	7
2.3.1	Technical	8
	2.3.1.1 Demand and usage of this new	8
	technology for an organisational	
	operations	
	2.3.1.2 Competitive advantages (positive	9
	impacts or benefits) that the new	
	technology brings	
	2.3.1.3 Properties of the new technology	9
	2.3.1.4 Technology life cycle (TLC)	10
2.3.2	Environmental	10
2.3.3	Managerial	11
2.3.4	Institutional	12
	2.3.4.1 Organisational objectives	12
	2.3.4.2 Extend organisational resources	13
	2.3.4.3 Stakeholders	13
	2.3.4.4 Benchmarking and positioning	13
2.3.5	Financial	14
	2.3.5.1 Types of cost	14
	2.3.5.2 Economic climate	15
	2.3.5.3 Funding	15
	2.3.5.4 Cost and benefit analysis	16
	2.3.5.5 Return on Investment (ROI)	16
2.1 Strate	gy for Technology Adoption in	16
Altern	ative Energy Source	
2.1.1	Establish sense of urgency	17
2.1.2	Create coalition	18

CHAPTER

C Universiti Teknikal Malaysia Melaka

CHAPTER	TITLE	PAGES
	2.2 Strategy for Technology Adoption in	16
	Alternative Energy Source	
	2.2.1 Establish sense of urgency	17
	2.2.2 Create coalition	18
	2.2.3 Develop clear vision	18
	2.2.4 Share vision	19
	2.2.5 Empower people to clear	19
	2.2.6 Secure short-term wins	20
	2.2.7 Consolidate and keep moving	20
	2.2.8 Anchor	20
	2.3 Theoretical Framework	22
CHAPTER 3	RESEARCH METHODOLOGY	
	3.1 Introduction	23
	3.2 Research Design	24
	3.3 Qualitative Method	24
	3.4 Primary Data Sources and Secondary I	Data 25
	Sources	
	3.5 Location of the Research	26
	3.6 Research Strategy	26
	3.7 Research Time Horizon	27
	3.8 Scientific Canon	27
	3.8.1 Internal Validity	27
	3.8.2 External Validity	28
	3.8.3 Construct Validity	29
	3.8.4 Reliability	29
	3.9 Summary	31

CHAPTER	TITLE		PAGES
CHAPTER 4	DISCUSSION A	ND ANALYSIS	
	4.1 Introduction		35
	4.2 The Malaysia	Airports Holdings Berhad	36
	4.3 Results and Di	Results and Discussion	
	4.3.1 Factors	4.3.1 Factors That Will Foster Piezoelectric	
	Tiles A	doption as an Alternative Energy	
	Sources	s for KLIA 1, Sepang	
	4.3.1.1	Technical	39
		4.3.1.1.1 Demand and usage	39
		4.3.1.1.2 Competitive advantages	40
	4.3.1.2	Environmental	41
		4.3.1.2.1 Political	42
		4.3.1.2.2 Economic	43
		4.3.1.2.3 Social	45
		4.3.1.2.4 Technology	47
		4.3.1.2.5 Environmental	49
	4.3.1.3	Managerial capability	50
		4.3.1.3.1 Managerial capability	50
		4.3.1.3.2 Ownership	52
	4.3.1.4	Institutional	54
		4.3.1.4.1 Organizational objectives	54
		4.3.1.4.2 Benchmarking and positionin	ng 55
	4.3.1.5	Financial	56
		4.3.1.5.1 Cost-Benefit Analysis	56
		4.3.1.5.2 Return on Investment (ROI)	58
	4.3.2 Strategie	es in Adoption Piezoelectric Tiles	59
	in KLL	A 1, Sepang	
	4.3.2.1	Establish sense of urgency	60
	4.3.2.2	Alliance	62

TITLE

	4.3.2.3 Develop and share clear vision	63
	4.3.2.4 Customer Intimacy	64
	4.4 Innovative Suggestions to Improve or Enhance	65
	Piezoelectric Tiles Adoption in KLIA 1, Sepang	
	4.4.1 Main entrance	66
	4.4.2 Baggage	67
	4.4.3 Office	67
	4.4.4 Aero bridge	68
	4.4.5 Runway	69
CHAPTER 5	CONCLUSION	
	5.1 Introduction	70
	5.2 Summary of Research Findings	71
	5.2.1 The Factors That Will Foster Piezoelectric	71
	Tiles Adoption as an Alternative Energy	
	Sources for KLIA1, Sepang	
	5.2.2 The Strategies for KLIA 1, Sepang in	72
	Adopting Piezoelectric Tiles in the Airport	
	5.2.3 Innovative Suggestions to Improve or	74
	Enhance Piezoelectric Tiles Adoption in	
	KLIA 1, Sepang	
	5.3 Recommendations for Further Work	76
REFERENCES		77
APPENDICES		80

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	TEMIF, A decision making model for technology adoption	7
4.1	The Piezoelectric Tiles Adoption Factors from the	38
	Respondents	
4.2	Strategies in Adoption Piezoelectric Tiles in KLIA 1, Sepang	59

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Treacy and Wiersema's value disciplines	24
2.2	Theoretical Framework	25
4.2	The MAHB pax movement for year 2014	44
4.3	Silver Book practicing	46
4.4	Factors affecting the technology acquisition decision	53
4.5	Cost and power produced of piezoelectric tiles installation	59
4.6	Sense of urgency	60
4.7	MAHB Passenger Movement Traffic 2004 – 2013	61
4.8	Main entrance	66
4.9	Baggage	67
4.10	Office	67
4.11	Aerobridge	68
4.12	Runway	69

LIST OF ABBREVIATIONS

ABBRV.	DETAIL			
ACEM	Consulting Engineers Malaysia			
CBA	Cost-benefit analysis			
CG	Corporate Governance			
CR	Corporate Responsibility			
CSR	Corporate Social Responsibility			
EE	Energy Efficiency			
EPC	Energy Performance Contracting			
ESP	Energy Savings Programme			
GBI	Green Bilding Index			
GLC	Government Link Company			
GT	Green Technology			
IPRs	Intellectual Property Rights			
IT	Information Technology			
ITA	Investment Tax Allowance			
KeTTHA	Kementerian Tenaga, Teknologi Hijau dan Air			
KLIA	Kuala Lumpur International Airport			
Ltd.	Limited			
MAHB	Malaysia Airports Holding Berhad			
MEGTW	Ministry of Energy, Green Technology and Water			
MOSTI	Ministry of Science, Technology and Innovation			
MOSTI	Malaysia and Ministry of Science, Technology and			
	Innovation			
PAM	Pertubuhan Arkitek Malaysia			
PBB	Passenger boarding bridge			
РМО	Project Monitoring Office			

PPP	Public Private Partnership				
PQ	Power Quality				
PS	Pioneer Status				
R&D	Research and Development				
R&D	Research and Development				
RE	Renewable Energy				
ROI	Return on investment				
SEDA	Sustainable Energy Development Authority				
SMEs	Small Medium Enterprises				
SROI	Social Returns on Investment				
TEMIF	Technical, Environmental, Institutional and Financial				
	decision making model				
TLC	Technology Life Cycle				
TNB	Tenaga Nasional Berhad				
WCM	World Class Maintenance				

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	Questionnaire		80

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Introduction

According to Sustainability Report of Malaysia Airport in year 2013, there are 79.5 million passengers in 2013 based on a report from Malaysia Airports Holding Berhad (MAHB). Meanwhile, high energy cost in Kuala Lumpur International Airport (KLIA) recorded at 193,548,483 kwh/year for months of January to August. Thus, as an international airport, KLIA must manage the cost of energy effectively and one of the way is by considering by using an alternatives energy sources.

Meanwhile, according to primary survey by Ministry of Science, Technology and Innovation (MOSTI), Research and Development (R&D) activities in alternative energy pioneer the green technology activities. Wind turbines and solar power are the most popular choices in renewable energy. However, the fast pace of technological changes nowadays have driven Malaysia to take a proactive step that is comparable to other developed countries. Therefore, technology adoption is important because it is the vehicle that allows most people to participate in a rapidly changing world where technology has become central to our lives.

Therefore, to differ from both main stream of alternative energy (solar and wind turbine), the researcher has chosen piezoelectric system in KLIA 1, Sepang as an alternative energy source which converts kinetic energy to electricity. According (2008).is to Trimarchi piezoelectricity an electrical energy produced from mechanical pressure (including motions such as walking). When pressure is applied to an object, a negative charge is produced on the expanded side and a positive charge on the compressed side. Once the pressure is relieved, electrical current flows across the material. It is expected that the human energy will contribute significantly in harvesting energy to produce electricity when they are passing on the piezoelectricity tiles.

1.2 Research Questions

In response to this much needed elaboration, this research introduces the notion of adopting piezoelectric tiles in KLIA 1, Sepang as an alternative method to harvest energy. Through piezoelectric adoption, KLIA 1, Sepang will benefit as a pioneer in Malaysia that implements piezoelectric tiles in energy harvesting.

If the adoption of piezoelectric tiles are successfully installed at KLIA 1, Sepang, there is a variation of an alternative energy sources mix in KLIA 1, Sepang besides solar energy in order to enhance energy efficiency. Moving forward, the next phase will be adopting it at other bull's eye location for example main shopping malls and train stations. The three questions to be answered in this research are as follows:

- i. What are the factors that will foster piezoelectric tiles adoption as an alternative energy sources for KLIA 1, Sepang?
- ii. How does KLIA 1, Sepang strategize the adoption of piezoelectric tiles in the airport?

iii. What are the innovative suggestions in order to improve or enhance piezoelectric tiles adoption in KLIA 1, Sepang?

1.3 Research Objectives

The objective of this research is to investigate the factors that foster piezoelectric tiles adoption as an alternative energy source in KLIA 1, Sepang. This is due to it is a strategic location as the main gateways for global travellers passing through to airports. Besides, the research also assesses the strategies for KLIA 1, Sepang to adopt piezoelectric tiles in the airport to create positive and lasting impressions to all visitors. Then, there is quite a few of innovative suggestions to improve or enhance piezoelectric tiles adoption in KLIA 1, Sepang. The objectives of the study are stated as below:

- i. To examine the factors that will foster piezoelectric tiles adoption as an alternative energy sources for KLIA 1, Sepang.
- ii. To assess the strategies for KLIA 1, Sepang in adopting piezoelectric tiles in the airport.
- iii. To propose innovative suggestions to improve or enhance piezoelectric tiles adoption in KLIA 1, Sepang.

1.4 Scope

The scope of this study to adopt to piezoelectric tile as an alternative energy source for KLIA 1, Sepang. Thus, this research aims to identify the factors that foster piezoelectric tiles adoption as an alternative energy source for KLIA 1, Sepang; the strategies for KLIA 1, Sepang to adopt to piezoelectric tiles in the airport; and the innovative suggestion to improve or enhance piezoelectric tiles adoption in KLIA 1, Sepang.

Respondents are mainly divided into two groups. First category consists of the management associates and they are managers and executives. For this category, eight respondents are selected. Management associates are those who set up the organization policies and manage the organization while second category consists of technical associates, which is engineers and six respondents are targeted. Technical associates support technical part and maintenance purposes of the organization. Both categories plays an important role to answer the interview questions.

There are several limitations occurring in the research study. First, this research is to adopt piezoelectric tiles as an alternative energy sources for KLIA 1, Sepang. Thus, the location of survey was at KLIA 1, Sepang only. Second, the researcher will assume all respondents are answering honestly. Third, this study only focuses on KLIA 1 officers.

1.5 Importance of the Study

The study will benefit KLIA 1, Sepang and indirectly to Malaysia economic growth. It is important to reduce dependency on conventional electric consumption by adopting piezoelectric tiles as an alternative energy source at KLIA 1, Sepang. Meanwhile, the purpose the researcher has chosen KLIA 1, Sepang airport for adopting piezoelectric tiles because KLIA 1 is a main gateway entrance for international visitors entering Malaysia. Indirectly, it may commercialize Malaysia comparable with developed countries that has adopted piezoelectric tiles.

Besides, this research also provides a deeper study on key factors and strategies that foster piezoelectric tiles adoption as an alternative energy source for KLIA 1, Sepang. Most importantly, this research also propose innovative suggestions to improve or enhance piezoelectric tiles adoption in KLIA 1, Sepang for their future planning purpose.

1.6 Summary

As known, Malaysia is still a developing country and new in regards to technology adoption. Thus, to align Malaysia with developed countries, the researcher has chosen a main gateway the KLIA 1, Sepang to adopt a piezoelectric tile as an alternative energy source.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discussed about the definition of technology adoption. TEMIF is a decision making model by Chew (2012) which assesses factors need to be considered in a technology adoption in Malaysian will be explain in this chapter. While, several related strategies from prior scholar literature writing are elaborated in detail to provide clear understanding in terms of strategies of the technology adoption in alternative energy sources. By the end of this chapter, the researcher will be able to conclude a theoretical framework.

2.2 Technology Adoption

According to Enos and Park (2007), adoption is the entire sequence of decisions made within the developing country determining how, when, where, and with what consequences an imported technology is to be employed. Meanwhile, Hall and Khan (2002) state technology adoption is the choice to acquire and use a new invention or innovation which usually an absorbing state, in the sense that we rarely observe a new technology being abandoned in favour of an old one. Based on both statements, the researcher have concluded that technology adoption can be defined as