CABLE THEFT MONITORING SYSTEM USING GSM MODEM (CTMS)

SYAZWAN BIN MOHD NAZRI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CABLE THEFT MONITORING SYSTEM USING GSM MODEM (CTMS)

SYAZWAN BIN MOHD NAZRI

This Report Is Submitted In Partial Fulfillment of Requirements for the Bachelor Degree of Electronic Engineering (Electronic Telecommunication)

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > June 2014

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL	UTEM Malaysia melaka	U FAKULTI KE	NIVERSTI JURUTERAA BORANG PRO	TEKNIKAL MALAYSIA MELAKA N ELEKTRONIK DAN KEJURUTERAAN KOMPUTER S PENGESAHAN STATUS LAPORAN JEK SARJANA MUDA II
Tajuk Pro	ojek : <u>CAR</u> MOI	LE THEFT N DEM (CTMS)	<u>10NITC</u>	DRING SYSTEM USING GSM
Sesi Peng	gajian : 1	3 / 1	4	
Saya	SYAZWAN	N BIN MOHD	NAZRI	(HURUF BESAR)
mengaku me syarat kegun	mbenarkan Lapor aan seperti beriku	an Projek Sarjan t:	a Muda ir	ni disimpan di Perpustakaan dengan syarat-
1. Laporan	adalah hakmilik U	niversiti Teknika	l Malaysia	a Melaka.
2. Perpusta	ıkaan dibenarkan	membuat salinar	ก untuk tเ	ujuan pengajian sahaja.
3. Perpusta	ıkaan dibenarkan	membuat salinar	n laporan	ini sebagai bahan pertukaran antara institusi
pengajia	n tinggi.			
4. Sila tand	akan (🗸):			
	SULIT*	*(Mengano kepentinga RAHSIA RA	dungi makl an Malaysi ISMI 1972)	lumat yang berdarjah keselamatan atau a seperti yang termaktub di dalam AKTA
	TERHAD**	**(Mengai organisasi,	ndungi mal /badan di r	klumat terhad yang telah ditentukan oleh nana penyelidikan dijalankan)
	TIDAK TERHAD			
				Disahkan oleh:
	(TANDATANGAN PE	NULIS)		(COP DAN TANDATANGAN PENYELIA)

ii

"I admit that this report is my own work except that every such abstract and citation only has I explained the source."

Signature:

Name: SYAZWAN BIN MOHD NAZRI Date: 6 JUNE 2014 "I declared that I have read this work and in my opinion this work is adequate in terms of scope and quality for the purpose of awarding a Bachelor's Degree of Electronic Engineering (Electronic Telecommunication)."

Signature: Supervisor's Name: ENGR. SITI AMANIAH BT MOHD CHACHULI Date: 6 JUNE 2014 Special dedicated to my beloved family, lecturer, friend and those people who have guided and inspired me throughout my journey of education.

ACKNOWLEDGEMENT

First and foremost, I would like to express my heartily gratitude to my supervisor, Engr. Siti Amaniah Bt Mohd Chachuli for the guidance and enthusiasm given throughout the progress of this final year project.

My appreciation also goes to my family who has been so tolerant and supports me all these years. Thanks for their encouragement, love and emotional supports that they had given to me.

I would also like to thank our Final Year Project and Fabrication Lab Technician, En. Imran bin Mohammed Ali for their co-operations, guidance and helps in fabricate the PCB of this project.

There is no such meaningful word than.....Thank You So Much.

ABSTRACT

This project is about cable theft monitoring system using GSM modem (CTMS) using programmable interface controller (PIC) microcontroller system, voltage divider, temperature sensor and several other devices. The main problem is cable theft activity is always happen although lot of methods have been developed by Telekom Malaysia to solve and reduce cable case theft such as cable theft prevention campaigns at the national level among the community, organizing security patrols, wiping grease on telecom poles, replacing existing cable with fiber cables and I-Watch System installation. The objective of this project is to design and develop a cable theft monitoring system using GSM Modem (CTMS). It is a low cost system. The output of this system can be divided into two parts which are display mode and message mode. For display mode, liquid crystal display (LCD) is used to display the percentages of voltage and circuit temperature. For message mode, the microcontroller activate the GSM module and GSM send alarm messages when the cable is cut and send back messages when the cable is in normal condition. For the temperature changes, temperature sensor is function when the circuit box temperature is more than 40°C and GSM also send alarm messages. The microcontroller is operating when sensor detects the voltage drop on cable from two roads either Jln Bendahara-Jln Teluk Piah Kanan or Jln Tgh Masjid- Jln Tebuk Sri Makmur. The two roads are referring to the either one road that the occurrence of cable theft or both of the road. The percentages of voltage drop and temperature changes is displayed on the LCD display. Advantages of this project are low cost, easy to manage and can reduce cable theft cases.

ABSTRAK

Projek ini bertujuan menghasilkan satu sistem pemantauan kabel curi menggunakan GSM modem (CTMS) dengan menggunakan sistem pengawal mikro (PIC), pembahagi voltan, sensor suhu dan beberapa peranti lain. Masalah utama adalah aktiviti kecurian kabel sentiasa berlaku walaupun banyak kaedah telah dibangunkan oleh Telekom Malaysia untuk menyelesaikan dan mengurangkan kecurian kes kabel seperti kempen pencegahan kecurian kabel di peringkat kebangsaan di kalangan masyarakat, membuat rondaan keselamatan, menyapu minyak gris pada tiang telekom, menggantikan kabel sedia ada dengan kabel gentian optik dan pemasangan system I-Watch. Objektif projek ini adalah untuk mereka bentuk dan membangunkan sistem pemantauan kabel curi menggunakan GSM modem (CTMS). Ia adalah sistem kos yang rendah dan berkesan. Keluaran sistem ini boleh dibahagikan kepada dua bahagian iaitu mod paparan dan mod mesej. Bagi mod paparan, paparan kristal cecair (LCD) digunakan untuk memaparkan peratusan voltan dan suhu litar. Bagi mod mesej, pengawal mikro mengaktifkan modul GSM dan GSM menghantar mesej penggera apabila kabel dipotong dan menghantar kembali mesej apabila kabel adalah dalam keadaan biasa. Bagi perubahan suhu, sensor suhu berfungsi apabila suhu litar sistem adalah lebih daripada 40°C dan GSM juga menghantar mesej penggera. Mikropengawal sedang beroperasi apabila sensor mengesan kejatuhan voltan pada kabel dari dua jalan sama ada Jln Bendahara-Jln Teluk Piah Kanan atau Jln tgh Masjid-Jln Tebuk Sri Makmur. Dua jalan adalah merujuk kepada salah satu jalan yang berlakunya kecurian kabel atau kedua-dua jalan. Peratusan penurunan voltan dan suhu perubahan dipaparkan pada paparan LCD. Kelebihan projek ini adalah kos rendah, mudah untuk mengurus dan boleh mengurangkan kes-kes kecurian kabel.

TABLE OF CONTENTS

CHAPTER	TITLE			
	REPORT STATUS VERIFICATION FORM	ii		
	DECLARATION	iii		
	SUPERVISOR COMFIRMATION	iv		
	DEDICATION ACKNOWLEDGEMENT			
	ABSTRACT	vii		
	ABSTRAK	viii		
	TABLE OF CONTENTS	ix		
	LIST OF TABLES	xiv		
	LIST OF FIGURES	XV		
	LIST OF ABBREVIATIONS	xix		

1 INTRODUCTION

2

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives	4
1.4	Scope of Work	4
1.5	Significant of Study	4
1.6	Chapter Organization	5

LITER	ATURE	REVIEW	6
2.1	Previo	us Research on Cable Theft Monitoring System	6
	2.1.1	Anti-Cable Theft System with Adjustable	6
		Capacitance and Adjustable Inductance	
	2.1.2	Anti-Cable Theft System with Alarm System	8
	2.1.3	Installation of Conductors and Ground Bars to Copper	8
	2.1.4	Global System for Mobile Communication (GSM)	12
	2.1.5	Sensor	14
2.2	Microc	controller	14
	2.2.1	PIC 16F877A Microcontroller	15
	2.2.2	Interrupt	17
2.3	GSM/0	GPRS Module	17

1

2.4	Input/output System	19
	2.4.1 Sensor	19
	2.4.2 Buzzer	20
	2.4.3 LCD Display	20
2.5	C Language Programming	22
2.6	Code Compose Studio (CCS) C Compiler	22
2.7	Conclusion	23

METH	ODOLO	GY	24
3.1	Introduc	tion	24
3.2	Methodo	ology Flow of Project	26
3.3	Overvie	w of the project	27
3.4	Circuit I	Development	29
	3.4.1	Voltage divider	29
	3.4.2	PIC 16F877A Microcontroller Circuit for GSM Modem	32
	3.4.3	Crystal Oscillator Circuit	34
	3.4.4	MAX 232 Circuit	35
	3.4.5	RS 232 Communication Settings	37
	3.4.6	Hyper Terminal Settings	38
3.5	Software	e Implementation	39
	3.5.1	Programming via C Language	39

3

C Universiti Teknikal Malaysia Melaka

	3.5.2	Program Subroutine	40
	3.5.3	The Hex File	41
	3.5.4	Simulating via ISIS Software	42
	3.5.5	Burning Hex file using Tiny Bootloader	43
3.6	Hardwa	are Development	44
3.7	Discuss	sion	45

RESUI	T AND DISCUSSION	46
4.1	Case 1: Voltage Drop	46
4.2	Case 2: Temperature Changes	51
4.3	Analysis Data	53
4.4	PIC-Modem Interfacing Result	55
4.5	Circuit Combination Result	55

4

5	CONCLUSION AND RECOMMENDATIONS		
	5.1	Conclusion	57
	5.2	Recommendations	58

C Universiti Teknikal Malaysia Melaka

REFERENCES	
APPENDIX A	62
APPENDIX B	65
APPENDIX C	66

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	The statistics of cable loss in Kuala Selangor from year 2007 until year 2013	3
2.1	16x2 LCD Control Pins	21
3.1	Expected results for voltage drop	28
3.2	Expected results for temperature change	29
3.3	Pin Configuration for MAX 232	36
4.1	The performance of voltage drop	50
4.2	The performance of temperature changes	53
4.3	The random value of voltage drop performance	54
4.4	The random value of temperature changes performance	54

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	The principle of anti-theft monitoring	7
2.2	The principle diagram of capacitance current	7
2.3	Logic diagram for judging the cables	8
2.4	Theft Deterrent Composite Cable	9
2.5	Copper Bonded Steel Conductor	10
2.6	Pipe Mount Theft Deterrent Ground Assembly	11
2.7	Wall Mount Theft Deterrent Ground Assembly	11
2.8	Tower Mounted Theft Deterrent Ground Assembly	12
2.9	Flow chart of the developed μC code	13
2.10	Microcontroller Chip	14
2.11	PIC16F877A Pin Configuration	16
2.12	Microcontroller Interface with External Devices	17

2.13	GSM/GPRS Module	18
2.14	LCD (Hitachi HD44780, 16x2)	22
3.1	Project flow	25
3.2	Flow Chart of Project Planning	26
3.3	Overview of the project	28
3.4	A typical voltage divider	30
3.5	Voltage divider for 12V	30
3.6	Voltage divider for 9V	31
3.7	Voltage divider for 6V	31
3.8	Voltage divider for 3V	32
3.9	The PIC 16F877A Microcontroller circuit for GSM Modem	32
3.10	Schematic Diagram of Power Supply for PIC 16F877A	33
	Microcontroller	
3.11	Pin Configuration for PIC 16F877A Microcontroller	34
3.12	Oscillator circuit for PIC 16F877A Microcontroller	34
3.13	MAX 232 Circuit	35
3.14	Pin Diagram for MAX 232	35
3.15	Modem-PC Interfacing	37

3.16	PIC-PC Connection via MAX 232	38
3.17	Hyper Terminal Settings	39
3.18	Steps Programming Implementation	40
3.19	Project Configurations	41
3.20	The Hex File	41
3.21	Circuit Simulation via ISIS	42
3.22	ISIS Project Settings	43
3.23	Burning via Tiny Bootloader	43
3.24	Testing the circuit with 12V power supply	44
3.25	Installation of overall circuit with the hardware	45
4.1	The connection for the circuit with 12V power supply	47
4.2	100% display at LCD screen (Normal Condition)	47
4.3	The buzzer and bulb warning light is active when voltage drop	48
4.4	0% displays at LCD screen (Alarm Condition)	48
4.5	Alarm Message for Jln Bendahara-Jln Teluk Piah Kanan	49
4.6	The message for Jln Bendahara-Jln Teluk Piah Kanan in Normal Condition	49
4.7	Alarm Message for Jln Tengah Masjid-Jln Tebuk Sri	49

Makmur

4.8	The message for Jln Tengah Masjid-Jln Tebuk Sri Makmu					
	in Normal Condition					
4.9	The method to make the temperature sensor activate the PIC 16F877A Microcontroller	52				
4.10	Alarm Message when the temperature more than 40° C	52				
4.11	The Messages that show the temperature is in Normal	52				
	Condition					
4.12	PIC 16F877A-Modem Interfacing Result	55				
4.13	Combination of Schematic Diagram	56				
4.14	The Circuit and Hardware Implementation	56				

LIST OF ABBREVIATIONS

RM	- Ringgit Malaysia				
ТМ	- Telekom Malaysia				
PDRM	- Polis DiRaja Malaysia				
GSM	- Global System for Mobile Communications				
LCD	- Liquid-Crystal Display				
PIC	- Peripheral Interface Controller				
CDU	- Central Processing Unit				
CPU	- International Mobile Equipment Identity				
IMEI	- Code Compose Studio				
CCS	- Bulletin Board Systems				
CCS	- Volt				
BBS	- Input/output				
V	- Read/Write				
ΙΟ					
R/W					

CHAPTER 1

INTRODUCTION

This chapter consists of six parts which are introduction, problem statement, objective, scope of work, significant of study and chapter organizations.

1.1 Introduction

Nowadays, telecom cable thefts have been increased in Malaysia. Losses year by year incurred by Telekom Malaysia Company were so great and it was spend about millions of dollars each year up to RM42 million in 2012 [1]. Various methods have been applied by Telekom Malaysia to overcome this problem such as cable theft prevention campaigns at the national level among the community [2], organizing security patrols [1], wiping grease on telecom poles [1], I-Watch (An Anti- Theft Cable Detection and Escalation System) installation [3], and replacement of existing cable to fiber cables [4]. As part of the campaign, TM has begun communicating the community service messages through print media, electronic media (TV and radio), outdoor and online media [2]. For the security, TM is collaborating with PDRM, the local authorities, the other telecommunication company and utilities providers as these are the key stakeholders in mitigating the cable theft issue [2]. TM seeks the cooperation from all parties especially from local community and members of the public in ensuring the communication facilities provided are preserved and protected from any undesired incident such as cable theft, vandalism and any incident which results in interruption of telecommunication services [2]. In order to reduce the number of cable theft cases, an alarm system developed by Telekom Malaysia (TM) is introduced which is Anti- Theft Cable Detection and Escalation System (I-Watch). I-Watch is a system which alerts telecom's operatives when the thieves attempt to cut a cable, and it also informs the security guard exactly where the incident is happening [1]. All efforts have been undertaken to reduce the rate of cables loss but cable theft activity is always happen. In this project, a cable theft monitoring system using GSM modem (CTMS) will be proposed.

1.2 Problems Statement

There are a lot of methods have been developed by Telekom Malaysia to solve and reduce cable case theft such as cable theft prevention campaigns at the national level among the community, organizing security patrols, wiping grease on telecom poles, replacing existing cable with fiber cables and I-Watch System installation. Recently, I-Watch System has been used to prevent cable theft, however the cost for the installation of I-Watch System is expensive but still less effective because it uses human energy to catch the thief. Location of the incident and the distance to reach the location also cause the system is less effective due to criminals targeting rural areas and far from human to do cable theft activity.

Year	2007	2008	2009	2010	2011	2012	2013	Total
Kuala Selangor	123	113	68	64	104	52	45	569
Sasaran	90	72	35	33	52	35	33	350
Tanjong Karang	-	-	65	79	92	116	59	411
Sekinchan	-	-	147	100	62	222	45	576
Batang Berjuntai	53	44	30	51	34	29	28	269
Ijok	111	67	9	28	27	23	33	298
Total	377	296	354	355	371	477	243	2473

Table 1.1: The statistics of cable loss in Kuala Selangor from year2007 until year 2013 [5]

Referring to the TM statistical schedule the number of cable theft in the area of Selangor, 2012 is highest cable theft in Selangor from year 2007 until 2013. The most numerous cases for 2007 and 2008 are the area of Kuala Selangor. This is caused by copper cable is installed in the first area of Kuala Selangor in Selangor. In 2008, the number of cable loss theft is decreasing compared in 2007. This is due to cable theft prevention campaign implementation and monitoring of the TM patrol in the area most of the loss cable [2]. Sekinchan and Tanjong Karang areas are new area in Kuala Selangor from year 2009 and were the highest number of cases contributor compared to other areas. Cable thefts rise in 2012 even though TM has been using the I-watch system [1]. I-watch is a system which alerts the TM team the moment when thieves attempt to cut a cable, and informs them exactly where the incident is happening. It triggers the alarm and TM teams will be dispatched to the scene. However, their safety comes first and if the situation is dangerous, TM teams will wait for the police [1]. In 2013, the number of cable loss theft is decreasing compared in 2012. This is due to I-watch system is installed at the place that always happen cable theft which is Sekinchan and Tanjong Karang thus reduce cable theft for 2013.

Therefore, a new low cost system will be proposed in this project to help in reducing the activities of cable theft.

1.3 Objective of Study

There are two objectives to be achieved in this project. The objectives are:

- 1. To design and develop a cable theft monitoring system using GSM Modem (CTMS).
- 2. To analyze overall performance of CTMS in terms of percentage of detection.

1.4 Scope of Works

The scope of works for this project as follows:

- 1. The buzzer and alarm light is function when the cable is cut.
- 2. GSM send alarm messages when the cable is cut and send back messages when the cable is in normal condition.
- 3. Temperature sensor is function when the circuit box temperature is more than 40°C and GSM also send alarm messages.
- 4. LCD display is used to show the changes of voltage and circuit temperature.
- 5. PIC 16F877A Microcontroller will be used in this project to develop the program and C programming is used in the program.

1.5 Significant of Study

From the perspective of society, this project can help the society to reduce and prevent activities of cable theft. Also that, this project also can reduce the cost of