ULTRA-THIN BODY SOI 22NM N-MOSFET (THE EFFECT TIN GATE THICKNESS)

NOR JANNATI BINTI ABD HALIM

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Electronic Engineering (Computer Engineering)

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

JUNE 2015

C Universiti Teknikal Malaysia Melaka

HIGH THE THE	L Fakui	J NIVERSTI T TI KEJURUTER BORANG F PROJJ	EKNIKAL MALAYSIA MELAKA RAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER PENGESAHAN STATUS LAPORAN EK SARJANA MUDA II
Tajuk Projek	:	ULTRA-THIN (THE EFFI	N BODY SOI 22NM N-MOSFET ECT TIN GATE THICKNESS)
Sesi Pengajian	1 4	/ 1	5
Saya NOR JAN	NATI BINT	I ABD HALIM	
mengaku member	narkan Lapoi	ran Projek Sarja	(HURUF BESAR) ana Muda ini disimpan di Perpustakaan dengan
syarat-syarat kegu 1. Laporan adal	inaan seperti ah hakmilik	berikut: Universiti Tekn	ikal Malaysia Melaka.
2. Perpustakaan	dibenarkan	membuat salina	in untuk tujuan pengajian sahaja.
3. Perpustakaan	dibenarkan	membuat salina	n laporan ini sebagai bahan pertukaran antara
institusi neng	aiian tinooi		
A Sila tandakan			
	(.).		
SULIT	*	*(Mengandu kepentingan RAHSIA RA	ngi maklumat yang berdarjah keselamatan atau Malaysia seperti yang termaktub di dalam AKTA SMI 1972)
TERH	AD**	**(Mengand organisasi/ba	ungi maklumat terhad yang telah ditentukan oleh adan di mana penyelidikan dijalankan)
TIDAK	K TERHAD		
			Disahkan oleh:
fu	A.		to
(TANDATANO	AN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
NO CO VINCES		TT AT AT	Niza Binti Idris
NU.59, KAMPUN MUKIM JABI, 06 KEDAH DARUL	6400 POKOI AMAN.	JKABAU, K SENA,	Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Kompu Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya 76100 Durian Tunggal, Melaka
Tarikh: 22 JUN	2015		Tarikh: 22 JUN 2015

C Universiti Teknikal Malaysia Melaka

I declare that this project report entitled "Ultra-Thin Body Silicon on Insulator (SOI) 22nm N-MOSFET (The Effect TiN Gate Thickness)", is the result of my own research except as cited in the references.

Date: 22 JUN 2015

I hereby declare that I have read this project report and in my opinion this thesis is sufficient in terms of scope and quality for the award of degree of Bachelor of Electronic Engineering (Computer Engineering).

Signature:

Name of Supervisor: MDM. NIZA BINTI MD. IDRIS

Date: 22 JUN 2015

Special dedicated to my father, my beloved mother, brother, little sister and my fiancée.

ACKNOWLEDGEMENT

Firstly, 'In the name of Allah, most gracious, most merciful'. Alhamdulillah, I would like to extend my deep gratitude towards the almighty Allah S.W.T because of His mercy and kindness, I was able to complete my Final Year Project and thesis in a given time frame without having any difficult problems. I would like to express profound gratitude to my Final Year Project Supervisor, Pn. Niza Binti Md. Idris for her invaluable support, encouragement, supervision and useful knowledge throughout this duration of my project. And also like to thank my father, Abd. Halim Bin Ismail, my beloved mother, Sopiah Binti Taib, for their love and support me all time through my life, give me the spirit and pray for my success in carrying out the task. Thank you to my caring fiancée that always concern about me and give me motivation when I need them. Last but not least, thanks to my brother and little sister who always supports me. Thanks for their encouragement that they had given to me. Special thanks goes to Dr. Anis Suhaila Binti Mohd Zain for sharing their knowledge regarding "Silvaco software". With their help, I able to finish my project on time. Nevertheless, my great appreciation dedicated to my friend Fidzrie Hafiz Bin Razali, Nor Idayu Binti Che Hussin and Rabiatul Adawieyah Binti Awang Ali, who had shared their opinion and knowledge directly or indirectly with this project. Finally, I am also thankful to my colleagues of Electronic and Computer Engineering and to all my friends in Universiti Teknikal Malaysia Melaka for their assistance and understanding.

Thank you so much

Nor Jannati Abd Halim

ABSTRACT

Currently, the demand of faster and smaller devices, need an attention to the researchers and semiconductor manufacturers make them putting a lot effort to face difficulties and challenges of improving on the performance of semiconductor devices. In other words, performance of short channel effects (SCE) in device, decreases the threshold voltage causes an, extra leakage current between the source and drain. The UTB comes to adoption of high-k/metal gate stack to improve the concept evolve to control the short channel effect with thin buried oxide (TBO). In addition, UTB SOI is very subject to the floating body effect and resulting in stability characteristic of the UTB SOI MOSFET. Technology Computer Aided Design (TCAD) tool from Silvaco's International[®] able to simulate the structure that has been designed in this project. Silvaco's DECKBUILD software used to design a structure of the MOSFET according to the steps in MOSFET fabrication process. Hence, Silvaco's ATLAS software used to obtain its characteristics. The analysis of the characteristics and results, such as transfer characteristics (Id-Vgs), sub-threshold curves (log Id-Vgs) and output characteristics (Id-Vd) were obtained to compare the drive current, leakage current, sub-threshold voltage and sub-threshold swing with titanium gate thickness for 5nm, 10nm, 15nm, 20nm, and 25nm for 22nm gate length. The 22nm UTBSOI carefully designed requirement of ITRS has been used as the reference. Results analyzed, give better performance in lower leakage current, high drain current and lower power consumption when the thickness of the titanium are increasing.

ABSTRAK

Pada masa ini, permintaan yang lebih cepat dan alat-alat yang lebih kecil, memerlukan perhatian para penyelidik dan pengeluar semikonduktor membuatkan mereka meletakkan usaha yang banyak untuk menghadapi masalah dan cabaran bagi meningkatkan prestasi peranti semikonduktor. Dalam erti kata lain, prestasi short channel effects (SCE) dalam peranti, mengurangkan threshold voltage menyebabkan, arus bocor bertambah di antara source dan drain. Kemunculan UTB datang bagi penggunaan high-k / metal gate stack untuk meningkatkan konsep evolusi bagi mengawal short channel effects dengan Thin Body Oxide (TBO). Di samping itu, UTB SOI adalah sangat bergantung kepada kesan *floating body* dan menyebabkan ciri-ciri kestabilan UTB SOI MOSFET. Technology Computer Aided Design (TCAD) perkakas daripada International® Silvaco yang dapat mensimulasikan struktur yang direkabentuk dalam projek ini. Perisian DECKBUILD Silvaco yang digunakan untuk merekabentuk struktur MOSFET mengikut langkah-langkah dalam proses fabrikasi MOSFET. Oleh itu, perisian ATLAS Silvaco yang digunakan untuk mendapatkan ciriciri MOSFET. Analisis ciri-ciri dan keputusan, seperti ciri-ciri pemindahan (Id-VGS) sub-threshold curve (log Id-VGS) dan ciri-ciri keluaran (Id-VD) telah diperolehi untuk membandingkan drive current, leakage current, sub-threshold voltan dan sub-treshold swing dengan ketebalan gate titanium bagi nilai 5nm, 10nm, 15nm, 20nm, dan 25nm untuk panjang gate 22nm. UTBSOI 22nm direka khas secara terperinci mengikut kehendak *ITRS* telah digunakan sebagai rujukan. Keputusan dianalisis, memberikan prestasi yang lebih baik dengan arus bocor lebih rendah, drain current yang tinggi serta penggunaan kuasa semasa yang rendah apabila ketebalan titanium semakin meningkat.

TABLE OF CONTENT

CHAPTER TITLE

PAGE

PROJECT TITLE	i
REPORT STATUS VERIFICATION FORM	ii
DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLE	xii
LIST OF FIGURE	xiii
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDIX	xvii

1 INTRODUCTION

1.1	Introduction of Silicon On Insulator (SOI)	1
1.2	Objectives	3
1.3	Scope	3
1.4	Problem Statement	3
1.5	Thesis Guideline	4
1.6	Conclusion	5

2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Bulk MOSFET/ Conventional MOSFET	7
2.3	Ultra-Thin Body Soi (UTB)	9
2.4	Fully Depletion	9
2.5	I-V Characteristic	10
2.6	Leakage Current	11
2.7	Drive Current	11
2.8	Sub-Treshold Slope	12
2.9	Threshold Voltage	12
2.10	Scaling MOSFET	14
2.11	Short Channel Effect	16

3 METHODOLOGY

3.1 Introduction	17
3.2 Overall Flow Chart	18
3.3 TCAD Process Structure Framework	19
3.3.1 Athena-Process Simulation Framework	19
3.3.2 Atlas-Process Simulation Framework	19
3.3.3 Deckbuild Process Structure Framework	20
3.4 22nm UTB SOI Design	20
3.5 Process to Design Structure Device	20
3.5.1 Athena	20
3.5.2 Atlas	38
3.6 Device Characteristic Using Atlas and Athena	38
Simulation	

Х

RESULT AND DISCUSSION

4

4.1 Introduction	39	
4.2 Device Description	39	
4.3 Result after simulation	45	
4.4 Comparison of 5nm, 10nm, 15nm, 20nm, and 25nm	51	
Titanium Thickness for 22nm Gate Length		
4.4.1 Drain Voltage 0.87V for 5nm titanium thickness	51	
4.4.2 Drain Voltage 0.87V for 10nm titanium thickness	53	
4.4.3 Drain Voltage 0.87V for 15nm titanium thickness	55	
4.4.4 Drain Voltage 0.87V for 20nm titanium thickness	57	
4.4.5 Drain Voltage 0.87V for 25nm titanium thickness	59	
4.4.6 Drain Voltage 0.05V for 5nm titanium thickness	61	
4.4.7 Drain Voltage 0.05V for 10nm titanium thickness	63	
4.4.8 Drain Voltage 0.05V for 15nm titanium thickness	65	
4.4.9 Drain Voltage 0.05V for 20nm titanium thickness	67	
4.4.10 Drain Voltage 0.05V for 25nm titanium thickness	69	
4.5 Summary of the result for comparisons 5nm,10nm,	71	
15nm, 20nm, and 25nm titanium gate		
thickness for 22nm gate length		

5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	75

5.2 Recommendations 7	6	
-----------------------	---	--

REFERENCE	77
APPENDIX	79

xi

LIST OF TABLE

NO.	TITLE	PAGE
2.1	Parameter of High Standby Power Technology (2011)	15
4.1	Parameter scale of gate length, $Lg = 22nm$ titanium	40
4.3	Result for 0.87V voltage supply	71
4.4	Result for 0.05V voltage supply	72

LIST OF FIGURE

NO.	TITLE	PAGE
1.1	The physical structure of UTB SOI	2
2.1	N- channel Mosfet (NMOS) Structure	6
2.2	The P MOSFET structure	7
2.3	The depletion type of n-channel MOSFET	8
2.4	Ultra-Thin Body Soi Structure	9
2.5	Front-channel characteristics of a fully-depleted n-channel	10
	SOI MOSFET	
2.6	I-V Characteristics of N-MOSFET	11
2.7	Common- source circuit driven by a constant current source	12
	used for the determination of the pinch-off and the slope	
	factor as functions of VG	
2.8	Graph threshold voltage for n- channel and p- channel	13
2.9	MOSFET Scaling	14
2.10	Scaling of switches	15
3.1	Overall Flow Chart of this project	18
3.2	View Grid Window	21
3.3	Selecting Display The material Silicon from TONYPLOT	22
3.4	Process deposition oxide	23
3.5	Process deposition Silicon	24
3.6	Process to grow gate oxide layer	25
3.7	Process to remove unwanted oxide layers	26
3.8	Structure before process implant	27
3.9	Structure after process implant	27
3.10	Process to remove all oxide layers	28
3.11	Process to define EOT	29
3.12	Process to add the gate layer	30
3.13	Process to remove titanium to get the gate length	31
3.14	Structure After Spacer Oxide Deposition.	32

C Universiti Teknikal Malaysia Melaka

3.15	Sidewall Spacer Oxide Formation after Dry Etching.	33
3.16	Process Etch the oxide layer to deposit the aluminum layer	34
3.17	Aluminum Deposition on the Half NMOS structure	35
3.18	Etching Aluminum on the Half NMOS structure.	36
3.19	Complete to design the full structure 22nm body soi n-	37
	MOSFET	
3.20	Full structure device with Contour Plot	37
4.1	UTB N-MOSFET design with 22nm gate length	41
4.2	Contour structure after doping	42
4.3	UTB N-MOSFET design with mesh	42
4.4	UTB N-MOSFET design with 5nm titanium thickness	43
4.5	UTB N-MOSFET design with 15nm titanium thickness	43
4.6	UTB N-MOSFET design with 20nm titanium thickness	44
4.7	UTB N-MOSFET design with 25nm titanium thickness	45
4.8	Show the linear graph for high voltage	46
4.9	Show the log graph for high voltage	47
4.10	Show the linear graph for low voltage	48
4.11	Show the log graph for low voltage	49
4.12	Show the linear graph for overlay UTB high and UTB low	50
4.13	Show the log graph for overlay UTB high and UTB low	50
4.14	Show the linear graph high voltage	51
4.15	Show the log graph for high voltage	52
4.16	Show the linear graph high voltage	53
4.17	Show the log graph for high voltage	54
4.18	Show the linear graph high voltage	55
4.19	Show the log graph for high voltage	56
4.20	Show the linear graph high voltage	57
4.21	Show the log graph for high voltage	58
4.22	Show the linear graph high voltage	59
4.23	Show the log graph for high voltage	60
4.24	Show the linear graph low voltage	61
4.25	Show the log graph for low voltage	62
4.26	Show the linear graph low voltage	63

4.27	Show the log graph for low voltage	64
4.28	Show the linear graph low voltage	65
4.29	Show the log graph for low voltage	66
4.30	Show the linear graph low voltage	67
4.31	Show the log graph for low voltage	68
4.32	Show the linear graph low voltage	69
4.33	Show the log graph for low voltage	70
4.34	Comparison of ON current – High Voltage	73
4.35	Comparison of ON current – Low Voltage	73
4.36	Comparison of OFF current – High Voltage	74
4.37	Comparison of OFF current – Low Voltage	74

XV

LIST OF ABBREVIATIONS

MOSFET - Metal oxide semiconductor field effect transistor

- **SCE Short channel effect**
- UTB Ultra thin body
- SOI Silicon on insulator
- SS Sub threshold slope/swing

TBO – Thin buried oxide

VG – Voltage gate

- Lg Length gate
- Tsi Silicon thickness
- CMOS Complementary metal oxide semiconductor

Vth – Voltage Threshold

Ion – Drive Current

Ioff – Leakage Current

Tbox – Buried Oxide Thickness

LIST OF APPENDIX

Name of Appendix	Page
Appendix A	78
Appendix B	80
Appendix C	83
Appendix D	86
Appendix E	88
Appendix F	91

CHAPTER 1

INTRODUCTION

1.1 Introduction of Silicon On Insulator (SOI)

Silicon - On - Insulator (SOI) devices are a relatively new technology. Although the technology has been around since the 1960"s, SOI devices are only recently becoming commercially viable, due to the expense associated with producing the devices. SOI devices are an advancement of standard MOSFET technology. The main difference between SOI and MOSFET technology is the inclusion of an insulating layer.

SOI devices are created from a thin layer of silicon placed on top of a layer of insulating. The purpose of this project is to design and analysis characteristic of Silicon - On - Insulator (SOI) Metal - Oxide - Semiconductor Field Effect Transistor (MOSFET) performance using semiconductor Technology Computer Aided Design (TCAD) tools requirement of the ITRS.

Semiconductor TCAD tools are computer programs which allow for the creation, fabrication, and simulation of semiconductor devices. These tools are used to design, semiconductor devices for various applications. Silicon - On - Insulator (SOI) device is a silicon-based device built upon an insulating substrate. Substrate materials can range from unusual materials such as ruby, diamond and sapphire, to common materials such as silicon dioxide. The SOI device design in this project was for an SOI MOSFET, using Silicon Dioxide for the insulator.

The structure of the device is very similar to that of a standard MOSFET device, but the presence of a thick layer of insulating material under the depletion region gives some changes of the device characteristics. During the course of this project, these programs were used to create simulations of the devices being worked on. These simulations provided an opportunity to study the effect of different device parameters on the overall device performance.

Throughout the year, the devices were simulated and gradually the performance of each one was improved, until an optimal device configuration was created for the particular applications. An SOI performance advantage over conventional bulk CMOS is mainly from lower average threshold-voltage due to transient floating-body (FB) operation and lower junction capacitance.

The partial depleted (PD) instead of fully depleted (FD) SOI has become the desirable choice for mainstream digital applications, due to the ease of manufacturing, better control of short channel effects, larger design window for the threshold voltage, and lower self heating effect [1]. The figure 1.1 shows the physical structure device of UTB SOI. Further study, to see the impact of different titanium gate thickness on the UTB SOI performance.

Figure 1.1: The physical structure of UTB SOI

C) Universiti Teknikal Malaysia Melaka

1.2 Objective

The objectives of this project are:

- 1. To design Ultra-Thin Body SOI of the 22nm N MOSFET.
- To investigate the performance of 22nm N-MOSFET Ultra-Thin Body SOI including IV characteristic, leakage current, drive current, and subthreshold slope.
- To compare the thickness of titanium (Ti) metal gate from 5nm, 10nm, 15nm, 20nm and 25nm at 22nm gate length.

1.3 Scope

- i. Focus on the ultra-thin body SOI for 22nm N-MOSFET.
- Simulation tools using SILVACO to get the result including IV characteristic, leakage current, drive current, and the sub-threshold slope.

1.4 Problem Statement

The low switching energy of silicon on insulator technology still occur which degrades the performance. Meanwhile, the conventional fully depleted SOI MOSFETs have worse short-channel effect than bulk MOSFET and partially depleted SOI MOSFET. In words, short channel effects (SCE) decrease the threshold voltage, having extra leakage current between the source and drain degrade the performance of the device. The UTB utilizes metal gate may improve the performance ability to control the short channel effect with thin buried oxide (TBO).

The UTB SOI has many advantages which are it can improve transistor sub-threshold swing due to greatly improved the gate control, improve the channel mobility due to the reduced transverse electric field, reduce parasitic capacitance from the absence of depletion capacitance, leading to improve the speed; and reduce the power consumption.

The advantage used the SOI technology is reducing the SCE and improve performance. In ultra-thin body SOI (UTB SOI) with the adoption of high-k/metal technique are also being developed that acts on performance on of limitation of mobility. The usage UTB SOI can suppress SCE, scale gate length and also can reduce sub-threshold gate leakage current. In addition, UTB transistor does not rely on body doping to provide a potential barrier between the source and drain.

1.5 Thesis Guideline

In this thesis contains five chapters, Chapter 1- introduction of the research study, Chapter 2- literature review, Chapter 3- methodology, Chapter 4- result and discussion, and Chapter 5- Conclusion.

Chapter 1, the introduction of this project include the objective, scope, background of this project, and a problem statement.

Chapter 2, is presented the literature review consist of introducing to the scaling MOSFET theories using the ITRS demand, performance of the I-V characteristic, leakage current, short channel effect between source and drain, drive current and actual graph of sub-threshold slope.

Chapter 3 will be elaborate the design process simulation using SILVACO software whereby, Athena is used for writing the coding to build the structure of MOSFET and Atlas used for displaying the graph.

Chapter 4, discussion and analysis of the result, finding including an explanation of the problem occur when during the simulation. Investigate the result have been done in detail to optimize the performance the MOSFET.

Chapter 5 is the last chapter conclude the introduction, literature review, methodology, result, and discussion. It also contains part of my recommendation and ideas for the further research in related fields.

This chapter, present the background of this project to help the reader easily understand it. The problem statement discusses in this chapter can emphasis on the importance of this project. In addition, the objective, scope, and methodology already presented in easy to understand.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Figure 2.1: N- channel Mosfet (NMOS) Structure [2]

A MOSFET shows at figure 2.1 consists of an n- (p-) doped silicon substrate with two, highly p-(n-) doped contacts, source and drain. The channel region in between is covered by an insulator layer, the gate-oxide, which is in contact with the gate electrode. Without applying a voltage at the gate electrode, no current can flow from source to drain as the pn-junctions between each contact and the substrate act as two opposite diodes. [2]

When applying a positive (negative) voltage at the gate electrode, the channel region close to the gate oxide is 'inverted' from n-(p-) to p-(n-) doped and current can flow between source and drain. [2]

In addition, the central to the functionality is the thin insulating layer, the gate oxide. The gate oxide acts as the dielectric of a capacitor which attracts charge carriers into the channel region. Up to now, silicon dioxide (SIO2) has been used as a gate oxide. Two so far unparalleled electrical and structural properties of silicon's native oxide are commonly known as window glass are said to be one of the main reasons that silicon is today's semiconductor of choice. [2]

2.2 Bulk MOSFET/ Conventional MOSFET

The Metal-Oxide-Semiconductor has four terminal device which are drain (D), gate (G), source (S); and body (B) terminals. In addition, the channel region from drain and source, whereby they are connected to the inversion layer. The channel length (L) place between the source and drain channel, while the channel width (W) from in the direction normal to the channel length [3]. Below is the illustration of MOSFET structure.

Figure 2.2: The P MOSFET structure [3]

In the depletion mode of MOSFET, to construct of n-channel mosfet there is two highly doped n regions are diffused into a p-type substrate and represent the source and drain [4].