PERFORMANCE ANALYSIS OF CASCADED OPTICAL AMPLIFIER WITH DIFFERENT LOOP LENGTH

ARHAM MUSTAQEEM BIN ISMAIL

This Report Is Submitted In Partial Fulfillment of Requirement for the Bachelor Degree of Electronic Engineering (Electronic Telecommunication) with Honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

June 2015

WALAYSIA the	UNIVERSTI T	EKNIKAL MALAYSIA MELAKA	
FAKU	ILTI KEJURUTERAAN E	LEKTRONIK DAN KEJURUTERAAN KO	MPUTER
Tay sawn	BORANG P	ENGESAHAN STATUS LAPORAN	
	PROJE	K SARJANA MUDA II	
Tajuk Projek :	DRMANCE ANALY	SIS OF CASCADED OPTICAL	
AMPL	IFIER WITH DIFFE	RENT LOOP LENGTH	
Sesi Pengajian : 1	1 / 1	5	
Saya ARHAM MUSTAQEEM Bil disimpan di Perpustakaan denga 1. Laporan adalah hakmilik Ur 2. Perpustakaan dibenarkan m	N ISMAIL mengaku an syarat-syarat keg niversiti Teknikal Ma nembuat salinan un	membenarkan Laporan Projek Sa gunaan seperti berikut: Ilaysia Melaka. tuk tujuan pengajian sahaja.	irjana Muda ini
 Perpustakaan dibenarkan n pengajian tinggi. 	nembuat salinan lap	ioran ini sebagai bahan pertukari	an antara institu
 Sila tandakan (V) : 	*(Mengandung	i maklumat yang berdariah keselam	atan atau
SULIT*	kepentingan M RAHSIA RASMI	alaysia seperti yang termaktub di da 1972)	lam AKTA
TERHAD**	**(Mengandur organisasi/bad	gi maklumat terhad yang telah diter an di mana penyelidikan dijalankan)	tukan oleh
TIDAK TERHAD			
		Disahkan oleh:	
super.		- f.Shaha	l ·
(TANDATANGAN PEN	IULIS)	(COP DAN TANDATANGAN PER	VYELIA)
		FAUZI B ABDU Pensyan	WAHAB
		Fakulti Kej Elektronik dan Ke Universiti Teknikal Malays	ia Melaka (UTeM)

		П.
	DECLARATION	
"I declare tl	nat this report "Performance Analysis of Cascade	d Optical A mplifier with
Differen	nt Loop Length" is the result of my own research references".	except as cited in the
Signature	auhan.	
Author Date	: ARHAM MUSTAQEEM BIN ISMAIL 	

iii

"I hereby declare that I have read this report, entitled "Performance Analysis of Cascaded Optical Amplifier With Different Loop Length" and it fulfills the requirements of the scope and quality for the Bachelor of Electronic Engineering (Electronic Telecommunication) with Honours."

Signature

fishahal

Supervisor's Name Date

e : MR FAUZI BIN HAJI ABDUL WAHAB : 12 JUNE 2015

C Universiti Teknikal Malaysia Melaka

iv

Special dedicate:

I dedicated in thankful appreciation for support, encouragement and understanding to my beloved family, supervisors and friends.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

Firstly, I would like to express my deepest thank to my supervisor, Mr Fauzi Bin Haji Abdul Wahab who had guided me a lot of task during two semesters. Besides that, thanks to the lectures and staffs from Faculty of Electronic and Computer Engineering for their cooperation, valuable information, suggestion and guidance during my research to complete this final year project.

Deepest thanks and appreciation to my family for their cooperation, encouragement, constructive suggestion and full of support for the report completion, from the beginning till the end. Thanks to all of my friends and everyone, those have been contributed by supporting my work and help myself during the final year project progress till it is fully completed.

Lastly, the guidance and support received from all the members who contributed and who are contributing to this project was vital for the success of the project.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Optical amplifiers have played significant role in optical communication since been first commercially used in mid 1980s. They have been preferable compare to conventional repeater due to their simple structure, low-cost and high performance. Most important, they can amplify the light signal directly, without the need to change the signal into electrical form. In this project, the optical transmission systems using cascaded optical amplifiers have been designed and their performance based on various parameters; such as loop length, input wavelength and configuration of amplifier have been analyzed. Two types of optical amplifier which are Erbium-Doped Fiber Amplifier and Raman Amplifier have been used in this project. The system is simulated using Optiwave Optisystem 7.0 software and the output parameter such as gain, noise figure, output power, optical signal-to-noise ratio, quality factor and Bit-error rate have been recorded and presented in graphical form.

ABSTRAK

Sejak mula di komersialkan pada pertengahan 1980 an, penguat optik telah memainkan peranan penting dalam industri perhubungan optik. Penguat optik telah di pilih berbanding pengulang isyarat di sebabkan strukturnya yang ringkas, kos yang murah dan prestasinya yang baik. Paling penting, penguat optik berkebolehan untuk menguatkan signal secara terus di dalam bentuk isyarat cahaya, tanpa perlu menukarnya kepada bentuk isyarat elektrik. Untuk projek ini, sistem perhubungan optik menggunakan penguat optik telah di reka dan prestasinya telah di nilai berdasarkan beberapa parameter boleh ubah; seperti panjang penguat, panjang isyarat gelombang dan konfigurasi penguat optik. 2 jenis penguat optic telah dipilih untuk projek ini iaitu Erbium Doped Fiber Amplifier dan Raman Amplifier. Sistem ini di simulasi menggunakan perisian Optiwave Optisystem versi 7.0 dan parameter output seperti penambahan kuasa, figura bunyi, kuasa output, ratio signal dan bunyi, faktor kualiti dan kadar kesilapan bit telah di rekodkan dan dipersembahkan di dalam bentuk graf.

TABLE OF CONTENT

TITLE PAGE	PAGE
PROJECT TITLE	i
DECLARATION	ii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENT	ix
LIST OF TABLE	xii
LIST OF FIGURE	xiii

CHAPTER I: INTRODUCTION	1
1.1 Project Background	1
1.2 Problem Statement	2
1.3 Scopes of the project	3
1.4 Objectives	3
1.5 Thesis Structure	4
CHAPTER II: LITERATURE REVIEW	5
2.1 Introduction to Optical Communication	5
2.2 Introduction to Optical Amplifier	8
2.3 Erbium-Doped Fiber Amplifier	9
2.3.1 Principle of EDFA	10
2.3.2 Configuration of EDFA	12
2.4 Raman Amplifier	15
2.4.1 Principle of Raman Amplifier	16
2.4.2 Configuration of Raman Amplifier	18
CHAPTER III: METHODOLOGY	19
3.1 Project Identification	19
3.1.1 Literature Review	20

3.1.2 Design of Circuit	20
3.1.3 Simulation of Circuit	21
3.1.4 Performance Analysis	22

CHAPTER IV: RESULT & DISCUSSION 23

4.1	Single Stage Optical Amplifier	23
	4.1.1 Single Stage Erbium Doped Fiber	23
	4.1.2 Single Stage Raman Amplifier	26
4.2	Two Stage Amplifier	29
	4.2.1 Cascaded Erbium Doped Fiber Amplifier	31
	4.2.2 Cascaded Erbium Doped Fiber Amplifier and	32
	Raman Amplifier	
	4.2.3 Cascaded Raman Amplifier and Erbium	34
	Doped Fiber Amplifier	
	4.2.4 Cascaded Raman Amplifier	35

xi

CHAPTER IV: CONCLUSION & RECOMMENDATION

REFERENCES

39

38

xii

LIST OF TABLE

TABL	JE TITLE	PAGE
2.1	Advantage of Optical Fiber	8
4.1	Comparison of Eye-diagram for Single Stage Raman Amplifier using	26
	Different wavelength	
4.2	Comparison of Eye-diagram for Single Stage EDFA using different	28
	Wavelength	
4.3	Comparison of Eye-diagram for Two Stage Cascaded EDFA-EDFA	31
	Using different wavelength	
4.4	Comparison of Eye-diagram for Two Stage Cascaded RAMAN-EDFA	33
	Using different wavelength	
4.5	Comparison of Eye-diagram for Two Stage Cascaded Raman-Raman	37
	Using different wavelength	

LIST OF FIGURE

FIGURE	TITLE	PAGE
2.1	Diagram of Optical Amplifier	5
2.2	Block Diagram for Optical Transmission System Using Regenerate	or 8
2.3	Hardware of EDFA	
2.4	Energy level in Erbium	14
2.5	Forward Pumping Configuration for EDFA	15
2.6	Backward Pumping Configuration for EDFA	17
2.7	Bidirectional Pumping Configuration for EDFA	18
4.1	Circuit Configuration for Single Stage Discrete Raman Amplifier	19
4.2	Circuit Configuration for Single Stage EDFA	19
4.3	Circuit Configuration for Cascaded EDFA-EDFA	19
4.4	Circuit Configuration for Cascaded RAMAN-EDFA	20

LIST OF GRAPH

GRAI	PH TITLE	PAGE
4.1	Graph of Gain and Noise Figure versus Length for Single	
	Stage Raman Amplifier	
4.2	Graph of Output Power versus Length for Single Raman Amplifier	25
4.3	Graph of Gain and Noise Figure versus Length for Single Stage	27
	EDFA	
4.4	Graph of Output Power versus Length for Single Stage EDFA	27
4.5	Graph of Gain and Noise Figure versus Length for Two Stages	29
	Cascaded EDFA-EDFA	
4.6	Graph of Output Power versus Length for Two Stages	30
	Cascaded EDFA-EDFA	
4.7	Graph of Gain and Noise Figure versus Length for Two Stages	32
	Cascaded Raman-EDFA	
4.8	Graph of Output Power versus Length for Two Stages	32

Cascaded Raman-EDFA

4.9	Graph of Gain and Noise Figure versus Length for Two Stages	34
	Cascaded EDFA-Raman	
5.0	Graph of Output Power versus Length for Two Stages	35
	Cascaded EDFA-Raman	
5.1	Graph of Gain and Noise Figure versus Length for Two Stages	36
	Cascaded Raman-Raman	
5.2	Graph of Output Power versus Length for Two Stages	36
	Cascaded Raman-Raman	

xvi

CHAPTER 1

INTRODUCTION

1.1 Project Background

Optical amplifiers will play an important role in future optical transmission system in telecommunication. Optical amplifier, different from the conventional repeater, amplifies the optical signal from the optical sources directly without the need to undergo the conversion process of optical to electrical and electrical to optical signal. It is also come with simpler structure and lower cost compare with conventional regenerative repeater. In this project, two types of optical amplifier; Erbium-Doped Fiber Amplifier (EDFA) and Raman Amplifier have been selected and extensively tested based on several parameters.

The main parameters for this project are loop length of the amplifier, or simply known as amplifier length, the configuration of cascaded optical amplifier and input wavelength of the optical transmission system. The loop length of the amplifier will be varying according to the optical amplifier used. For transmission input, laser diode are the best choice of transmitting the optical signal because it results less signal losses , even in long distance transmission system. The value of wavelength between 1530 nm and 1590 nm will be use, covering the C and L-band of transmission system. The pump wavelength and pump power for the optical amplifier are used based on the previous journals that has been studied. The statistic analysis involved in this project is: gain, Noise Figure (NF), quality factor (Q-Factor) and Optical Signal-To-Noise Ratio (OSNR).

1.2 Problem Statement

Before the optical amplifier was invented, the signal repeater was using semiconductor devices to convert optical signal to electrical signal before amplifying the signal. However, this process produce a lot of noise, results the poor reception of optical signal. When the signal are measured with eye diagram, the shapes are scattered, which indicates the poor reception of the optical signal. So, in this project, Raman and EDFA will be used to substitute the regular signal repeater. These optical amplifiers were used to eliminate the conversion between optical-electrical and electrical-optical.

Nowadays, most optical transmission system has been implemented in the range of C-band wavelength (1530 nm - 1560 nm) or 1550nm to be specific. This is particularly due to two main factors; the loss for the silica based fiber is said to be the lowest and the performance of Erbium-Doped Fiber Amplifier (EDFA) is considered as optimum to operate around that range of wavelength. However, due to the introduction of Wavelength Divison Multiplexing (WDM) system, where multiple number of input signals can be transmitted simultaneously in a single fiber, the use of this band need to be expanded. This limitation of EDFA contributes to the shift of interest by the researcher towards Raman Amplifier in recent years. Raman Amplifier, different from EDFA can operate at any band of transmission wavelength. The major problem encountered by Raman Amplifier is, it needs a very high value of pump power to produce a good performance. Moreover, a multi pump wavelength needs to be added to the configuration to ensure the amplifier can produce a large bandwidth in terms of amplifier gain. In this project, a configuration of Raman Amplifier will be designed and its performance in C-Band and L-Band wavelength will be extensively tested and directly compared with the performance of EDFA.

1.3 Scopes of Project

The project will focus on 4 mains area:

- I. Literature review of optical amplifier
- II. Circuit design and simulation for optical amplifier using OptiwaveOptisystem software
 - Single Stage EDFA
 - Single Stage Raman Amplifier
 - Two Stage Cascaded EDFA-EDFA
 - Two Stage Cascaded EDFA-Raman
 - Two Stage Cascaded Raman-EDFA
 - Two Stage Cascaded Raman-Raman
- III. Analyse the circuit using different loop length
- IV. Analysis of results and performances for all tested cascaded amplifier Recommendation of the most efficient optical amplifier

1.4 Objectives

- I. To design and analyze the performance of cascaded amplifier with different loop length
- II. To demonstrate and extensively tested the operating performance of cascaded optical amplifier in C-Band (1530nm-1565nm) and L-Band (1565nm-1625nm) wavelength.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Optical Communication

Since been first commercially used in 1970s and early 1980s, optical communication system has shaped today's world, covering almost 80 percent of long distance data transmission and voice communication. Optical communication system basically consists of transmitter and receiver, connecting by optical fiber. Fiber optic is mainly made from silica for a long transmission distance communication purpose whereas plastic optical fiber can be used for short distance communication.

Figure 2.1 : Fiber Optic Cable

5

A basic optical communication link comprises a transmitter and receiver, with an optical fiber cable connecting them. Although signals propagating in optical fiber suffer far less attenuation than in other mediums, such as copper, there is still a limit of about 100 km on the distance the signals can travel before becoming too noisy to be detected[1-2].

Characteristics	
Bandwidth	Fibre optic cables offer a much greater
	bandwidth than metal cables. With the
	high performance single mode cable used
	by telephone industries for long distance
	telecommunication, the bandwidth
	surpasses the needs of today's applications
	and gives room for growth tomorrow.
Low Power Loss	An optical fibre offers low power
	loss. This allows for longer transmission
	distances. In comparison to copper; in a
	network, the longest recommended copper
	distance is 100m while with fibre, it is
	2000m.
Interference	The transmission of data using optical
	fiber is carry on without the presence of
	electrical charge. Thus, electrical noise can
	be neglected.
Size	In comparison to copper, a fibre optic
	cable has nearly 4.5 times as much
	capacity as the wire cable has and a cross
	sectional area that is 30 times less.
Weight	Fiber optic cables are much thinner and
	lighter than metal wires. They also occupy

	less space with cables of the same
	information capacity. Lighter weight
	makes fibre easier to install.
Safety	Since the fibre is a dielectric, it does not
	present a spark hazard.
Security	Optical fibres are difficult to tap. As they
	do not radiate electromagnetic energy,
	emissions cannot be intercepted. As
	physically tapping the fibre takes great
	skill to do undetected, fibre is the most
	secure medium available for carrying
	sensitive data.
Flexibility	An optical fibre has greater tensile strength
	than copper or steel fibres of the same
	diameter. It is flexible, bends easily and
	resists most corrosive elements that attack
	copper cable.
Cost	The raw materials for glass are plentiful,
	unlike copper. This means glass can be
	made more cheaply than copper.

Table 1: Advantage of Optical; Transmission