WIRELESS HOME ELECTRICAL APPLIANCES MONITORING AND CONTROL USING ZIGBEE

RAZLIN BINTI RAHMAT

This Report Is Submitted In Partial Fulfillment of Requirement for the Bachelor Degree of Electronic Engineering (Wireless Communication)

Faculty of Electronics and Computer Engineering Universiti Teknikal Malaysia Melaka

June 2015

C Universiti Teknikal Malaysia Melaka

AL MALAYSIA MA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA
FAKULTI K	EJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
*Jainn	BORANG PENGESAHAN STATUS LAPORAN
	PROJEK SARJANA MUDA II
Tajuk Projek : WIREI	.ESS HOME ELECTRICAL APPLIANCES MONITORING
AND C	ONTROL USING ZIGBEE
Sesi Pengajian : SESI 2	104/2015
di Perpustakaan dengan syarat	AT mengaku membenarkan laporan Projek Sarjana Muda ini disimpan -syarat kegunaan seperti berikut:
	niversiti Teknikal Malaysia Melaka.
	embuat salinan untuk tujuan pengajian sahaja.
	embuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi. 4. Sila tandakan (√) :	
SULIT	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TAND/ATANGAN P	ENULIS) (COP & TANDALANGAN PENYELIA)
Alamat : No A7 Rumah Rakyat, Batu 13 Labu Hilir, 71900, Labu, Negeri Sembila	Dit. Michael Safari illin Michaenael Iaa Pensyanah Konan Paladi Kejuruteram Balanak Komputer Universiti Petonikal Malaysia Melaka (UTehti Hang Tuah Jaya 76100 Durian Tunggah Melaka
Farikh: 16/2015	Tarikh:

"I hereby declare that this is the results of my own paper except for quotes as cited in the references."

Signature : Author : Date :

RAZEIN BINTI RAHMAT

ì

8 JUNE 2015

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor Degree of Electronic and Computer Engineering (Wireless Communication) with Honours."

DR. MOHD. SAA'RI BIN MOHAMAD ISA

Signature Supervisor's Name Date

: 8 JUNE 2015

iv

This project and research work is dedicated to my beloved parents, for their devoted caring throughout my life, my beloved brothers and sisters, who give the inspiration to me and also my friends for their encouragement. Without their support this report may not have been done.

ACKNOWLEGDEMENT

Alhamdulillah, first and foremost, thank to Allah the Almighty for blessing me to complete my Project Sarjana Muda. I would like to enlarge my appreciation to Dr Mohd Saa''n Bin Mohamad Isa because of the kindness heart to accept me as one of the student under his supervision. Special thanks also dedicated to his for all comments, idea, and a guideline begin from the first day I start this project.

This appreciation also goes to my friend that gives support, opinion, and advices for me to complete this report especially my friends under Dr Mohd Saa"ri Bin Mohamad Isa supervision, Nur Naimah Binti Zainal.

To my beloved parents, Rahmat Bin Ahmad and Zainun Binti Yusof, a million of thanks to them who has spending their time, money and advices that never end. Last but not least, thanks to my friends especially from BENW who have been such wonderful friends to me and also to everyone involved in the complete of this project. I would like to thank them for all support and encouragement to me which have given me the courage and wisdom to fulfill my final year project.

THANK YOU

ABSTRACT

This project is about to design and develop a Wireless Home Appliances Monitoring and Control Using Zigbee. This design will able to control electrical devices in the home. This design will use a personal computer to communicate with controlling box through the parallel port that interface to devices and allow the user to manage these devices manually or automatically. Manual operation will be through a graphical user interface on a computer that will allow the user to select a device and then change its state whether on or off. Automatic operation will allow actions to be performed based on user required entered into software on the computer. Relay module board will be used to interface between electrical device and Visual Studio and the output from Visual Studio will transmitted via Zigbee to relay. The relay will connect the electrical device to an extension cord. So it will save time and energy for user flexible to make it user friendly and the graphics are more interesting. The significant of this project will help user to control electrical appliances automatically.

ABSTRAK

Projek ini merupakan suatu projek mencipta dan membangunkan sebuah sistem Mengawal Alatan Elektrik di Rumah Secara Tanpa Wayar dengan Menggunakan Zigbee. Projek ini membolehkan alatan rumah dikawal tanpa melibatkan wayar. Projek ini menggunakan satu komputer untuk berkomunikasi dengan kotak pengawal dan membenarkan pengguna mengawalnya secara manual atau automatik. Pengguna boleh mengawal sistem ini secara manual dengan menggunakan antara muka di komputer dan tukar keadaan alatan elektrik samada buka atau tutup. Sistem ini juga boleh dikawal secara automatik dimana pengguna perlu mengawalnya secara terus di dalam perisian. Modul relay digunakan untuk disambung kepada alatan elektrik dan isyarat dihantar daripada komputer terus kepada relay dengan menggunakan teknologi Zigbee. Perisian Visual Studio merupakan suatu perisian yang lebih mesra pengguna dan mempunyai grafik yang menarik. Kepentingan projek ini dijalankan adalah untuk membantu pengguna mengawal peralatan elektrik rumah secara automatik tanpa menggunakan wayar.

CONTENTS

CHAPTER TITLE

PAGE

TITLE	i
REPORT VERIFICATION STATUS FORM	ii
DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF TABLE	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xix
LIST OF APPENDICES	XX

I INTRODUCTION

1.1 Project Background	1
1.2 Overview	2
1.3 Problem Statement	4
1.4 Objectives	5
1.5 Scope of Project	5
1.6 Thesis Organisation	6

II LITERATURE RIVIEW

2.1 Introduction	7
2.2 Home Automation	8
2.3 Zigbee Technology	9
2.4 Arduino	12
2.5 Relay	13
2.6 Microsoft Visual Studio	14
2.7 Related Work	15
2.7.1 Remotely Controllable Outlet System	15
for Home Power Management	
2.7.2 Home Network Using Zigbee- based	18
C Universiti Teknikal Malaysia Melaka	

Integrated Remote Control	
2.7.3 The Jini-based Broadband Power	20
Lie Communication (BPLC) Home	

III METHODOLOGY

3.1 Introduction	23
3.2 Project Planning	25
3.3 Project Flow	
3.3.1 Information Gathering	27
3.3.2 Designing Process	27
3.3.3 Testing and Troubleshooting	28
3.3.4 Redesigning	28
3.4 Conceptual Design	
3.5 Software and Programming	
3.5.1 Visual Studio 2012	30
3.5.2 Arduino Software	34
3.5.3 X-CTU	35
3.5.4 Proteuse 7 Professional PCB Design	36
3.5.5 Programming	37
3.6 Hardware Development	
3.6.1 Xbee USB Serial Converter	38

Transceiver

3.6.2 Power module	42
3.6.3 Controlling Box	42
3.6.3.1 Xbee PRO	43
3.6.3.2 Arduino	44
3.6.3.3 Relay	48
3.6.4 Fluorescent Lamps	49
3.6.5 Fan, Study Lamp and Night Lamp	50
3.6.6 Wiring Plug	51
3.6.7 Modified Extension	52

IV RESULT AND DISCUSSION

4.1 Overview	53
4.2 Software	54
4.2.1 Graphical User Interface (GUI)	54
4.2.2 Source code	56
4.3 Hardware	58
4.4 Testing Software	60
4.5 Testing Hardware	67
4.5.1 Turn On the Fluorescent Lamp	67

C Universiti Teknikal Malaysia Melaka

4.5.2 Turn On the Night Lamp	68
4.5.3 Turn On the Study Lamp	69
4.5.4 Turn On the Fan	70
4.5.4 Turn On the All The Appliances	71
4.5.5 Turn Off the All The Appliances	72
4.6 Discussion	73
4.6.1 Discussion on Hardware (Relay)	73
4.6.2 Analysis of Output Coding	75
4.6.3 Discussion of Overall Project	78

V CONCLUSION AND RECOMMENDATION

5.1	Conclusion	79
5.1	Recommendation	80
REFERENCES		81
APPENDIX A	Graphical User Interface	83
APPENDIX B	Data Sheet of X-Bee	89
APPENDIX C	Data Sheet of Arduino	91

LIST OF TABLE

NUM. TITLE

PAGE

Table 1Arduino Uno specification46

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

NUM. TITLE

PAGE

Figure 1.1	Overview on overall of this system	3
Figure 1.2	Malaysia's electricity consumption (1971-2008)	4
Figure 2.1	Zigbee Series 1	10
Figure 2.2	Topologies of Zigbee	11
Figure 2.3	Arduino Uno	12
Figure 2.4	Relay module	13
Figure 2.5	Remotely controllable outlet systems	16
Figure 2.6	The complete circuit of the BPCOM	17
Figure 2.7	The control flow chart of the MCU program	17
Figure 2.8	IRC structure	19
Figure 2.9	System configuration	19

Figure 2.10	The Jini-based BPLC home control system		
Figure 2.11	Block diagram of the BPLC home controller		
Figure 2.12	The Jini surrogate system of the BPLC home		
	control system		
Figure 3.1	Smart home appliance phase		
Figure 3.2	Step of methodology		
Figure 3.3	Project process flowchart		
Figure 3.4	Illustration design for the system		
Figure 3.5	Workspace of Visual Studio		
Figure 3.6	Flow chart of GUI development		
Figure 3.7	Log in to the system		
Figure 3.8	Login success	32	
Figure 3.9	Invalid username and/ or password	33	
Figure 3.10	Arduino software workspace		
Figure 3.11	X-CTU software workspace		
Figure 3.12	Design of circuit in Proteus		
Figure 3.13	Xbee USB to serial converter		
Figure 3.14	Block digram of Xv\bee USB to serial converter"s role	39	
Figure 3.15	Flow chart of system turn ON/OFF appliance	40	
Figure 3.16	Flow chart of status checking of appliance	41	
Figure 3.17	Xbee PRO transceiver	43	
Figure 3.18	Xbee PRO module pin configuration	44	

C Universiti Teknikal Malaysia Melaka

Figure 3.19	X-Bee specification		
Figure 3.20	Arduino Uno		
Figure 3.21	Relay module		
Figure 3.22	Relay connections to Arduino		
Figure 3.23	Flurescent lamp		
Figure 3.24	Internal circuit of fluorescent lamp		
Figure 3.25	Fan, study lamp and night lamp as end devices		
Figure 3.26	Electrical cable, socket and fuse		
Figure 3.27	Original extension		
Figure 3.28	Modified extension		
Figure 4.1	Graphical User Interface of welcoming the users		
Figure 4.2	Graphical User Interface of controlling the appliances		
Figure 4.3	Source code of Arduino		
Figure 4.4	Source code of Visual Studio		
Figure 4.5	The Serial port is set up in Visual Studio 12		
Figure 4.6	Controlling box and modified extension		
Figure 4.7	Home appliances, modified extension and controlling	59	
	box		
Figure 4.8	Creating account form	60	
Figure 4.9	Notification of successful create an account	61	
Figure 4.10	Sign in into the system	62	
Figure 4.11	Error notifications for wrong username and password	63	

Figure 4.12	Error notifications for empty password	
Figure 4.13	Error notifications for empty username	
Figure 4.14	Successful log in notifications	
Figure 4.15	Graphical User Interface of controlling the appliances	
Figure 4.16	GUI control for fluorescent lamp	67
Figure 4.17	Fluorescent lamp turns on	
Figure 4.18	GUI control for night lamp	
Figure 4.19	Night lamp turns on	68
Figure 4.20	GUI control for study lamp	
Figure 4.21	Study lamp turns on	69
Figure 4.22	GUI control for fan	70
Figure 4.23	Fan turns on	70
Figure 4.24	GUI control for all appliances	71
Figure 4.25	All appliances turn on	71
Figure 4.26	GUI control for all appliances	72
Figure 4.27	All appliances turn off	72
Figure 4.28	Relay connections to the home appliances	73
Figure 4.29	Connections between relay module, Arduino and bulb	74
Figure 4.30	Serial port is set as COM4 to match with Arduino	76
Figure 4.31	Visual Studio coding analysis	76
Figure 4.32	Arduino coding analysis	77

LIST OF ABBREVIATIONS

APP	-	Application
GUI	-	Graphical User Interface
IDE	-	Integrated Development Environment

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

NUM.	TITLE	PAGE
APPENDIX A	Graphical User Interface	83
APPENDIX B	Data Sheet of X-Bee	89
APPENDIX C	Data Sheet of Arduino	91

🔘 Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Project Background

Modern homes with an emphasis on comfort and convenience are being increasingly equipped with programmable installation technology that has already become a matter of course in functional buildings. Different technologies are available to control different things through PC. There are various technologies that are useable depending what devices needs to be controlled and how long away they are from PC. The impact of home automation on domestic lifestyle will be as far ranging as was that of factory automation on industry and its benefits will be available to all sectors of society. Home automation will be achieved not with the household robot but with embedded computing power and memory within dozens of pieces of domestic equipment, each will communicate with the user and with other equipment. PC-Based control is a new way of control related to industrial equipment. Its importance has been increasing remarkably in the last few years because industry"s need to find new solution for increasing productivity and replacing the traditional control equipment with newer solutions that can take advantage of the latest technologies.

Some of the benefits that PC Control is bringing compared to the traditional systems are lower overall costs, independence from proprietary control systems, easiness to integrate logic, motion, process control and fieldbus systems, and the integration of control and HMI in a single hardware platform.

1.2 Overview

Wireless home system is a 1-ways communication system that can transmit data from the PC to the electrical appliances. The data can be transmitted and received by using a network, X-Bee. The X-Bee will be connected to the PC and be as a master or main point. The electrical appliances also will be attached to the X-Bee and be as slaves.

X-Bee is a set of wireless protocols used for data transfer. It involves network operations and technologies, including mid-sized networks and local networks. X-Bee is designed to provide highly efficient connectivity between small packet devices. Due to its low power output, X-Bee devices can sustain themselves on a small battery for many months, or even years, making them ideal for install-and-forget purposes, such as most small household systems. In this project, the PC as a master will show the status of the electrical appliances. With that, user will be able to monitor the status for each appliance. User may switch off the unnecessary appliances by clicking the button on the screen. As the PC is attached to the X-Bee, data is send through the data communication with the X-Bee at the slaves.

The microcontroller at the slaves which connect between the X-Bee and the appliances will received the command and send it to the corresponding appliance. Then, the appliance will follow the command from the master either to send back the power of the appliance or to change the status.

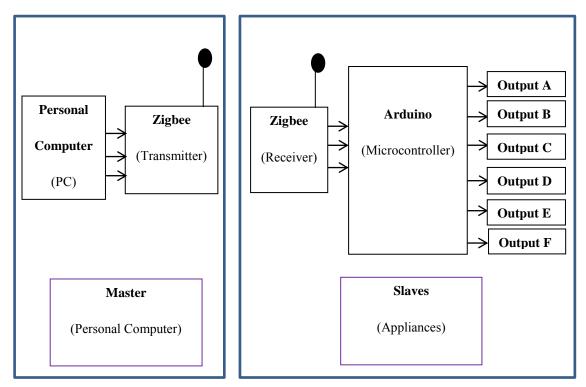


Figure 1.1 Overview on overall of this system

(C) Universiti Teknikal Malaysia Melaka

1.3 Problem Statement

The consumption habits of modern consumer lifesyles are causing a huge worldwide waste problem. At present, the overused of power become a big issue. As the switch on, a lot of electrical appliances either at the house, working place or anywhere, usually contributed to the released of carbon dioxide which is one of the harmful gases to the environment. This gas will cause to the greenhouse effect.

The consumption of electricity in Malaysia rises rapidly every year, with an average of 2,533 GWh per year. The electricity consumption, for instance, in 1971 was 3,464 GWh and 94,278 GWh in 2008. By 2020, Malaysia''s electricity consumption is expected to increase by about 30% from its present value to 124,677 GWh.

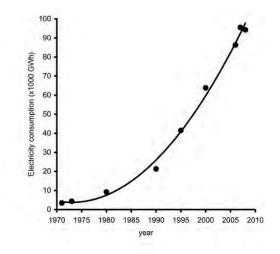


Figure 1.2 Malaysia's electricity consumption (1971-2008)

These power consumption issues become worst due to human attitudes itself. Many consumer refuse to switch off home appliance when the switch is far from them. The only time a consumer can interact with these devices is when he or she is near it. A