
HAMMING CODE USING FIELD PROGRAMMABLE GATE ARRAY
(FPGA)

SITI BASIRAH BINTI AMIR HAMZAH

This Report Is Submitted In Partial Fulfilment of Requirements For

The Bachelor Degree of Electronic Engineering (Computer Engineering)

Faculty of Electronic Engineering (Computer Engineering)

Universiti Teknikal Malaysia Melaka

JUNE 2014



UNIVERSTI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

TajukProjek : ………………………………………………………………………………….

SesiPengajian : 1 3 / 1 4

Saya    ……………………………………………………………………………………………….. (HURUF BESAR)

mengakumembenarkanLaporanProjekSarjanaMudainidisimpan di Perpustakaandengansyarat-
syaratkegunaansepertiberikut:

1. LaporanadalahhakmilikUniversitiTeknikal Malaysia Melaka.

2. Perpustakaandibenarkanmembuatsalinanuntuktujuanpengajiansahaja.

3. Perpustakaandibenarkanmembuatsalinanlaporaninisebagaibahanpertukaranantarainstitusipen
gajiantinggi.

4. Silatandakan ( √ ) :

SULIT*
*(Mengandungimaklumat yang
berdarjahkeselamatanataukepentingan Malaysia seperti yang
termaktubdi dalam AKTA RAHSIA RASMI 1972)

TERHAD**
**(Mengandungimaklumatterhad yang
telahditentukanolehorganisasi/badan di
manapenyelidikandijalankan)

TIDAK TERHAD

Disahkanoleh:

___________________________
(TANDATANGAN PENULIS)

__________________________________
(COP DAN TANDATANGAN PENYELIA)

Tarikh: ……………………….. Tarikh: ………………………..

*CATATAN :Jikalaporanini SULIT atau TERHAD, silalampirkansuratdaripadapihakberkuasa/organisasiberkenaan
denganmenyatakansekalitempohlaporaniniperludikelaskansebagai  SULIT atau TERHAD.

Hamming Code using Field Programmable Gate Array

SITI BASIRAH BINTI AMIR HAMZAH



iii

“I admit that this report is from my own work and effort except abstract and citation
only every had me explain the source."

Signature : ………………………………………

Author : ……………………………………...

Date : ……………………………………...



iv

“I / We hereby declare that I have read this in my / our work is adequate in terms of
scope and quality for the award of the degree Electronics Engineering (Computer

Engineering)"

Signature : ……………………………………………….

Name of Supervisor : ……………………………………………….

Date : ……………………………………………….



v

ProfessorAbd Hamid Hamidon

Mr Sani Irwan



vi

ACKNOWLEDGEMENT

I have taken efforts in this project. However, it would not have been possible
without the kind support and help of many individuals and organizations. I would
like to extend my sincere thanks to all of them.

I am highly indebted to Professor Abd Hamid Bin Hamidon for his guidance
and constant supervision as well as for providing necessary information regarding the
project and also for his support in completing the project.

Sincere thanks and appreciation goes to Mr Sani Irwan as my lecturer project
who has guided and shares his knowledge on this project.

I would like to express my gratitude towards my parents, family and friends
for their kind co-operation and encouragement which help me in the completion of
this project.

My thanks and appreciations go to my colleague in developing the project
and people who have willingly helped me out with their abilities.



vii

ABSTRACT

This project is all about the transmission of data in a memory which might

cause the soft errors during the transmission. Hamming Code module will be

developed in an FPGA environment, to detect and correct faulty bits during memory

data transfer. The information sent should be the same as the information received.

The Hamming Code is needed to avoid any problems that might happen

during data transmission in a memory. This gives an advantage to user because any

kind of error of will be detected within a short time. Furthermore, Hamming Code is

very helpful in correcting them.

This Hamming Code is a sophisticated pattern of parity check that allows the

correction of single errors along with the detection of double errors. Hamming Code

consists of two modules that are hamming code encoder and hamming code decoder.

The hamming code encoder is the data before it is sent through the channel. While

the hamming code decoder is the data after it is sent through the channel.

When the error correcting bits are included with a message and those bits can

be arranged such that different incorrect bits will produce different errors result and

then the corrupted bit could be identified. In an 8-bit data transfer, there are eight

possible single bit errors. Three control bits could potentially specify not only that an

error occurred, but also which bit caused the error.

The hamming code is applied to data units of any length and it uses the

relationship between the data and the redundant bits which has the capability of

correcting single bit errors. The 8-bit code requires four redundancy bits that can be

added at the end of the data unit or intermittent with the original data bits to form

hamming code. Field Programmable Gate Array (FPGA) is based designs that more

susceptible to soft errors in the mapped design. The Verilog software is needed for

this project which it is a hardware description language.



viii

ABSTRAK

Projek ini ialah mengenai penghantaran data di dalam satu memori di mana

ralat yang kecil mungkin berlaku semasa penghantaran data. Hamming Kod modul

akan dibangunkan dalam persekitaran FPGA untuk mengesan bit yang mempunyai

ralat semasa penghantaran data memori. Maklumat yang dihantar hendaklah sama

seperti maklumat yang diterima.

Kod Haming amat diperlukan bagi mengelakkan berlakunya masalah-

masalah itu semasa penghantaran data di dalam memori dan ini telah memberi satu

kepentingan terhadap pengguna di mana apa sahaja ralat yang berlaku akan dapat

dikesan dalam masa yang singkat malah dapat dibetulkan semula.

Kod Haming ini merupakan suatu jenis cek parity yang canggih yang

telah membenarkan pembetulan terhadap ralat yang tunggal bersama- sama dengan

pengesanan ralat yang berganda. Kod Haming mengandungi dua modul iaitu

pengekod dan penyahkod. Kod Hamming pengekod ialah data yang dihantar sebelum

melalui saluran manakala Kod Hamming penyahkod ialah data yang telah dihantar

selepas melalui saluran.

Apabila ralat itu dibetulkan ia termasuk dengan mesej dan bit-bit yang

boleh diatur seperti ralat bit yang berbeza akan menghasilkan ralat yang berbeza  dan

kemudian ralat itu boleh dikenalpasti. Dalam pemindahan data 8 bit, akan terdapat

lapan ralat tunggal. Tiga bit kawalan berpotensi menentukan bukan sahaja ralat

tersebut malah kedudukan ralat itu berlaku.

Kod Hamming diaplikasikan terhadap unit data panjang dan ia dikaitkan

dengan hubungan antara data dan bit yang mempunyai keupayaan membetulkan

sedikit kesilapan yang tunggal. Kod 8-bit memerlukan empat bit lebihan yang boleh

ditambah pada akhir unit data atau dengan bit data asal untuk membentuk Kod

Hamming. Perisian Verilog diperlukan untuk projek ini yang ia adalah penerangan

bahasa.



ix

TABLE OF CONTENTS

CHAPTER TITLE PAGE

PROJECT TITLE i

REPORT AUTHORIZATION FORM ii

DECLARATION iii

SUPERVISOR’S DECLARATION iv

DEDICATION v

ACKNOWLEDGEMENT vi

ABSTRACT vii

TABLE OF CONTENTS ix

LIST OF TABLES xii

LIST OF FIGURES Error! Bookmark not defined.

ABBREVIATIONS xiv

I INTRODUCTION .............................................................................. 1

1.1 Overview ................................................................................ 1

1.2 Objectives ............................................................................... 3

1.3 Problem Statement.................................................................. 3

1.4 Scope ...................................................................................... 3

1.5 Report Structure...................................................................... 4

Introduction 4

Literature Review 4

Methodology 4

II LITERATURE REVIEW.................................................................. 5

2.1 Introduction ............................................................................ 5



x

2.2 Error Correcting Code (ECC)................................................. 5

2.3 Hamming Code....................................................................... 6

2.4 Parity Check ........................................................................... 8

2.5 Memory .................................................................................. 9

2.6 2 to 1 Multiplexer ................................................................. 10

2.7 Field Programmable Gate Array (FPGA)............................. 12

2.7.1 FPGA Designing and Programming 15

2.7.2 Cores 16

2.8 Xilinx, Inc............................................................................. 16

2.9 Conclusion............................................................................ 19

III METHODOLOGY........................................................................... 20

3.1 Introduction .......................................................................... 20

3.2 Flowchart of Project Methodology....................................... 20

3.3 Overview .............................................................................. 22

3.4 Sample of Project ................................................................. 23

3.5 Hardware Implementation .................................................... 31

3.5.1 Spartan-II of FPGAs 31

3.5.2 Board Development 32

IV RESULT AND DISCUSSIONS....................................................... 34

4.1 Hamming Code Implementation .......................................... 34

4.1.1 Top Module 36

4.1.2 Encoder Module 36

4.1.3 Fault_mux Module 36

4.1.4 Decoder Module 36

4.2 Register Transfer Level, RTL Schematic ............................. 36

4.3 Simulation............................................................................. 38

4.4 Simulation Result ................................................................. 41



xi

4.5 Hardware Implementation .................................................... 44

4.6 Discussion............................................................................. 45

V CONCLUSION AND RECOMMENDATION.............................. 47

5.1 Introduction .......................................................................... 47

5.2 Conclusion............................................................................ 47

5.3 Recommendation.................................................................. 48



xii

LIST OF TABLES

TABLE. TITLE PAGE

2.4.1 Parity Check 9

2.6.1 Multiplexer 2 to 1 Truth Table 11

2.6.2 The abbreviated truth table 11

3.4.1 Redundancy bits position 24

3.4.2 The parity bit for combination of data 24

3.4.3 8 bit data inserted into the redundancy bit position 25

3.4.4 Binary bits 25

3.4.5 X-or Truth Table 25

3.4.6 The data using X- or table 26

3.4.7 Data in 8 bits 26

3.4.8 Redundancy bit ‘r1’ 27

3.4.9 Redundancy bit ‘r2’ 27

3.4.10 Redundancy bit ‘r4’ 27

3.4.11 Redundancy bit ‘r8’ 27

3.4.12 Position of the corrupted bit 28

3.4.13(a),(b) X-Or data at ‘r1’ 28

3.4.14(a),(b) X-Or data at ‘r2’ 29

3.4.15(a),(b) X-Or data at ‘r4’ 29

3.4.16(a),(b) X-Or data at ‘r8’ 30

3.5.1.1 Spartan -II FPGA Family Members 32

4.6.1
Hamming Code for the rate bit and Overhead

Percentage
46



xiii

LIST OF FIGURES

FIGURE. TITLE PAGE

2.6.1 The Simplest 2-to-1 mux 11

2.7 Diagram of the FPGA 14

3.2.1 The flowchart of the hamming code progress 21

3.3.1 Block Diagram of a General Data or Storage System 23

3.5.2 The Switch/ Button Function at Viretx-II FPGA 33

4.1.1 Block diagram Sketches 35

4.1.2 Sources for  Implementation 35

4.2.1 Process of Synthesize for RTL Schematic 37

4.2.2 The Verilog for the RTL Diagram 37

4.2.3 The RTL Diagram 38

4.3.1 Adding new source at Behavioral Simulation 39

4.3.2 Verilog Test Fixture was chosen as a type of Source 40

4.3.3 Test Fixture at the Top Level Module 40

4.3.4 Test Fixture instantiates the UUT 41

4.4.1(a) Simulation Result in Binary Number 42

4.4.1(b) Simulation Result in Hexadecimal Number 42

4.4.2(a) Simulation Result in Binary Number 43

4.4.2(b) Simulation Result in Hexadecimal Number 43

4.5.1 The Switches/ Pulse Button Function with Data 44



xiv

ABBREVIATIONS

1. FPGA = Field Programmable Gate Array

2. ECC = Error-correcting code

3. DRAM = Dynamic Random Access Memory

4. SRAM = Static Random Access memory

5. PC = Personal Computer

6. ASICs = Application Specific Integrated Circuits

7. AMD = Advanced Micro Device

8. PLD = Programmable Logic Device

9. SSI = Small Scale Integration

10. PAL = Programming Array Logic

11. PROM = Programmable Read Only Memory

12. SEUs = Single Event Upsets

13. COTS = Commercial Off The Shelf

14. FFs = Flip- flops

15. RTL = Register Transfer Level



xv

16. VHDL = Verilog Hardware Description Language

17. ASIC =  Application Specific Integrated Circuit

18. GPL = General Public License

19. BSD = Berkeley Software Distribution

20. IP = Intellectual Property

21. CPLD = Complex Programmable Logic Device

22. IC = Integrated Circuit

23. LTE = Long Term Evolution

24. ASSP = Application Specific Standard Product

25. ARM = Advanced RISC Machines

26. SOC = System On Chip

27. IOBs = Input Output Blocks

28. RAM = Random Access Memory

29. DLLs = Delay Lock Loops

30. PCI = Peripheral Component Interface

31. CLBs = Configurable Logic blocks



CHAPTER I

INTRODUCTION

1.1 Overview

Externally, the cost of solid- state electronic devices has decreased almost as

dramatically as their size. This brings the major problem to the error correcting codes

over the past two decades. This has stimulated the development of digital computers

and peripheral devices and this, has caused a dramatic increase in the volume of data

communicated between such machines. The intolerance of computing systems to

error, and in some cases the inherently critical nature of the data demand the use of

either error- free facilities or some type of error- detecting or correcting-code in the

terminal devices. In many cases the latter approach is the most economical.

There have also been significant accomplishments within the field of error-

correcting codes itself. Several classes of long, powerful codes have been devised.

The decoding procedures which can be implemented with a modest amount of

hardware have been devised for several of these classes of codes.

These and other developments made the use of error correcting codes which

is quite practical today in data communications systems. In the near future the trends

mentioned above will continue and error correcting codes will become more widely

employed.



2

The idea of the Hamming Code using Field Programmable Gate Array was

created because the majority of the devices today used microprocessors where each

of the programs inside the device needs to be executed correctly. Whenever data is

stored or transmitted, there are chances that at least one or more bits will be an

incorrect value. The transient or soft errors when storing data or transmitting a packet

across a network connection. Here, the Hamming Code is function as a checker on

the reliability or the accuracy of data transmission. It works in computer memories to

avoid the single point failure losses of data and increased data reliability and data

integrity. Hamming code is one of the linear error- correcting codes that detect up to

two- bit errors or correct one-bit errors when binary data is transmitted from one

device into another without detection of uncorrected errors. In a processor-based

system, memory errors give rise to incorrect values in either the instruction or data

ultimately causing undesirable crashes or other system failures. Therefore, utilizing

Hamming Code inside an embedded system is considered with high priority in

today’s industrial communities.

The purpose of this project is to analyze the procedure and mechanism of the

Hamming Code for reliable memory data transfer and to develop the Hamming

Coder module in FPGA. The Hamming Code module is to be applied to an 8-bit data

transfer and implemented in Virtex-II FPGA board with Verilog HDL. To verify the

hamming code module a test program is developed with memory faults and the

results are analyzed to ensure correct functionality of the module. By the end of this

project, the Hamming Code module is developed in the FPGA environment, to detect

and correct faulty bit between memory data transfer.

There are two modules to be developed which is hamming encoder and

hamming decoder. Hamming encoder will encode the receive data using hamming

code algorithm. Meanwhile, hamming decoder will decode the transferred data back

to the original form.

Thus, both of the modules take the word size (8bit data) as an input

parameter. When a corrupted bit is detected, the bit in position can be corrected using

a redundancy bits calculation.



3

1.2 Objectives

The objective of this project is to:

1. Analyze the Hamming Code Algorithm in memory data transfer.

2. Develop a Hamming Code Encoder and Decoder modules in an FPGA.

1.3 Problem Statement

Due to technological advancement in semiconductor, the reducing size of a

transistor has led to errors occurring during memory data transfer. In a processor-

based system, memory errors give rise to incorrect values in either instruction or

data. This will ultimately cause undesirable crashes and other system failures.

Therefore, utilizing Hamming Code inside an embedded system is considered with

high priority in today’s industrial communities. Correction is not possible with one

parity bit for any bit error in any position produces exactly the same information. If

more bits are included in a message, and if those bits can be arranged such that

different corrupted bits produce different error results, then corrupted bits could be

identified.

1.4 Scope

The scope of this project is to develop a Hamming Code module and apply to

an 8-bit data transfer. This could be implemented using Virtex-II FPGA board with

Verilog HDL.



4

1.5 Report Structure

Introduction

The introduction is explaining about the general scope and the objectives of

this project.

Literature Review

The literature review is about the elaboration of the history of Hamming

Code, the types of Hamming and error correction code. It also includes the studies

about the development and implementation tool in order of implementation of the

FPGA.

Methodology

The methodology is the requirement of completing the task. All the necessary

information would be included in the flowchart.



5

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This literature review will elaborate more about the history of Hamming

Code, the types of Hamming and the Error Correction Code. It also includes the

studies about the development and implementation tool for implementation in FPGA.

2.2 Error Correcting Code (ECC)

Any data is stored or transmitted, there are some chances that one or more

bits will “flip” or it means changing to an incorrect value. The incorrect values are

called as the errors which may be due to a permanent fault or a transient condition.

The transient or soft errors often occur when storing data in DRAM or transmitting a

packet across a network connection. DRAM is referring as Dynamic Random Access

Memory. DRAM is a memory chip that depends upon an applied voltage to keep the

stored data. DRAM is one of the most commonly found memory modules in PC

compatible personal computers and workstations. One of the advantages of using

DRAM is its structural simplicity, one transistor and a capacitor are required per bit

and this allows DRAM to reach very high density.



6

As transistors shrink, errors are becoming more common. In a modern chip

the devices are small that cosmic rays or alpha particles can change the value of bits

that are stored in SRAM or registers, or are simply moving across the die. SRAM is

the Static Random Access Memory. SRAM is a type of memory chips which faster

and requires less power than dynamic memory. The memory maintains data in

storage as long as it is powered. Because it is faster and more reliable and expensive

than DRAM, SRAM is most often used as cache memory.

So, to solve this problem and ensure reliable operation, error correcting codes

(ECC) are used. The extra bits are sent or stored alongside the data bits to provide

redundant information. With enough bits of cautiously chosen redundant

information, we can detect or correct the most possible classes of errors.

2.3 Hamming Code

Hamming Code was created by Richard Wesley Hamming. He is an

American Mathematician whose work had many implications in computer science

and telecommunications. He contributes hamming code (hamming matrix), hamming

window, hamming numbers, sphere- packing or hamming bound and the hamming

distance.

Hamming Code is the error detection code that can be used to detect single

and double bit errors and correct single bit errors that can occur when binary data is

transmitted from one device into another.

Hamming Window is a weighted moving average transformation used to

smooth the periodogram values. The periodogram is a basic idea in mathematics and

statistics is to take a complicated object (such as a time series) and break it up into

the sum of simple objects that can be studied separately, see which ones can be

thrown away as being unimportant, and then adding what’s left back together again



7

to obtain an approximation to the original object. So, the periodogram of a time

series is the result of such a procedure.

Hamming Numbers are also known as ugly numbers and also 5- smooth

numbers (numbers whose prime divisors are less or equal to 5). The sequence of

hamming numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and etc consist of all numbers of the

form 2 3 5 where i, j and k are non-negative integers and 2, 3 and 5 are the

only prime factors used.

Hamming bound is a limit on the parameters of an arbitrary block code: it is

also known as the sphere- packing bound or the volume bound from an interpretation

in terms of packing balls in the Hamming metric into the space of all possible words.

It would give an important limitation on the efficiency with which any error-

correcting codes can develop the space in which its code words are embedded. A

code which attains the Hamming bound is said to be a perfect code.

Hamming distance between two words is the number of bits that are different

between the two words. For example, “001” and “011” have a Hamming distance of

one, because only the middle bit is different. “00111” and “01000” have a Hamming

distance of four. The minimum of Hamming distance between any two valid

codeword’s in a code determines how many errors may be detected or corrected

using that code. The codeword is the entire set of data bits and check bits. The data

bits are the original bits that needed to be protected while the check bits are the extra

bits that we send or store alongside the data bits. For example, if the minimum

hamming distance is one, then it is possible for a single bit error to make one valid

codeword into another valid codeword, so it is not possible in general to detect or

correct even a single error. But if the minimum Hamming distance is two, then a

single error must turn a valid codeword into an invalid one, thus allowing the error to

be detected.

The idea of Hamming Code is started when Richard Wesley Hamming

worked at Bell laps on the Bell Model V Computer where the electromechanical

relay-based machine with cycle times in seconds and then, the input was fed in on

punched cards, which would invariably have read errors. During weekdays, special



8

code would find errors and flash lights so the operators could correct the problem.

Then, during Afterhours period and on weekends, when there were no operators, the

machine simply moved on to the next job. The problems were identified when

Hamming worked on weekends and grew increasingly frustrated with having to

restart his programming from scratch due to the unreliability of the card reader. Over

the next years, he worked on the problem of error correction, developing an

increasingly powerful array of algorithms. In the year of 1950, he published what is

now known as Hamming Code, which remains in use today in applications such as

Error Correcting Codes (ECC) Memory.

Hamming Code detects the error bits data in a transmittable unit comprising

data bits and redundancy bits. The code is suitable to Field Programmable Gate

Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) and it is suited

to communication applications that need the error- control.

2.4 Parity Check

Parity is the commonly used code. Use of simple parity allows detection of

single- bit errors in a received message. Correction of these errors requires more

information, since the position of the corrupted bit must be identified. If a corrupted

bit can be identified, it can be corrected by simply complementing its value.

Correction is not possible with one parity bit for any bit error in any position

produces exactly the same information.

One extra bit is used with a group of data bits. The parity bit is set such that

the total number of ‘1’ bit is odd. This is called “odd parity”, another code is “even

parity” in which the total number of ‘1’ bits is even. This code has a low overhead

for a reasonable size of data word, and it allows detection of any one error, but it still

does not allow correction.



9

The two variants of parity bits are even parity bit and odd parity. In case of

even parity, the parity bit is set to ‘1’ if the count of ones in a given set of bits (not

including the parity bit) is odd, making the count of ones in the entire set of bits

(including the parity bit) even. If the count of ones in a given set of bits is already

even, it is set to a ‘0’. When using odd parity, the parity bit is set to ‘1’ if the count of

ones in a given set of bits (not including the parity bit) is even, making the count of

ones in the entire set of bits  (including the parity bit) odd. When the count of set bits

is odd, then the odd parity bit is set to ‘0’.

Table 2.4.1 Parity Check

Table 2.4.1 is about the possibility of the parity checks whether the parity is

even or odd by calculating how many values ‘1’ is contains in certain data.

2.5 Memory

Dynamic Random Access Memory, DRAM is the most common memory

was found in compatible personal computers, PC and workstations. DRAM is the

first released by Intel. DRAM contains of a capacitor and transistor. These cells must

be refreshed with new electricity for every few milliseconds allowing the memory to

keep its charge and hold the data as long as needed. DRAM is a volatile memory and

if the computer is powered off then the information within the memory is lost.


