DESIGN OF INTEGRATED LOW-NOISE AMPLIFIER AND FILTER FOR WIRELESS COMMUNICATION APPLICATION

QUEE YU LEONG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF INTEGRATED LOW-NOISE AMPLIFIER AND FILTER FOR WIRELESS COMMUNICATION APPLICATION

QUEE YU LEONG

This report submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunications Electronics) With Honours

Faculty of Electronics and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2015

an walaysia to	UNIV	ERSTI TEKNIKAL MALAYSIA MELAKA
		AAN ELEKTRONIK DAN KEURUTERAAN KOMPUTER
		AAN ELEKTRONIK DAN KEJORUTERAAN KOMPUTER
UNIVERSITI TEKNIKAL MALAYSIA MEL	AKA	
	BORA	NG PENGESAHAN STATUS LAPORAN
		PROJEK SARJANA MUDA II
	DECICN OF INTEGRATED	
Tajuk Projek :	WIRELESS CO	LOW-NOISE AMPLIFIER AND FILTER FOR MMUNICATION APPLICATION
Sesi Pengajian :	1 4 / 1	5
Saya QUEE YU LEONG meng dengan syarat-syarat kegun	aku membenarkan Laporan aan seperti berikut:	Projek Sarjana Muda ini disimpan di Perpustakaan
a chigan syarat syarat kegar	aun seperti berikut.	- Andrew
Laporan adalah hakmil Dereustakaan diberari	ik Universiti Teknikal Malaysi	a Melaka.
2. Perpustakaan dibenari 3. Perpustakaan dibenari	an membuat salinan untuk t	ujuan pengajian sanaja.
pengailan tinggi.	an membuat saman aporar	ini sebagai banan pertukaran antara institusi
4. Sila tandakan (✔) :		
	*(Mengandungi)	maklumat yang berdariah keselamatan atau
SULIT*	kepentingan Mal	aysia seperti yang termaktub di dalam AKTA
	RAHSIA RASMI 1	972)
	**(Mengandung	i maklumat terhad yang telah ditentukan oleh
TERHAD**	organisasi/badar	n di mana penyelidikan dijalankan)
TIDAK TERH	AD	
		Disahkan oleh:
1025)	- 0, pa D
Y		and
(TANDATANGA	N PENULIS)	(COP DAN TANDATANGAN PENYELIA)
		DR. ZAHRILADHA BIN ZAKARIA Profesor Madya
Tarikh: 8.00	NF 2015	Fakulti Kejunuteraan Elektronik Dan Kejunuteraan Konsous Universititi Teknikati Malaysis Atelaka (UTaAn)
Torikin 010		76100 Burtan Tunggal, Meloka

DECLARATION

I hereby, declared this report entitle "DESIGN OF INTEGRATED LOW-NOISE AMPLIFIER AND FILTER FOR WIRELESS COMMUNICATION APPLICATION" is the results of my own research except as cited in the references.

Signature:Author: QUEE YU LEONGDate: 8 JUNE 2015

iii

APPROVAL

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honors"

Signature

Que Qa

Date

Supervisor's Name : PM. DR. ZAHRILADHA BIN ZAKARIA : 8 JUNE 2015

DEDICATION

This thesis is dedicated to my beloved parents,

Quee Lin Sai & Chiow Boon Ching

To my supervisor,

PM. Dr. Zahriladha Bin Zakaria

My friends and my fellow lecturers Thank you for all your care, support and believe in me

ACKNOWLEDGMENT

First and foremost, I would like to express my gratitude to my supervisor PM. Dr. Zahriladha Bin Zakaria who has graciously provided his valuable time and offered assistance, guidance and advice to me during the Project Sarjana Muda I and II (PSM I & II). I would also like to thank and appreciate student Master Mr. Sam Weng Yik and Mr. Nasrullah Bin Saifullah for their valuable assistance and suggestions. Without those assistance and guidance given by all parties, the project would not have been possible and successful. Lastly, I am grateful to my parents for their unceasing support, attention and encouragement.

ABSTRACT

Nowadays, wideband communication systems have attracted a great deal of interest due to their wide bandwidth, viability to support high data rate capacity at low power for high-speed wireless communication. However, there are many challenging requirements are faced by the wideband communication systems. The design of low-noise amplifier which operates from 1.7 GHz to 2.7 GHz is difficult to design to operate in the wide spectrum and maintaining a noise figure < 1 dB, better input and output return loss < -10 dB and greater gain > 10 dB, thus shows a harder challenge for the designer to meet the goals for the wider frequency range. A notch filter/narrow-band bandstop filter which operate at 1.85 GHz to 1.99 GHz stopband frequency range is designed to eliminate the interference between the cellular band at 1.9 GHz and ISM band at 2.4 GHz. The thesis work presented here is the study and design of integrated low-noise amplifier and notch filter into one circuit for a wider frequency range 1.7 GHz to 2.7 GHz to explore the gain and noise figure improvement. The GaAs E-pHENT transistor based LNA and notch filter with lumped components are designed and simulated to test the gain, noise figure improvement, input and output return loss by using the Advanced Design System (ADS) software. After that design of integrated low-noise amplifier and notch filter and simulated to test again. Furthermore, the results from the simulations are analyzed and discussed. This type of design can be used by mobile phone, wireless LAN, Bluetooth device.

ABSTRAK

Pada masa kini, sistem komunikasi jalur lebar telah menarik banyak faedah kerana lebar jalur lebar mereka, daya maju untuk menyokong keupayaan kadar data yang tinggi pada kuasa rendah untuk system komunikasi wayarles berkelajuan tinggi. Walau bagaimanapun, terdapat banyak keperluan cabaran yang dihadapi oleh sistem komunikasi jalur lebar. Rekabentuk penguat hingar rendah yang beroperasi dari 1.7 GHz hingga 2.7 GHz adalah sukar untuk perekabentuk untuk beroperasi pada spektrum lebih luas dan lebih baik mengekalkan angka hingar < 1 dB, pekali pantulan yang lebih baik < -10 dB dan gadaan > 10 dB, ia menunjukkan cabaran yang sukar bagi perekabentuk untuk memenuhi matlamat-matlamat dalam julat frekuensi yang lebih meluas. Penapis takuk / sempit-band bandstop penapis yang beroperasi pada 1.85 GHz kepada julat frekuensi stopband 1.99 GHz direka untuk menghapuskan gangguan antara band selular pada 1.9 GHz dan ISM band pada 2.4 GHz. Kerja-kerja tesis yang dikemukakan di sini adalah kajian dan rekabentuk bersepadu penguat hingar rendah dan penapis takuk ke dalam satu litar untuk julat frekuensi yang luas 1.7 GHz kepada 2.7 GHz meneroka gadaan dan angka hingar. Penguat hingar rendah berdasarkan GaAs E-pHENT transistor dan penapis takuk dengan komponen-komponen lumped direka bentuk dan simulasi untuk menguji gadaan, angka hingar, input dan output kembali kerugian dengan menggunakan perisian Advanced Design System (ADS). Selepas itu, rekabentuk yang bersepadu penguat hingar rendah dan penapis takuk kemudian simulasi untuk menguji sekali lagi. Tambahan pula, hasil daripada simulasi dianalisis dan dibincangkan. Jenis rekabentuk ini boleh digunakan oleh telefon bimbit, LAN tanpa wayar dan peranti Bluetooth.

TABLE OF CONTENTS

CHAPTER	CONTENT	
CHAPTER	CONTENT	

TITLE	i
REPORT STATUS VERIFICATION FORM	ii
DECLARATION	iii
APPROVAL	iv
DEDICATION	V
ACKNOWLEDGMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS	XV
LIST OF APPENDICES	xvi

INTRODUCTIONS

Ι

1.1 INTRODUCTION	1
1.2 PROJECT OBJECTIVES	4
1.3 PROBLEM STATEMENT	4
1.4 SCOPE OF WORK	5
1.5 CHAPTER REVIEW	6

PAGES

LITERATURE REVIEW

II

2.1 FREQUENCY BANDS OF 1.7-2.7 GHz	7
2.1.1 ISM BAND	7
2.1.2 GSM CELLULAR BAND	8
2.2 INTRODUCTION OF LOW-NOISE AMPLIFIER	9
2.3 TWO-PORT NETWORK	9
2.4 NOISE FIGURE	10
2.5 S-PARAMETER	12
2.6 STABILITY	13
2.7 TWO-PORT POWER GAIN	13
2.8 JUNCTION FIELD EFFECT TRANSISTOR BIASING	14
2.9 INPUT AND OUTPUT MATCHING	16
2.9.1 QUARTER-WAVE TRANSFORMER MATCHING	17
2.10 NOTCH FILTER	18
2.11 RELATED RESEARCH	19

III METHODOLOGY

3.1 PROJECT METHODOLOGY	22
3.2 DESIGNING LOW-NOISE AMPLIFIER	25
3.2.1 TRANSISTOR SELECTION	25
3.2.2 STABILITY ANALYSIS	26
3.2.3 BIAS POINT SELECTION	27
3.2.4 DESIGNING BIAS NETWORK	27
3.2.5 INPUT AND OUTPUT MATCHING	28
3.3 DESIGNING NOTCH FILTER	28
3.4 INTEGRATED OF LOW-NOISE AMPLIFIER	28
AND NOTCH FILTER	

C Universiti Teknikal Malaysia Melaka

х

IV RESULT AND ANALYSIS

4.1 STABILITY ANALYSIS	29
4.2 BIAS POINT SELECTION	32
4.3 TWO-PORT POWER GAIN	33
4.4 BIASING NETWORK DESIGN	35
4.5 INPUT AND OUTPUT MATCHING NETWORK	37
4.5.1 QUARTER-WAVE TRANSFORMER MATCHING	40
4.5.2 DESIGN WITH IDEAL COMPONENTS	42
4.5.3 DESIGN WITH NON-IDEAL COMPONENTS	45
4.6 DESIGN OF NOTCH FILTER	48
4.7 INTEGRATED OF LOW-NOISE AMPLIFIER	50
AND NOTCH FILTER	

V CONCLUSION AND FUTURE WORKS

5.1 CONCLUSION	54
5.2 FUTURE WORK	55

REFERENCE	56

APPENDICES 59

LIST OF FIGURE

Figure 1.1: Basis Block Diagram of RF Receiver	2
Figure 1.2: The Characteristic of Notch Filter	3
Figure 2.1: Two-Port Network	10
Figure 2.2: Electrical Network of S-Parameters	12
Figure 2.3: Circuit of Self-Bias	15
Figure 2.4: Circuit of Voltage Divider Bias	15
Figure 2.5: Lossless Network Matching	16
Figure 2.6: Quarter-Wave Transformer Matching	18
Figure 2.7: Equivalent Circuits of Bandstop Filters with	18
Shunt Series-Resonant Branches	
Figure 2.8: Equivalent Circuits of Bandstop Filters with	18
Series Parallel-Resonant Branches	
Figure 3.1: Flow Chart for Methodology	23
Figure 4.1: Schematic for Stability Test	30
Figure 4.2: Simulation Result of Transistor Stability Test	30
Figure 4.3: Stability Test with Negative Feedback	31
Figure 4.4: Simulation Result of Stability Test with Negative Feedback	31
Figure 4.5: I-V Characteristics Simulation Setup in ADS	
Figure 4.6: I-V Curves of Transistor ATF-54143	32
Figure 4.7: Simulation Result of Maximum available gain,	35
Associated Power Gain and Forward Insertion Gain	

Figure 4.8: Biasing Network	36
Figure 4.9: Circuit of Unmatched LNA Design	38
Figure 4.10: Simulation Result of S_{11} & S_{22} for Unmatched LNA Design	38
Figure 4.11: Simulation Result of S_{21} & S_{12} for Unmatched LNA Design	39
Figure 4.12: Simulation Result of Noise Figure for Unmatched LNA Design	39
Figure 4.13: Impedance of Matching Circuit for Gain and Noise Figure	40
Figure 4.14: Quarter-Wave Transformer Input Matching Circuit	41
Figure 4.15: Quarter-Wave Transformer Output Matching Circuit	42
Figure 4.16: Schematic of LNA with Ideal Quarter-Wave Transformer Matching	43
Figure 4.17: Simulation Result of Return Loss by Ideal Matching Components	43
Figure 4.18: Simulation Result of Noise Figure by Ideal Matching Components	44
Figure 4.19: Simulation Result of Gain by Ideal Matching Components	44
Figure 4.20: Schematic of LNA with Non-Ideal Quarter-Wave Transformer	46
Matching	
Figure 4.21: Simulation Result of Noise Figure by Non-Ideal	46
Matching Components	
Figure 4.22: Simulation Result of Return Loss by Non-Ideal	47
Matching Components	
Figure 4.23: Simulation Result of Gain by Non-Ideal Matching Components	47
Figure 4.24: Notch filter with Lumped Element	49
Figure 4.25: Simulation Result of Notch Filter	50
Figure 4.26: Schematic of Integrated of LNA and Notch Filter	51
Figure 4.27: Simulation Result of Noise figure (NF) for Integrated of	51
LNA and Notch Filter	
Figure 4.28: Simulation Result of Gain for Integrated LNA and Notch Filter	52
Figure 4.29: Simulation Result of Return Loss for Integrated	52
LNA and Notch Filter	

LIST OF TABLES

Table 2.1: Allocations of GSM Band	8
Table 2.2: Types of Biasing Circuit and Formula	15
Table 2.3: Review on Low-Noise Amplifier	21
Table 3.1: Specification of Integrated LNA and Notch Filter	25
Table 4.1: Conversion of Width and Length by using "LineCalc" Function	45
Table 4.2: Comparison of Desired Parameters and Simulation Results	53

LIST OF ABBREVIATIONS

LNA	-	Low-Noise Amplifier
GPS	-	Global Positioning System
WLAN	-	Wireless Local Area Network
WiMAX	-	Worldwide Interoperability for Microwave Access
BW	-	Bandwidth
SNR	-	Signal-to-Noise Ratio
LO	-	Local-Oscillator
DSP	-	Digital Signal Processing
PCS	-	Personal Communications Services
ADC	-	Analog-to-Digital Converter
WLL	-	Wireless Local Loop
RLL	-	Run Length Limited
MMDS	-	Multichannel Multipoint Distribution Service
ADS	-	Advance Design System
RF	-	Radio Frequency
NF	-	Noise Figure
CMOS	-	Complementary Metal-Oxide-Semiconductor
EM	-	Electromagnetic
ISM	-	Industrial, Scientific and Medical
GSM	-	Global System for Mobile Communications
TDMA	-	Time Division Multiple Access
ITU	-	International Telecommunications Union

LIST OF APPENDICES

APPENDIX	TITLE	PAGES
А	Transistor Datasheet (ATF-54143)	59
В	Smith Chart of Input Matching	75
С	Smith Chart of Output Matching	76

CHAPTER I

INTRODUCTION

This chapter is about an introduction of project which includes an explanation of the project background, a brief introduction of wideband low-noise amplifier (LNA) and notch filter, method used in LNA design, objectives of a project, problem statement of the project, and the project scopes.

1.1 Introduction

Today, wireless communication technology is growing tremendously due to higher demand for high speed data communication. Cellular telephones, wireless local area networks (WLAN), global positioning system (GPS), and short-range data communication devices employing Bluetooth technologies are examples of portable wireless communication application [1]. Referable to the vast and insatiable need for affordable and low-power multi-standard portable devices, RF designers are urged to build up novel methodologies that take into account the invention of such products [1].

The low - noise amplifier is an important front end component in the radio receiver system. Ordinarily, the LNA is integrated into the receiver device such as an antenna to minimize losses and to avoid degradation of the signal-to-interference ratio (SNR). Later on a long distance transmission, the signal received by antenna might be really faint and can't be retrieved. Therefore, the LNA is used to amplify the low power signal received by antenna to an accepted and useful level. An LNA is good as it adds little noise as possible in itself and has high gain.

The basis block diagram of RF receiver structure is presented as Figure 1.1. Before amplified by an LNA, the signal received by antenna is normally filtered by RF filter first and then unite with a local-oscillator (LO) to metamorphose to the base-band. After demodulated process, the signal is processed to an analog-to-digital converter (ADC) which translates the analog signal into a digital signal. Then, the digital signal is utilized in a digital signal processing unit (DSP). The primary step of signal amplification is complete by the LNA. Therefore, the properties of LNA can easily affect the overall noise and sensitivity parameter of the entire receiver [1].

Figure 1.1: Basis Block Diagram of RF Receiver.

A notch filter greatly removes/ eliminates a specific frequency component of the input signal spectrum while lets the amplitude of other frequencies relatively unchanged and go. In general, a notch filter can be delineated as a band stop filter with a very narrow stop band and two pass bands. Figure 1.2 depicts the characteristic of a typical notch filter, the amplitude response is represented by $H_1(\omega)$, notch frequency is ω_d and BW mean 3-dB rejection bandwidth. BW would be zero, the pass band magnitude is unity (zero dB) and the attenuation at the notch frequency is infinite if a notch filter is ideal [2].

Figure 1.2: The Characteristic of Notch Filter.

Generally, LNA and Notch filter are two different blocks in a recipient. This project is attempting to integrate LNA and Notch filter in one block which is more cost effective and have less complexity of the circuit and the size of the receiver will go smaller as well. The integration of Low-Noise Amplifier and Notch Filter for wireless communication application which covers the frequency range of 1.7 GHz – 2.7 GHz is designed in this project. The wideband LNA are designed using transistor Avago Technologies' ATF-54143 for the whole design process. As referred to the data sheet at Appendix A, this type of transistor is built by GaAs Enhancement-mode pHEMT in a Surface Mount Plastic Package. Avago Technologies' ATF-54143 is a high dynamic range, low noise, E-PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. This transistor is optimized for 3V operation and exhibit exceptional RF performance, power efficiency and product consistency in the 450 MHz to 6 GHz frequency range. The transistor can be used in many applications, for example front end LNA for Cellular/PCS base stations, LNA for WLAN, WLL/RLL and MMDS applications.

1.2 Project Objectives

Wideband Low-noise amplifier (LNA) is an integrated component of most RF front end receiver systems. The main objectives of the thesis work are followed:

- 1. To study the background of LNA design and Notch filter.
- 2. To design an LNA and integrate with notch filter in order to minimize the undesired interferences from other frequency bands.
- To analyze the performance of the LNA and LNA incorporated with notch filter based on electromagnetic (EM) simulations to determine return loss, notch response, stability, noise figure and gain.

1.3 Problem Statement

In general, a portable radio device such as mobile phone may include more than one radio operating in a cellular band, and a radio operating in the ISM band. The wideband low noise amplifier which covers 1.7-2.7 GHz range includes wireless LAN 802.11b, ISM band and cellular band. This environment presents a challenge since these radios may be in close physical proximity and located in the same physical instance. A high power interference such as cellular phone in the 1.9GHz frequency band may cause the ISM band receivers operating at 2.4 GHz to saturate since it is in close proximity to the 2.4 G Hz signal. This noise may cause a damaging consequence on the received wideband signal [3].

In operation, a cellular phone that support cellular and Wi-Fi services start transmitting in the 1.9 GHz spectrum during talks. If the Wi-Fi or Bluetooth radio goes to active and connect during this period, the 1.9 GHz cellular signals which have larger signal strength than the 2.4 G Hz ISM band spectrum may jam and interferes the Wi-Fi or Bluetooth signal. The high power interferes may degrade the operation of the LNA and mixer of Wi-Fi or Bluetooth receiver. Then, amplification of the Wi-Fi or Bluetooth signal may result in saturation in an Analog-to-Digital Converter (ADC) [3].

Some existing solutions may incorporate an on-board notch filter in the ISM band radio. This notch filter may be located between a low noise amplifier (LNA) and the mixer in the RF portion of the ISM band radio. This is to minimize the undesired interferences from other frequency bands [3].

1.4 Scope of Work

For this project, the scope is to design Integrated Low-Noise Amplifier and Notch Filter for wireless communication application which covers the frequency range of 1.7 GHz - 2.7 GHz. It can be split into five parts which are:

- To study on how to design an integrated Low-Noise Amplifier and Notch Filter which covers the frequency range of 1.7 GHz – 2.7 GHz and can support wireless communication application.
- ii. In design working process consists of three main parts which is simulation, testing, analysis and optimization.
- iii. The S-parameter that is involved in the design such as noise figure, gain, return loss and notch response is analyzed.
- iv. The design and simulation of integrated low noise amplifier and notch filter will be done by using Advanced Design System (ADS).

1.5 Chapter Review

Chapter 1 is about an introduction of project which includes an explanation of the project background, a brief introduction of the wideband low noise amplifier (LNA) and notch filter, objectives of a project, problem statement, and the project scopes.

Chapter 2 is about the background study define in details for integrated low noise amplifier and notch filter. The literature review of the low noise amplifier, especially on the parameters and the design techniques used in the design procedure to also define in detail.

Chapter 3 contains research methodologies which include the step to design the integrated low noise amplifier and notch filter. This chapter also includes detailed explanations of a low noise amplifier and notch filter design technique and calculation that involved.

Chapter 4 is discussing about the results and analysis the simulation of integrated low noise amplifier and notch filter from stability consideration until the implementation of the LNA and notch filter.

Chapter 5 reveals the main summarization and the conclusion of this project and finally the future works suggestions on this project.

CHAPTER II

LITERATURE REVIEW

This chapter defines about the background study define in details for integrated of a low noise amplifier and notch filter. The literature review of the low noise amplifier, especially on the parameters and the design techniques used in the design procedure to also set in detail.

2.1 Frequency Bands of 1.7 to 2.7 GHz

There are several frequency bands including in the 1.7 to 2.7 GHz frequency range, which is ISM band, GSM cellular bands and others.

2.1.1 ISM Band

The ISM (Industrial, Scientific and Medical) bands are open frequency bands, varying by region, that allow for operation without a license and free uses. The uses of these bands become very popular for short-range communication and low power communication electronics systems. The 2.4 GHz band is one of the ISM band, it utilized for worldwide operation and often hosts for standardized and proprietary protocols such as wireless LAN 802.11b, Bluetooth, ZigBee, Z-Wave and others [4].