WIDEBAND ANTENNA WITH SRR WAVEGUIDE

TAN WAN CHIAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

WIDEBAND ANTENNA WITH SRR WAVEGUIDE

TAN WAN CHIAN

This Report is Submitted in Partial Fulfillment of Requirements for the Bachelor Degree of Electronic Engineering (Telecommunication Electronics) with Honours

FACULTY OF ELECTRONICS AND COMPUTER ENGINEERING UNIVERSITY TEKNICAL MALAYSIA MELAKA

JUNE 2015

C Universiti Teknikal Malaysia Melaka

(🛁 UTeM	U NIVERSTI TEKNIKAL MALAYSIA MELAKA JURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN
	PROJEK SARJANA MUDA II
	FROJER SARJANA MUDA II
	AND ANTENNA WITH SRR WAVEGUIDE
Sesi : 1 4 Pengajian :	/ 1 5
SayaTA	N WAN CHIAN
syarat-syarat kegunaan seperti beriku	
-	Teknikal Malaysia Melaka. salinan untuk tujuan pengajian sahaja. salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi. 4. Sila tandakan ($$):	
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENUL	IS) (COP DAN TANDATANGAN PENYELIA)

DECLARATION

"I hereby declare that this thesis entitled "Wideband Antenna with SRR Waveguide" is the result of my own work except for quotes as cited in the references."

Signature :....

Author : TAN WAN CHIAN

Date : JUNE 2015

APPROVAL

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honours."

Signature:Supervisor's Name: DR. MOHAMAD ZOINOL ABIDIN BIN ABD. AZIZDate: JUNE 2015

C Universiti Teknikal Malaysia Melaka

DEDICATION

Special Dedicated To

My beloved father and mother,

My supervisor,

My family,

And all my friends

For their Love, Encouragements and Best Wishes.

ACKNOWLEDGEMENT

First, I would like to express my thankful and gratitude to my supervisor, Dr. Mohamad Zoinol Abidin bin Abd. Aziz for guided me a lot on my final year project along this two semester. When I have any problem about my project, he is very willing to spend his precious time to teach me and explain to me. I am very appreciating his valuable guidance and advice to me.

Apart from that, I would like to thank to my friends for their assistance and explanation during I faced problem on the design process and software. Next, I also express my love and gratitude towards my beloved family for their encouragement and understanding through the duration of my studies.

I believe that without these all assistance, guidance and encouragement from all parties, my final year project would not have been possible on time.

ABSTRACT

Nowadays, ultra-wideband technology has evolved rapidly in wireless communication system due to the requirements on large data capacity and high data transmission rate. Thus, a wideband antenna supports for devices which can operate at wide range of frequencies band has become high demand in the market. The main purpose of this project is to design, simulate and fabricate a wideband antenna with splitring resonator (SRR) waveguide. In this antenna designed process, a wideband antenna by using planar structure is designed first. Then, it will be inserted into a rectangular waveguide followed by the SRR structure waveguide. The ground slot technique is used in order to achieve the desired broader of bandwidth and low return loss. The wideband antenna with SRR waveguide designed is simulated by using CST software and fabricated by using chemical etching techniques. The antenna without the SRR waveguide should be able to operate from frequency of 2GHz to 6.5GHz with the return loss lower than -10dB. It can operate at wideband frequencies band which covered the IEEE Bluetooth/WLAN (2.4-2.485GHz), WLAN (5.2G/5.8GHz) and WiMax application 2.5GHz (2.5-2.69GHz), 3.5GHz (3.3-3.8GHz) and 5GHz (5.25-5.85GHz). The antenna with SRR waveguide manages to enhance the gain and directivity of the antenna. The directivity is expressively increased at all simulated frequency range. Meanwhile, the gain is increased at least 1dB at frequency of 4.5GHz, 6.5GHz and 7GHz-10GHz.

ABSTRAK

Pada masa kini, teknologi ultra jalur lebar telah berkembang pesat dalam sistem komunikasi tanpa wayar. Hal ini disebabkan oleh keperluan kapasiti data yang besar dan kadar penghantaran data yang tinggi. Oleh itu, peranti yang mempunyai antena jalur lebar beroperasi pada pelbagai jalur frekuensi telah menjadi permintaan tinggi di pasaran. Tujuan utama projek ini adalah untuk mereka bentuk, mensimulasi dan memfabrikasi antena jalur lebar dengan split-ring resonator (SRR) pandu gelombang. Dalam proses antena yang direka ini, antena jalur lebar dengan menggunakan struktur satah direka dahulu. Kemudian, antenna itu akan dimasukkan ke dalam pandu gelombang segi empat tepat diikuti oleh pandu gelombang struktur SRR. Teknik slot tanah digunakan untuk mendapat jalur vang lebih lebar dan pulangan kehilangan signalyang lebih rendah. Antena jalur lebar pandu gelombang dengan SRR direka adalah disimulasi dengan menggunakan perisian CST fabrikasi dengan menggunakan teknik punaran kimia. Antena tanpa pandu gelombang SRR boleh beroperasi dari frekuensi 2GHz kepada 6.5GHz dengan pulangan kehilangan signal kurang daripada -10dB. Ia boleh beroperasi pada frekuensi jalur lebar yang meliputi IEEE Bluetooth / WLAN (2.4-2.485GHz), WLAN (5.2G / 5.8GHz) dan WiMax permohonan 2.5GHz (2.5-2.69GHz), 3.5GHz (3.3-3.8GHz) dan 5GHz (5.25-5.85GHz). Antena dengan SRR pandu gelombang berjaya meningkatkan gain dan directivity. Directivity meningkat jelas sekali di semua simulasi jualt frekuensi. Sementara itu, gain bertambah sekurang-kurangnya 1dab pada frekuensi 4.5GHz,6.5GHz dan 7GHz-10GHz.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

Title	i
Thesis Verification Status	ii
Declaration	iii
Approval	iv
Dedication	V
Acknowledgement	vi
Abstract	vii
Abstrak	viii
Table of Contents	ix
List of Table	xiii
List of Figure	xiv
List of Abbreviation	XX

I INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of Work	3
1.5	Methodology	4

II LITERATURE REVIEW

2.1	Basic Antenna Parameter	6
2.2	Wideband Antenna Design Techniques	10

	2.2.1	Planar Antenna	10
	2.2.2	Fractal Antenna	10
	2.2.3	Log Periodic Antenna	12
	2.2.4	Slot Antenna	13
2.3	Metar	naterial Structure	15
2.4	Split-l	Ring Resonator	16

III PROJECT METHODOLOGY

3.1	Design Process Flow Chart		20
3.2	Design Specification		21
3.3	Wideband Antenna Design (Design A)		22
	3.3.1	Planar Monopole Circular Patch Antenna	24
		(Design A1)	
	3.3.2	Planar Monopole Hexagonal Patch Antenna	26
		(Design A2)	
	3.3.3	Planar Monopole Octagonal Patch Antenna	28
		(Design A3)	
3.4	Wideł	band Antenna with Ground Slot (Design B)	30
	3.4.1	Circular Patch Antenna with Ground Slot	30
		(Design B1)	
	3.4.2	Hexagonal Patch Antenna with Ground Slot	32
		(Design B2)	
	3.4.3	Octagonal Patch Antenna with Ground Slot	33
		(Design B3)	
3.5	Wideł	band Antenna with Waveguide (Design C)	33
	3.5.1	Circular Patch Antenna with Front Side of	34
		Waveguide (Design C1)	
	3.5.2	Circular Patch Antenna with Back Side of	35
		Waveguide (Design C2)	
	3.5.3	Circular Patch Antenna with Front and Back	36

		Side of Waveguide (Design C3)	
3.6	Widel	band Antenna with Rectangular SRR Array	37
	Wave	guide (Design D)	
	3.6.1	SRR Array in Front Side of Waveguide	38
		(Design D1)	
	3.6.2	SRR Array in Back Side of Waveguide	39
		(Design D2)	
	3.6.3	SRR Array in All Side of Waveguide	40
		(Design D3)	
3.7	Simul	ation Process	41
3.8	Fabrication Process		42
3.9	Measu	irement Process	43

IV RESULT ANALYSIS AND DISCUSSION

4.1	Widel	band Antenna Design (Design A)	45
	4.1.1	Planar Monopole Circular Patch Antenna	45
		(Design A1)	
	4.1.2	Planar Monopole Hexagonal Patch Antenna	48
		(Design A2)	
	4.1.3	Planar Monopole Octagonal Ptach Antenna	51
		(Design A3)	
	4.1.4	Comparison on Design A	53
4.2	Widel	band Antenna with Ground Slot (Design B)	54
	4.2.1	Circular Patch Antenna with Ground Slot	54
		(Design B1)	
	4.2.2	Hexagonal Patch Antenna with Ground Slot	59
		(Design B2)	
	4.2.3	Octagonal Patch Antenna with Ground Slot	64
		(Design B3)	
	4.2.4	Comparison on Design B	68

4.3	Wideband Antenna with Waveguide (Design C1)		69
	4.3.1	Circular Patch Antenna with Front Side of	69
		Waveguide (Design C1)	
	4.3.2	Circular Patch Antenna with Back Side of	72
		Waveguide (design C2)	
	4.3.3	Circular Patch Antenna with Front and Back	75
		Side of Waveguide (Design C3)	
4.4	Widel	band Antenna with Rectangular SRR Array	77
	Waveguide (Design D)		
	4.4.1	Comparison between SRR Array in Front	77
		Side, Back Side and All Side of Waveguide	
	4.4.2	Comparison of Different Horizontal	80
		Arrangement of SRR Array (Design D3)	
4.5	Overa	ll Comparison between All Antenna Designs	84

V CONCLUSION

5.1	Conclusion	88
5.2	Future Works	89

91
(

LIST OF TABLE

NO.	TITLE	PAGE
3.1	Specification of Antenna Design	22
3.2	Specification of Material	22
4.1	Comparison between Design A1, Design A2 and Design A3	53
4.2	Comparison between Designs B	69
4.3	Overall Comparison between All Designs	84

LIST OF FIGURE

TITLE

NO.

PAGE

1.1	Project Flow Chart	5
2.1	Radiation Lobes of an Antenna Pattern	7
2.2	3-Dimension Directivity Pattern of $\lambda/2$ Dipole	8
2.3	Polarization of Antenna	8
2.4	Losses of an Antenna	9
2.5	The Variety Shapes of Planar Monopoles	10
2.6	Various Types of Fractals	11
2.7	(a) Monopole Wideband Fractal Antenna	12
	(b) Fractal Antenna Structure	
2.8	(a) Front View of Geometry of Cross-Element LPKFA	13
	(b) Microstrip Log Periodic Antenna	
2.9	Various Shapes of Wide-Slots	14
2.10	(a) Reverse L-Shape Slot Antenna	15
	(b) E-Shaped Slot Antenna	
2.11	Structure of Single Unit Cell of SRR	17
2.12	(a) UWB Antenna Using Individual SRR	17
	(b) Square SRR Loaded CPW Fed UWB Antenna	
2.13	(a) Extremely Wideband Antenna Using SRR In Radiating	17
	Patch (b) Planar Compact CPW-Fed Dual Band Antenna	
	Using SRR and CRR	
2.14	Aperture-Miniaturized Waveguide Antenna with (a)SRRs	19

(b) a SRR

3.1	Design Process Flow Chart	21	
3.2	(a) Front View (b) Back View of Design A1		
3.3	Parametric Study on R to Return Loss		
3.4	Parametric Study on Lg to Return Loss		
3.5	(a) Front View (b) Back View of Design A2		
3.6	Parametric Study on R to Return Loss		
3.7	Parametric Study on Lg to Return Loss		
3.8	(a) Front View (b) Back View of Design A3		
3.9	Parametric Study on R to Return Loss		
3.10	Parametric Study on Lg to Return Loss	29	
3.11	Circular Patch antenna with Different Shapes of Slot in	30	
	Ground Plane		
3.12	Different Shapes Ground Slot Structure	31	
3.13	Hexagonal Patch Antenna with Different Shapes of Slot in	32	
	Ground Plane		
3.14	Octagonal Patch Antenna with Different Shapes of Slot in	33	
	Ground Plane		
3.15	Antenna Design C1	34	
3.16	Parametric Study on W1 to Return Loss	34	
3.17	Antenna Design C2	35	
3.18	Parametric Study on W2 to Return Loss	35	
3.19	Antenna Design C3	36	
3.20	Design of SRR Structure	37	
3.21	(a) One SRR (b) Two SRRs (c) Four SRRs Applied on the	38	
	Waveguide		
3.22	Antenna Design D1	39	
3.23	Antenna Design D2	39	
3.24	Antenna Design D3	40	
3.25	Different Horizontal Arrangement of SRR Array on	40	
	Waveguide		

3.26	Waveguide Port for Feed Line	41		
3.27	Flow Chart of Fabrication Process			
3.28	Measurement Setup for (a) Return Loss (b) Gain	44		
	(c) Radiation Pattern			
4.1	Design Structure of Antenna A1	46		
4.2	(a) S-Parameter for Design A1	46		
	(b) Maximum Gain for Design A1	47		
	(c) Directivity for Design A1	47		
	(d) Efficiency for Design A1	47		
4.3	Radiation Pattern for Design A1 at 4.5506GHz	48		
	(a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.4	Design Structure of Antenna A2			
4.5	(a) S-Parameter for Design A2	49		
	(b) Maximum Gain for Design A2	49		
	(c) Directivity for Design A2	49		
	(d) Efficiency for Design A2	50		
4.6	Radiation Pattern for Design A2 at 2.5651GHz	50		
	(a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.7	Design Structure of Antenna A3	51		
4.8	(a) S-Parameter of Design A3	51		
	(b) Maximum Gain for Design A3	52		
	(c) Directivity for Design A3	52		
	(d) Efficiency for Design A3	52		
4.9	Radiation Pattern for Design A3 at 2.4463GHz	53		
	(a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.10	Design Structure of Antenna B1j	54		
4.11	(a) S-Parameter for Design B1	55		
	(b) Maximum Gain for Design B1	55		
	© Directivity for Design B1	56		
	(d) Efficiency for Design B1	56		
4.12	Prototype of Design B1j (a) Front view (b) Back View	56		

4.13	(a) Comparison S-Parameter for Design B1j	57
4.15	(b) Comparison of Gain for Design B1j	57
4 1 4		
4.14	Measured and Simulated Radiation Patterns for x-y Plane	58
	and x-z Plane for Design B1j For Five Different Frequencies	
	(a) 2.5GHz (b) 3.5GHz (c) 4.5GHz (d) 5.5GHz (e) 6.5GHz	
4.15	Design Structure of Antenna B2h	59
4.16	(a) S-Parameter for Design B2	60
	(b) Maximum Gain for Design B2	60
	(c) Directivity for Design B2	60
	(d) Efficiency for Design B2	61
4.17	Prototype of Design B2h (a) Front View (b) Back View	61
4.18	(a) Comparison of S-Parameter for Design B2h	62
	(b) Comparison of Gain for Design B2h	62
4.19	Measured and Simulated Radiation Patterns for x-y Plane	63
	and x-z Plane for Design B2h for Five Different Frequencies	
	(a) 2.5GHz (b) 3.5GHz (c) 4.5GHz (d) 5.5GHz (e) 6.5GHz	
4.20	Design Structure of Antenna B3c	64
4.21	(a) S-Parameter for Design B3	64
	(b) Maximum Gain for Design B3	65
	(c) Directivity for Design B3	65
	(d) Efficiency for Design B3	65
4.22	Prototype of Design B3c (a) Front View (b) Back View	66
4.23	(a) Comparison of S-Parameter Graph for Design B3c	66
	(b) Comparison of Gain Graph for Design B3c	67
4.24	Measured and Simulated Radiation Patterns for x-y Plane	68
	and x-z Plane for Design B3c for Five Different Frequencies	
	(a) 2.5GHz (b) 3.5GHz (c) 4.5GHz (d) 5.5GHz (e) 6.5GHz	
4.25	Design Structure of Antenna C1	70
4.26	(a) S-Parameter for Design C1	70
	(b) Maximum Gain for Design C1	71
	(c) Directivity for Design C1	71

	(d) Total Efficiency for Design C1	71		
4.27	Radiation Pattern for Design C1 at 8.706GHz			
	(a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.28	Design Structure of Antenna C2			
4.29	(a) S-Parameter for Design C2			
	(b) Maximum Gain for Design C2	73		
	(c) Directivity for Design C2	73		
	(d) Total Efficiency for Design C2	74		
4.30	Radiation Pattern for Design C2	74		
	a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.31	Design Structure of Antenna C3 75			
4.32	(a) S-Parameter for Design C3			
	(b) Maximum Gain for Design C3	76		
	(c) Directivity for Design C3	76		
	(d) Total efficiency for Design C3	76		
4.33	Radiation Pattern for Design C3	77		
	a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.34	Design Structure of Antenna (a)D1, (b)D2 and (c)D3 7'			
4.35	(a) S-Parameter for Design D	78		
	(b) Maximum Gain for Design D	78		
	(c) Directivity for Design D	78		
	(d) Efficiency for Design D	79		
4.36	Radiation Pattern for Design D	80		
	a) x-y Plane (b) x-z Plane (c) y-z Plane			
4.37	Different Horizontal Arrangement of SRR Array on	80		
	Waveguide			
4.38	(a) Maximum Gain for Design D3	81		
	(b) Directivity for Design D3	81		
4.39	Prototype of Design D3a (a) Front View (b) 3D View	82		
4.40	(a) S-Parameter for Design D3a	82		
	(b) Maximum Gain for Design D3a	82		

4.41	41 Measured and Simulated Radiation Patterns for x-y Plane,	
	x-z Plane and y-z Plane for Design D3a at Three Different	
4.42	(a) S-Parameters	85
	(b) Maximum Gain	86
	(c) Directivity	86
	(d) Efficiency	86

LIST OF ABBREVIATION

AUT	-	Antenna Under Test
CST	-	Computer Simulation Technology
dB	-	Decibel
DCS	-	Digital Cellular Service
GHz	-	Gigahertz
GPS	-	Global Positioning System
IEEE	-	Institute of Electrical and Electronics Engineering
PCS	-	Personal Communication System
RL	-	Return Loss
SRR	-	Split Ring Resonator
UMTS	-	Universal Mobile Telecommunication System
VSWR	-	Voltage Standing Wave Ratio
WLAN	-	Wireless Local Area Network

XX

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

Antenna is a transmission medium between a transmitter and a receiver in a basic wireless communication system. Wireless communication system is defines as information transfer between two or more points that without connected by electrical conductor. The examples of wireless communication devices include personal digital assistants (PDAs), satellite television, cellular telephones and wireless networking. Hence, antenna is a metallic device which plays an important role for radiating or receiving signal in radio waves [1]. Today, there are many different frequencies range of communication system applications and each of the system has their standard of operating frequency. For example, Global Positioning System, GPS (1575MHz), Digital Cellular Service, DCS (1710-1880MHz), Wireless Local Area Network, WLAN (2.4, 5.2 and 5.8GHz) and Ultra-wide band (3.1 - 10.6GHz). Antenna must has the same resonant frequency just is able to communicate with the communication system. Hence, every antenna must be well-designed to fulfill the human demands and the demand such as people request for having different applications in a single device. During designing an antenna, designers always encounter many typical problems which include low cost,

C Universiti Teknikal Malaysia Melaka

narrow bandwidth, compactness and multifunction. In order to have a sufficient bandwidth to support the signals radiated or received by antenna, a wideband antenna is used to overcome the problem instead of using two or more single band antenna.

1.2 PROBLEM STATEMENT

Along with the science and technology are becoming advances, the way of people communicate with each other are more and more progressive. People communicate to each other at anytime and anywhere has become a reality and human demands on the application of communication system have increased. For example, they do not only want to deliver a text via phone, they also want to send videos, pictures, voice, location and other. People communicate through a communication model and there is a communication device which is capable of transmitting signal or data over telephone, other communication wire or wirelessly.

Inside the telecommunication device, there is a device called antenna which use for transmit and receive signals such as microwave, radio or satellite signals. Antenna with broader operating bandwidth can send and receive much frequency bands of information signals. Different communication applications have the different frequencies range, for example GSM 800 (824-894MHz and 880-960MHz), Personal Communication System, PCS (1850-1990MHz), Universal Mobile Telecommunication System (UMTS, 1920-2170 MHz) and WiMax (2G to 11GHz).

A wideband antenna is proposed to use since it has a wider bandwidth and its frequency range covered is over 2GHz. However, typical challenges are faced when designing this kind of antenna which include narrow operating bandwidth and low radiation efficiency. Nowadays, many compact antennas still insufficient bandwidth to support the signals transmitted or received by the antenna and low efficiency means that most of the power absorbed as losses within the antenna. Beside that, antenna also lack of gain and directivity.

1.3 OBJECTIVE

The objective of this project is to design, simulate and fabricate a wideband antenna with split ring resonator (SRR) waveguide. The antenna must be able to operate for the application of wideband frequency range from 2GHz to 6.5GHz which cover the IEEE Bluetooth/WLAN(2.4-2.485GHz), WLAN (5.2G/5.8GHz) and WiMax application 2.5GHz (2.5-2.69GHz), 3.5GHz (3.3-3.8GHz) and 5GHz (5.25-5.85GHz). The antenna should have to achieve wider fractional bandwidth and the specification of the return loss has been set to be -10dB. Thus, the antenna with the SRR waveguide can enhance the gain and directivity.

1.4 SCOPE OF WORK

The scope of this project is to design a wideband antenna with SRR waveguide which operates at frequency 2GHz to 6.5GHz. All antenna designed work will be simulated by using CST software in order to find the basic parameters such as return loss, gain, radiation pattern, directivity and efficiency. After that, fabrication process will be done by using chemical etching technique. The material used is FR4 epoxy board which has the dielectric constant of substrate 4.4, tangent loss of substrate 0.019, thickness of substrate 1.6mm and thickness of copper 0.0035mm. After the fabrication process, measurement of antenna parameter such as return loss, radiation pattern, gain and directivity will be measured by using Agilent Network Analyzer, signal generator, Fieldfox Rf Analyzer and anechoic chamber which are provided in the lab.

1.5 METHODOLOGY