
i

ACTIVITY DATA REGISTERING AND TRACKING APPLICATION FOR

ANDROIDS

CHRISTOPHER LEE CHEE CHON

This Report Is Submitted in Partial Fulfillment of Requirements for the Bachelor

Degree in Electronic Engineering (Computer Engineering)

Faculty of Electronics and Computer Engineering

University Teknikal Malaysia Melaka

JUNE 20

ii

iii

iv

v

DEDICATION

First, I would like to specially dedicate to my project supervisor Dr. Wira

Hidayat Bin Mohd Saad, who gives me a lot of guidance and advices throughout this

project until successfully. Under his guidance and help, I have successfully developed

and achieved the completion of this project.

Besides that, I would also like to thank my second project supervisor

En. Khairul Muzzammil Bin Saipullah who gave me an idea and advices to do this

project. In addition, I would also like to thanks my beloved family and friends who

have given me their encouragement and support for me to complete this project.

“THANK YOU”

vi

ACKNOWLEDGEMENT

First of all, I would like to thank my main project supervisor Dr. Wira Hidayat

Bin Mohd Saad, who has given me a lot of guidance and advices throughout this

project. He also gives me a lot of support and taking care of me from the very

beginning of PSM 1 until I complete this project. He has given me the awareness to

find my problem solution and with his kindness and tolerance that give me spirit to be

more serious and focus on finishing the project. Without his help and his contribution

to this project, I do not think this project can be completely successful.

Besides that, I also want to contribute my acknowledgement to my second

supervisor En Khairul Muzzammil Bin Saipullah who also gave me a lot of supports

and ideas in term to help me finished this project.

Lastly, I would also like to thank my beloved parent who fully support me and

provided me everything that they could do for me in order for me to finish this project.

I really appreciate their help that they gave to me. Also not to forget my friends who

helping me by providing me some idea and suggestion for this project. Thank you very

much and I really appreciate with all of your help.

“THANK YOU ALL”

vii

ABSTRACT

In this modern world, smartphone is already becoming one of the essential

elements in everyone's life. It is hard for someone to leave their smartphone from their

hand, even when they are eating. They are busying on chatting with friends, uploading

their photo, updating their status and more. This is a trend of the new generation called

‘Gen Y’. They can do a lot of things with their smartphone and in the other perspective

to see it; we can say that they cannot live without their smartphone in their daily life.

This shows that how smartphone is important for us in our everyday life. This study is

proposed an Android Smartphone application to provide a facility for the researcher to

do a data collection on the basic data available from the mobile device for different

type of activity. This data can be used in later to develop a best machine learning

algorithm for a better activity detection. In addition, the project was implement on the

Eclipse development software in order to develop the Bluetooth communication

between the apps with the heart rate monitor device, data mining for 9DOF

acceleration sensor data, graphic user interface and so on. Lastly, when this application

has been developed completely, it will publish on the google play store to allow user

to download it for free.

viii

ABSTRAK

Dalam dunia moden ini, smartphone sudah menjadi salah satu bahagian yang

penting dalam kehidupan untuk semua orang. Adalah sukar bagi seseorang untuk

meninggalkan telefon pintar mereka daripada tangan mereka walaupun mereka sedang

makan. Mereka sangat sibuk pada berbual dengan rakan, memuat naik gambar mereka,

mengemas kini status mereka dan banyak lagi degan smartphone mereka. Ini adalah

trend generasi baru yang dikenali sebagai Gen Y. Projek ini membincangkan mengenai

membangunkan program aplikasi latihan kecergasan untuk android. Fokus utama

mengenai perkara ini permohonan latihan kecergasan adalah untuk tujuan perlumbaan

marathon. Dengan melaksanakan permohonan itu dengan sistem pemantauan kadar

jantung untuk membiarkan permohonan itu dapat memantau kadar jantung pengguna

semasa menjalankan latihan mereka. Dengan sistem pemantauan kadar jantung,

permohonan itu dapat menjana satu program latihan yang paling sesuai untuk

pengguna berdasarkan menguatkan keupayaan hati mereka. Kadar jantung memantau

permohonan pengguna dengan menggunakan peranti monitor kadar jantung yang

merupakan hasil HxM Smart oleh Zephyr Syarikat. Di samping itu, projek itu

dilaksanakan pada perisian pembangunan Eclipse dalam usaha untuk membangunkan

komunikasi Bluetooth antara aplikasi dengan peranti monitor kadar jantung, antara

muka pengguna grafik dan sebagainya. Akhirnya, aplikasi ini adalah pembangunan

dan diterbitkan di google play untuk membiarkan daripada muat turun dan

menggunakannya.

ix

TABLE OF CONTENT

CHAPTER CONTENT PAGE

 PROJECT TITLE i

 CONFORMATION REPORT STATUS ii

 DECLARATION iii

 SUPERVISOR CONFORMATION iv

 DEDICATION v

 ACKNOWLEDGEMENT vi

 ABSTRACT vii

 ABSTRAK viii

 TABLE OF CONTENT ix

 LIST OF FIGURE xiv

 LIST OF APPENDIX xvii

x

CONTENTS

CHAPTER TITLE PAGE

I INTRODUCTION

1.1 Project Introduction

1.2 Project Statement

1.3 Objective

1.4 Scope of Project

1.5 Important of the Project

1

1

2

3

3

4

II LITERATURE REVIEW 5

 2.1 Introduction 5

 2.2 Previous research for using motion sensors on android

111 smartphone device

 2.2.1 Physical Activity Recognition by Using

123123123 Smartphone Sensors

 2.2.2 The Statistical Recognition of Walking, Jogging,

12121211 and Running Using Smartphone Accelerometers

6

6

6

7

xi

 2.2.3 Fall Detection System Using Accelerometer and

12121212 Gyroscope Based on Smartphone

 2.2.4 Movement Pattern Recognition through

1212312312 Smartphone’s Accelerometer

 2.2.5 Smartphone Indoor Localization with

12123123123Accelerometer and Gyroscope

 2.2.6 Initial Test on the Use of GPS and Sensor Data

121212 of Modern Smartphones for Vehicle Tracking

12121212121in Dense High Rise Environments

8

9

9

10

 2.3 Previous research for heart rate while exercising

 2.3.1 Heart Rate and Sp02 Level Monitoring System

 2.3.2 Wearable Heart Rate Monitoring System

 2.3.3 Heart Rate Zone

11

12

12

13

III METHODOLOGY 15

 3.1 Introduction 15

 3.2 Hardware Implementation

 3.2.1 Development flow chart for hardware

 implementation

15

17

 3.3 Software Implementation

18

xii

 3.3.1 Development flow chart for software

 Implementation

 3.3.2 UML Class Diagram for Application GUI

19

21

 3.4 Google Map API V2

3.5 Android Sensor EventListener

3.6 Overall Project Flow

3.7 System Flow

22

22

23

25

IV

RESULT AND DISCUSSION

4.1 Introduction

4.2 Project Device and Hardware Analysis

4.3 Zephyr HxM BT heart rate monitor device connection

123 with R-Tracker4Life

4.4 Application (R-Tracker4Life) Analysis

 4.4.1 App features analysias

 4.4.2 App features analysis with coding discussion

 4.4.2.1 Android smartphone sensors implemented into

123123123 the application

 4.4.2.2 Google map implemented into the application

 4.4.2.3 Data logging and save into memory of the

123123123 smartphone device

26

26

27

30

33

33

39

39

45

55

56

xiii

V

 4.4.2.4 Publish Android Application to Google Play

q124123123Service

 4.4.3 Discussion

CONCLUSION & RECOMMENDATION

5.1 Introduction

5.2 Project Recommendation and Sustainability

5.3 Conclusion

REFERENCE

APPENDIX

60

63

63

64

65

66

68

xiv

 LIST OF FIGURE

NO

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

TITLE

Acceleration of walking, jogging, and running against time

Axis of the gyroscope and accelerometer

The gravity effect on the accelerometer output when the y-

axis is at different elevation angles.

Heart rate zones with training suggestion.

Heart Rate Monitor Device

Development flow chart of heart rate monitor device

Eclipse Juno Interface

Development flow chart of software implementation

UML class diagram

Overall Project flow

Block diagram for the system flow

Hardware using Bluetooth communication with smartphone

device

Zephyr HxM BT hardware was charging

Zephyr HxM BT hardware was fully charged

Zephyr HxM BT hardware device

Turn on Bluetooth

Select Zephyr HxM heart rate device

Key in Pin number to access the connection

HxM successful to paired and ready to use

PAGE

7

8

10

14

16

17

18

19

20

23

24

26

27

28

30

30

30

31

31

32

xv

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

Coding for communication between the hardware and the

application

GUI layout design display on eclipse software

Actual layout on device

“R-Tracker4Life” apps layout has been installed on the

smartphone device

GUI layout before connection

GUI layout after connection

Heart rate reading increase compare with figure above

Google map layout after user click "Map" button

Create a new android application project

Add unimplemented methods to our .java coding

Example of sensor coding after adding in the coding

Example coding for onSensorChanged method stub

Open main.xml under layout folder

main.xml coding

Declare sensormanager and textview

onCreate method stub coding

Accelerometer results on application layout

Google play services had downloading and installed on

android sdk

Importing Google Play Service into Eclipse IDE

Generating SHA-1 fingerprint using comment prompt in

window

Turn on the google map android api v2 on google api

console

Obtaining google android map api key on google console

Generating the API Key on google console

Note down the API Key that need to write into our

manifest.xml coding file

Import google play service as library into our project

Link google play services to the project

Link google play services to the project.

33

34

35

36

36

37

37

39

39

40

41

42

42

43

43

43

45

46

47

47

48

48

49

50

50

51

51

xvi

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

Replace the google api key on the android value

Project manifest.xml coding file with permission

activity_main.xml coding for google map display on GUI

Layout

Display markers on google map coding

Moving camera function coding on google map

Showing current location example coding

Google map display on application layout

MainActivity.java coding file to write data into a text file

Command used to generate our private keystore

The permission required to publish our application

Android version Name for android apk version

Select the project that wants to publish

Using the keystore that we had generated early

Select the destination for the apk file has been exported

52

53

53

53

54

54

55

56

56

56

57

58

58

xvii

 LIST OF APPENDIXES

APPENDIX

A

B

C

D

E

F

G

TITLE

 HxM Android API User Guide 2011

Bluetooth HxM API User Guide 2011

Source Code - MainActivity.Java

Source Code - Layout.xml

Source Code – Manifest.Java

Inotek Poster

Inotek Achievement

PAGE

68

71

84

93

98

101

104

CHAPTER I

INTRODUCTION

1.1 Project Introduction

In this modern world, smartphone is already becoming one of the essential

elements in everyone's life. It is hard for someone to leave their smartphone from their

hand, even when they are eating. They are busying on chatting with friends, uploading

their photo, updating their status and more. This is a trend of the new generation called

Gen Y. They can do a lot of things with their smartphone and in the other perspective

to see it; we can say that they cannot live without their smartphone in their daily life.

This proves that how smartphone is important for us in our daily life.

 Besides that, not entirely for entertainment purpose, there are likewise a bunch

of parts that our smart phone. For example, in the field of education, business, finance,

health and fitness and so on. On that point are a bunch of parts that our smartphone

can serve when the technology become more modern. In summation, the health science

and data mining researchers also use their smartphone to collect some data for their

work. For instance, they can track motion sensor data such as accelerometer,

gyroscope and gravity sensor data for different type of activity on their smartphone to

2

develop their own algorithm for their project to automatically detecting current user

activity by using neural network system.

This work proposes an Android Smartphone application to provide a facility

for the researcher to answer a data collection of the basic available data from the

mobile device for different type of natural action. This information can be applied

subsequently to get a best machine learning algorithm for a better activity detection.

Why this application was developed is because not all the researchers have such

knowledge to develop their own application to help them to collect data. Thus by

applying this application they can acquire what they demand. Lastly, when this

application has been developed completely, it is published on the google play store to

allow user to download it for free.

In overall, this application involves a software implementation and hardware

configuration. The hardware use is the heart rate monitor device model HxM Smart

from Zephyr. This device is able to assess the user’s heart rate and transmit the signal

to the application by using Bluetooth Smart communication. For the software

implementation on developing the application, it is developed by using Eclipse

software.

1.2 Problem Statement

This application provides nine degrees of freedom (9DOF) accelerometer data.

This data will represent an information on the prediction of what are the current

activity that the user is doing while he or she carry the smart phone.

TYPE_SIGNIFICANT_MOTION is a build in function to automatically extract the

natural action of the user, but it is limited to running, cycling and some other simple

activity only. Thus by getting 9DOF of accelerometer data, developers can utilize their

own algorithm for the detection for more flexibility compare by using the built in

mapping. These sensors are often available on the Android device such as android

smartphone/tablet, android watch and so on. These devices are carrying a huge market

value nowadays and that this is the cause why we prefer this platform.

3

1.3 Objective

The objective of this task is to produce an Android application to offer an easy

facility for the health science and data mining researchers to meet their research

information from the application for their inquiry. In order to achieve that, the

objective is written as below:

 To integrate the open API Bluetooth heart rate device with the developed

application.

 To logged the accelerometer, gyroscope, gravity sensors and GPS positioning

data in the smartphone memory.

 To create a GUI to display all the data.

1.4 Scope of Project

These tasks consist of preparing an Android application to offer an easy facility

for the health science and data processing analyzers to collect their analysis data from

the appliance for his or her research. This application can measure the user heart rate

while carry out the activity by using a heart rate monitor–HxM Smart from Zephyr [1].

Besides that, user can get the accelerometer, gyroscope, gravity sensor data and GPS

positioning by using this application. There have three categories of sensors that we

can use in application such as motion sensors, environmental sensors and position

sensors, but this application is only using the motion sensors data only that had been

provided by the android. The device is using an ECG monitoring system to assess the

user heart rate while training. Electrocardiogram (ECG) is a method to record the

4

electrical activity of the heart. By using this way, the device can measure the heart rate

and record it [2]. In addition, the heart rate monitoring device is connected to the

application on our smartphone via Bluetooth while the training is in session. The

embedded system for the application will be written based on the Java [3], C and C++

high-level computing language on Android 4 application [4, 5].

1.5 Importance of the project

This study is being developed with the objective to provide a simple program

for the health science and data mining researchers to accumulate their examination

data from the application for their exploration. Besides that, user also can monitor their

heart rate when using this application. In addition, the application will be published

for free after it is completely developed so that Android users can download the

application and utilizing it. By publishing this application on Google market, it can

help in user data collection for future development purpose. When the software is

matured enough, charging for the cost of the software is plausible.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter describes about some previous study for using motion sensor that

inside our Android smartphone in any research purpose and some activity tracking

purpose. By these research we can conclude that these motion sensor data are very

useful for us to develop our own algorithm to develop our project. Besides that, there

have also some research discuss about the heart rate monitoring on android smartphone

device that will implement to this project.

6

2.2 Previous research for using motion sensors on android smartphone device

 On that point are a great deal of subroutines can be performed by using motion

detectors on our Android smartphone device. For instance, using motion sensors to

predict the activity carry out by the user when they extend the device, location tracking

by using accelerometer sensor, step counter to count the distance travel for the user

and so along. This is also the motivation for me to develop this application. This

application can provide the facility for these researchers to collect these sensor data to

train their own project by applying their own algorithm.

2.2.1 Physical Activity Recognition by Using Smartphone Sensors

In this paper, Muhammad Shoaib et.al. Investigate the accelerometer,

gyroscope and magnetometer sensors in our smartphone for the activity recognition

purpose. They evaluate four parts of body positions by using seven classifiers for

recognizing six physical activities by applying these three sensors [6]. They indicate

that the accelerometer and gyroscope sensors can well performance for making the

recognition the physical actions. Nevertheless, most of the events, the gyroscope

sensors do not better the recognition accuracy when using it in concert with the

accelerometer sensors, but it can supply a reasonable result when using it entirely. On

the other hand, the results from using a magnetometer are not well encouraging when

they are utilizing it to train the classifiers depend on the orientation of the smartphone

device. At the final stage, they conclude that in that respect are a difficult to make a

closing statement to state that which sensor are performs well compared with others.

This is because the identification performance of these sensors is different depending

on smartphone’s orientation. So by reading this report, we can see that how important

7

about the motion sensor data for these researchers to utilize it to get their own

algorithm to accomplish their aim.

2.2.2 The Statistical Recognition of Walking, Jogging, and Running

 Using Smartphone Accelerometers

On that point is another similar field that discusses about the advantages for

using smartphone accelerometers for the statistical recognition of physical activity's

purpose. Ekachai Thammasat et.al. Was discuss about the statistically recognition for

walking, trotting, and running activities by using accelerometers that had enforced in

our smartphone [7]. By applying the sensors on the smartphone, the user will no need

to carry out another device anymore to pass over their activity. The advantages of this

study are to observe the remotely for any cause of the user by utilizing this application

at all the time, so that the user can handle the appropriate plan of practice, monitors

their energy use and evaluate their calorie compensation. Figure 2.1 shows the

graphical results for the application to track the different type of activities carry out by

the user.

Figure 2.1: Acceleration of walking, jogging, and running against time.

8

2.2.3 Fall Detection System Using Accelerometer and Gyroscope Based on

 Smartphone

Beside that the physical activity recognition, accelerometer and gyroscope

sensor data on our smartphone also can use to develop a fall detection system. Arkham

Zahri Rakhman et.al. develop an fall detection system by using these motion sensors

[8]. They stated that the accelerometer and gyro sensors that inside our smartphone

can offer a more accurate effect of fall detection motion. There will have an automatic

call for user’s family members when the user’s had any fatal condition when using this

application. Besides that, this study also describes the condition of people between

falls and activity daily living. By taking the sensor data for accelerometer and

gyroscope, they get their own algorithm for detecting a failing condition for the user.

With this fall detection system, it can be avoided, many cases of accidentally happened

in the household when there is just the older people alone in the mansion. This

arrangement can save their spirits.

Figure 2.2: Axis of the gyroscope and accelerometer.

9

2.2.4 Movement Pattern Recognition through Smartphone’s Accelerometer

 In addition, presently there experienced an investigation suggest that sensor

allowed smartphone’s have grown to be the popular system with regard to scientists

because of their capability to gather as well as procedure big amounts associated with

information, therefore making brand new possibilities with regard to revolutionary

android application, through Armir Bujari et.al. 2012 [9]. This may be the primary

inspiration with this application which experienced created. In the following

paragraphs, additionally they talk about concerning the motion design

acknowledgement within daily depending on city road conduct. Like an example, these

people limit from realizing a scenario whenever a pedestrian cease, traversing the road

dominated with a visitors gentle. They make use of these types of information in the

accelerometer sensor in the smartphone gadget to accomplish their own research.

2.2.5 Smartphone Indoor Localization with Accelerometer and Gyroscope

 Other that physical activity recognition and fall detection system,

accelerometer and gyroscope sensor data also can use to develop an indoor localization

system. Hui-Huang Hsu et.al, 2014 develop a smartphone indoor positioning

application by using accelerometer and gyroscope sensor [10]. They build a pedestrian

dead reckoning method in their application. The calibration points for the localized

application are checked off both on the ground floor and on the map of the application.

The user first need to get a calibration mark and then stand on it and then face to the

correct direction. After that the user need to place the Android smartphone on the top

of the calibration point. When the user start to strike, the android icon on the

application will also run on the map following with the real time estimates of the

orientation change for each step from accelerometer and gyroscope data respectively.

The preliminary outcomes for their application in walking distance and orientation

10

estimation show high accuracy solutions. This shows that another perspective of the

vantages of the motion sensor data on our smartphone device.

2.2.6 Initial Test on the Use of GPS and Sensor Data of Modern Smartphones for

Vehicle Tracking in Dense High Rise Environments

There's an additional research which is designed to explore the actual mixing

of the actual built-in GPS NAVIGATION as well as sensor information upon mobile

phones with regard to localization within thick city conditions exactly where

frequently satellite television indicators tend to be blocked through high structures or

even bigger buildings, leading to the actual in adequate amount in the event that GNSS

dimension information with regard to the prosperous placement dedication [11]. The

actual document additionally talks about touching the features from the information

results from the electronic compass as well as accelerometer with regards to the actual

alignment and also the telephone actions offered with this text file. Side by side, they'll

contain the actual GPS NAVIGATION, an electronic compass as well as

accelerometer for his or her automobile monitoring programs. This particular

document exhibits an additional way of while using movement sensor which within

smartphone to build up a good Google android application.

Figure 2.3: The gravity effect on the accelerometer output when the y-axis is at different elevation angles.

11

2.3 Previous research for heart rate while exercising

 This project not only tracking about the motion sensors, data in our

smartphone, it also tracks the user’s heart rate when user using this application

connected with the HxM heart rate monitor device. Our heartbeat frequency or pulse

is measured by counting the number of times in our heart beating per minute, normally

we called it BPM. Difference person will have a different normal BPM and the BPM

is also differed while resting or exercising. Other than that, BPM is also depending on

the gender and age.

A professor of medicine and cardiology at the New York University School of

Medicine in New York City and a volunteer for the American Heart Association,

Richard Stein, M.D., said that “When our age increases, by monitor the changing of

our heart rate we can observe our heart condition and then we can do some health

prevention,” [12].

The value of the heart rate can be measured by counting the number of our

heartbeat frequency in one minute by just placing our finger over our pulse. There are

four general places to let us find our pulse which are at wrists, inside out elbow, side

of our neck and the top of the foot. While resting, our heart wills pumping our blood

at the lowest amount of blood that we need, this is our resting heart rate. It is because

while we are not exercising, the heart just pumps enough to support us for our normal

activity. If we are exercising, we will need more oxygen to generate more energy and

more oxygen that is needed by our brain. This can cause the BPM to be increased.

Normally our BPM is in between 60 to 100 while we are resting, said by Stein [12].

Then, during physical activity, it is usually does not change the resting BPM much as

it normally changes within 40 BPM if we exercise regularly. For a person who does

less exercise, the BPM will increase between 60 to 100 while they are doing physical

activity. This knowledge of this behavior is very important to develop the heart rate

monitoring application for Android. Besides that, by exercising with the target heart

12

rate zone (THR), it helps us to burn more calories even quickly. So below are some

research study that related about the information with heart rate.

2.3.1 Heart Rate and SpO2 Level Monitoring System

In this paper, Sornanathan et.al. Discuss about measure and monitor the user’s

heart rate and user’s oxygen saturation level by using a pulse oximeter during

exercising. In year 2010, there are a team at RMIT University, Australia doing a

research with monitoring and analyzing physiological signal during fitness activity. In

that study, they monitor and measure the user’s heart rate and oxygen saturation by

using a pulse oximeter by implementing CaszOxiSys [13]. CaszOxiSys is a hardware

which is consists of a pair of physiological sensor which is developed by using Light-

Emitting Diode (LED) and photodiode. The CaszOxiSys is using a wireless

communication method which is Bluetooth communication technique to communicate

with user laptop or computer to help analyze the physiological signal data and convert

it into the heart rate and the oxygen saturation value for the user during their fitness

activity. Besides that, there is a discussion on how to calculate the targeted heart rate

zone depended on target’s gender, resting heart rate maximum heart rate, age and

strength of exercising level for the user during exercising [13]. This information is

very important in this study to make sure that the method that we develop in this project

was proven.

2.3.2 Wearable Heart Rate Monitoring System

In addition, there is another study done by Yaofeng Wen et.al. that discuss about

a heart rate monitoring system in dynamic movements for example running. This

wearable system was developed by using a wireless heart rate monitor sensor with a

single waistline-wear triaxial wireless accelerometer sensor to build out a wearable

system with the purpose to measure the user’s heart rate. This design is depending on

the speedup thresholds and heart rate average value to measure the user’s heart status

13

during fitness training. This method is tested with ten continuous physical activities of

the user which are sitting, standing, walking, running, falling and composite exercising

[14]. Based on their finding, they suggest that the heart rate reading is depending on

difference physical activity instead of depending on running activity only.

2.3.3 Heart Rate Zone

Difference equation will provide us with a different target heart rate zone for

resting and exercising. Based on the THR that we had calculated, we can monitor our

heart rate condition during exercising. In year 1970, there is a young physician which

is Dr. William Haskell and his mentor Dr. Samuel Fox that has conducted a service

program on heart disease and by that they manage to generate a common formula to

calculate the maximum heart rates of patients [15]. The maximum heart rate can be

divided into five categories of heart rate zone and this five heart rate zone had been

used up to until now very widely. Training in different heart rate zone will help us in

improving our performance in many different purposes. There is five color zone for

our heart rate, which is a very light zone in gray color, light shone in blue color,

moderate zone in green color, hard zone in orange color and the last one is a very hard

zone in red color. For grey and blue zone are considered to lose weight zone. We can

carry out our physical training based on this two zone to improve our basic endurance

and help us to burn our fat during the training. Besides that, training in these zones

will help us to improve overall health, it will give us to feel comfortable, easy breathing

and light sweating. Normally, training in these two heart rate zone is for losing weight

purpose and it should be conducted in 40 to 80 minute duration to achieve the purpose

and because of it is not very hard for our heart to handle it, it can be done in the longer

duration.

 The next heart rate zone is a moderate zone which is in green color. Training

in this zone can help us improve our aerobic fitness performance. It feels like a light

muscular strain and moderate sweating when we carry out the training. In addition,

training in this zone is for fitness purpose which means the person who want to build

out their muscles or want to be looking more energetic then they should be trained in

14

this zone with the duration 10 to 40 minutes. Training in this zone should not be more

than 40 minutes, this is because in this zone, our heart rate BPM is maintained at 133

to 152 per minute, so if we carry out the training in this zone more than 40 minutes

then it would injure our heart. To avoid overloading our heart, we should aware with

the duration and should not over-training.

The following two heart rate zone is the hard zone and a very hard zone which

is in orange and red in color. Training in these zones is to optimize our performance

and it is recommended for athletic training and shorter exercise. This is because

training in these zones should not be more than five minutes and then it will cause us

feel like very exhausting to breathing. If our training in this zone more than five

minutes and if we does not exercise regularly, training in these two zones will cause

fatal injuries and it is very dangerous to do training in this zone alone.

Figure 2.4: Heart rate zones with training suggestion.

CHAPTER III

METHODOLOGY

3.1 Introduction

This study consists of two parts of sub-project which is hardware implementation

and software implementation. For hardware implementation is the Bluetooth heart rate

monitor device by HxM Smart from Zephys whereas the software implementation is

my android application development. For hardware implementation I need to

implement a Bluetooth communication between the device and my apps and then the

software implementation is discussed about the GUI for the apps for how to read the

sensor data reading and GPS position points and then export it into a text file in the

memory of the device.

3.2 Hardware Implementation

For hardware implementation, I would wish to discuss about how the hardware

was gone through. The hardware for this study is a Bluetooth heart rate monitor device

16

produce by HxM Smart from Zephys. Before implement it, in that respect are some

specification for the device that we should know that, for example the frequency of the

Bluetooth using for the device so that I can pass it with the application via Bluetooth

communication. The Zephyr HxM Smart Heart Rate Monitor device using a Bluetooth

4.0 to communicate with our smartphone and it is usable for both iPhone and certain

Android based Smartphones. The device does not have any button or shift to allow

user to twist it on and off, it will turn on automatically when we assume the device on

our chest with the provided chest strap. Later on we put on the device, the sensor of

the device will detect the ECG from our muscle and then it will turn it on the device.

Below are the specification for the device:

HR Range: 25 – 240 BPM

Battery Life: 150 hours

Transmit Range: 10m

Frequency: 2.4 – 2.4835G Hz

Figure 3.1.: Heart Rate Monitor Device

When the hardware implementation was completed, we will proceed it to the coding

implementation part which is to develop the Bluetooth communication between the

device and the application, it will discuss in more detail in the chapter four.

17

3.2.1 Development flow chart for hardware implementation

The development flow chart for the Bluetooth communication for the device

are shown as follow:

Figure 3.2 above is the flow chart of developing the heart rate monitor device on

Eclipse software. Starting the Bluetooth communication for the heart rate monitor

device was developed on Eclipse. After completing the coding development part then

Start

Develop Hardware
Communication on Eclipse

Implementation

System Testing and
Troubleshooting

Pass?

 Combination with User GUI

part

End

Yes

No

Figure 3.2: Development flow chart of heart rate monitor device.

Combination with User GUI
part

18

it only move to implementation part and then will test the system on the smartphone

or virtual device on laptop until it does not contain any error and can work perfectly

then only will combine it with the user GUI part and it has only become my application

on android application.

3.3 Software Implementation

For software implementation part, Eclipse Juno developing software was chosen

to develop the training program android application. This is because Eclipse is a very

powerful and commercially-friendly, open source develops software that can help us

to develop our own software. It provides us an open development underlying computer

system on which application programs can run consists of extendable structure, tools

and runtimes intern to help us in building and deploying software across the lifecycles

[16]. By using eclipse Juno, it can help me in order to develop both hardware and

software implementation for the application.

Figure 3.3: Eclipse Juno Interface

19

3.3.1 Development flow chart for software implementation

The development flow chart for software implementation are shown as follow:

For software implementation, a GUI was designed to show user’s heart rate

and instant speed when it had successfully connected with the HxM heart rate device.

After that, we try to add the sensor data collecting function into the GUI and then

implement the Google map function. Lastly, we try to save it into a text file in the

device memory so that user can use it for research purpose.

Start

Getting motion sensors data in
smart phone device

Implementation

System Testing and
Troubleshooting

Pass?

 Combination with User GUI

part

End

Yes

No

Combination with Hardware
Communication part

Figure 3.4: Development flow chart of software implementation

20

 Figure 3.5: UML class diagram.

3.3.2 UML Class Diagram for Application GUI Design

In software engineering, a class diagram in the Unified Modelling Language

(UML) is a type of static structure diagram that describes the structure of a system by

showing the system’s classes. UML class diagrams are the mainstay of the object-

oriented analysis and design tools. UML class diagrams show the classes of the system,

their interrelationships which are included inheritance, aggregation, and association

and the operations and attributes of the classes [17]. Class diagrams are used for a wide

variety of purposes, including both conceptual and domain modelling and the detailed

design modelling. Figure 3.5 shows the UML class diagram that I had use for design

my application GUI:

The UML class diagram show that the relationship between all the classes of the

application. Firstly, there is a heart rate connection class for the application to use to

check the connectivity between the HxM heart rate monitor devices with the

application. If they are connected, the value of the user’s heart rate and instant speed

21

will be displayed on the GUI layout of the application. After that, there is also have a

sensors, data mining class used to collect the motion sensors on the smartphone device

such as Accelerometer, Gyroscope and Gravity sensors. When the “MAP” button was

clicked, the GUI of the application will jump go to the google map display layout and

then the user is able to see their current location on the google map. Besides that, they

also can get their location longitude and latitude points on the GUI layout. There also

have other classes for users to record their data. When “Start record” was clicked, all

the data will save in a text file on the memory card on the device. This function lets

these researchers can get used all the data in term to develop their own algorithm.

3.4 Google Map API V2

Google provides us a library via google play for using google maps in our

application. Google map API V2 allow us to place the locations with custom markers,

augment the map data with image overlays and embed one or more maps as fragments

in our application. On that point are a bunch of parts that we can implement in our

application by using the google map android api v2. For instance, add maps to our

apps, customize the map, check the user’s position and add street view in our android

application [18]. I am using this google map android api v2 to help me implement the

Google map function in my application to become the user’s current location and then

display it with a marker on the Google map. It will discuss in detail in the discussion

part later.

3.5 Android Sensor EventListener

Most of the android devices have built-in sensors that measure motion, orientation

and various environmental condition. The android platform provides several sensors

that allow us to monitor our motion of the device such as motion detectors,

environmental sensors and attitude sensors. Besides that, Android provides sensor

manager and sensor classes to apply the sensors in our application. In order to use these

22

sensors, we need to instantiate the object of the sensormanager class in our coding

[19]. This will discuss in detail in the discussion part later. In this case, this application

only using the motion sensors only and it had been declared early on the scope part.

3.6 Overall Project Flow

In this part I would like to discuss about the flow of our study. It is discussed how

this application has been done and how I work with step by step to complete my job.

The flow chart below is the overall project flow of this final year project. Firstly, I

divided the application into two mini part of the project. The first part is for Bluetooth

communication between the heart rate monitor device and the android application and

then another part is the software implementation which is user GUI and data mining

development. For the first part, I focus on the Bluetooth communication method which

is simple developing an Android application on eclipse software and then develop the

Bluetooth communication. After finishing the first part I only move on the second part

which is a data mining development and GUI designed part. This part is also done by

using eclipse, developing software. After completing the two parts of the mini part of

the application, then it only can combine it together to become a one complete training

program application and then only can install it on the smartphone device and then

doing the testing and troubleshooting of the application. Figure 3.6 are the flow chart

about the overall project flow.

23

Start

Yes

End

Figure 3.6: Overall Project flow

Develop Hardware
Communication on Eclipse

Getting motion sensors data
in smart phone device

System Testing and
Troubleshooting

System Testing and
Troubleshooting

Pass
?

No

Yes Yes

Implementation Implementation

Pass
?

Combination with User GUI
part

Combination with Hardware
Communication part

System Testing and Troubleshooting

Pass
?

No

No

24

3.7 System Flow

This study is discussed about developing an Android application for the data

mining and heart rate tracking system. So by using a heartbeats frequency rate monitor

device to measure the heart rate of the users, then the device will send to value to the

application by using Bluetooth communication. After that the heart rate of the user will

display on the application GUI on our smartphone. Besides that, the motion sensor

data also will be collecting and displayed it on the GUI. All of these data are able to

be recorded into a text file and then save it into memory card in our smartphone device.

The system flow of the application represented in the block diagram form can be seen

in Figure 3.7.

Figure 3.7: Block diagram for the system flow.

From the block diagram above shows that the heart rate signal is measured by

the heart rate monitoring device which is a chest belt and user need to wear it on the

chest position. After the device reads the signal then it will send to the apps on a

smartphone with Bluetooth communication.

CHAPTER IV

RESULT AND DISCUSSION

4.1 Introduction

This chapter is discussing about the explanation and analysis of the result of the

project. In term to get the results, the smartphone device must installed the application.

This is because some of the features are not able to run in the software emulator, so

we must install it on the device and run it so that we only able to manage the outcome.

This chapter will divide into two parts, the first part is discussed about the hardware

using for this project and then the second part discusses about the android application

for this project. This application is required Bluetooth signal processing to

communicate between the heart rate monitor device and our smartphone device.

Besides that, the application also able to get the accelerometer, gyroscope, gravity

sensor reading and GPS location. So the smartphone also requires these sensors so that

the application can get all the results.

26

Figure 4.1: Hardware using Bluetooth communication with smartphone device.

4.2 Project Device and Hardware Analysis

The Zephyr HxM Smart Heart Rate Monitor device from Zephyr Company are

able to track the user’s heart rate range between 25 to 240 beats per minute (BPM).

The heart rate signal was generated by the hardware. It is operated in the Bluetooth

range between 2.4 to 2.4835 GHz frequencies. Besides that, the transmit range for

the heart rate monitor device depends on the Bluetooth transmit range, which is 10

meters. This means if the heart rate monitor device is 10 meters far away from your

devices, the heart rate signal will not be success to send to your smartphone, and

then the heart rate is unable to detect.

27

 In addition, the battery life of the hardware is 26 hours. It only took 1 hour to

charge 90% of the battery life and 3 hours for 100% battery life charged. The charge

cycles for the hardware it only 300 cycles. So to extend the battery life of the hardware,

we can try to just charging to the 90% of the battery life of the hardware. There is no

any button or switch to turn the heart rate device on or off. We only need to wear it on

our chest position and take a deep breath, then the device will automatically turn on.

There are two LEDs on the heart rate device to let user know the device is charging or

fully charged. When the device was charging, the two LEDs will light up with one

yellow and one red. When it is fully charged, the red led will turn to yellow color.

Figure4.2: Zephyr HxM BT hardware was charging

28

Figure 4. 3: Zephyr HxM BT hardware was fully charged

 There is a very important part when using this hardware, the Zephyr HxM BT

hardware is turned on automatically when the user wears it and take a deep breath.

This is because the hardware needs enough conductivity between user’s skin and the

device itself. So if a user wears the device outside the shirt, even user takes a deep

breath, but the device may not be able to get the ECG signal and send it to our app.

Sometimes, it may need to moisten the sensor pads on the chest strap with little water

to allow the HxM turn on.

 Moreover, the Bluetooth connection may also cause the Zephyr HxM Bt

hardware fail to get the data. So when face this problem, user can try to unpair it

between the hardware with our smartphone and then pair it back. If the problem still

there, then users can try to turn off the Bluetooth connection of the smarphone and

then turn it on again to check there is a connection between it or not.

If the problem still occur, then user may check there is other Bluetooth devices

active within close range or not. Sometimes there are a number of Bluetooth devices

29

working close range, then they will interfere each other with the signal from our HxM

to smartphone. So try to move away and try connecting it again.

 Lastly, we also can check the functionality of the Bluetooth connection

between the HxM with our smartphone by using another application. If there is no

error for the Bluetooth connection, then they should be the application problem to

cause the application malfunction.

4.3 Zephyr HxM BT heart rate monitor device connection with R-Tracker4Life

R-Tracker4Life is designed for the heart rate monitoring purpose. This android app

is designed based on Zephyr HxM BT heart rate monitor device, so if the user wants

to use the heart rate tracking features in the application, the user must have the HxM

hardware and then connecting with their smartphone. For connecting the HxM

hardware to smartphone, firstly user need to turn on Bluetooth on their smartphone.

After that pairing the hardware with smartphone and then run the application. By

following these procedure user are able to connect the HxM hardware with the

application.

Procedure:

1. Wearing Zephyr HxM BT heart rate monitor device on the chest position of your

body.

2. Take a deep breath to turn on the hardware device.

3. Turn on Bluetooth on your smartphone.

4. Select Zephyr HxM BT device to connect it.

5. It will require a pin number to access it, normally is “1234”. But developer also

can change in the coding part.

6. After key in the pin number, now you were pairing the HxM hardware with your

smartphone already.

7. Open your application and then start to track your heart rate.

30

Figure4.4: Zephyr HxM BT hardware device.

Figure 4.5: Turn on Bluetooth.

Figure 4.6: Select Zephyr HxM heart rate device.

I.

II.

31

Figure 4.7: Key in Pin number to access the connection.

Figure 4.8: HxM successful to paired and ready to use.

III.

IV.

32

4.4 Application (R-Tracker4Life) Analysis

4.4.1 App features analysis

The first part we discuss about how the hardware connection with the

application (software). Now we continue to discuss about the android application

which is R-Tracker4Life. Firstly, this android application is developing in the

integrated development environment which is Eclipse software. Eclipse is a software

which provides a development platform to developer who want to develop an Android

application. The most important thing is it is an open source integrated development

environment (IDE) to let developers develop their project. Since R-Tracker4Life is

developed based on Zephyr HxM BT heart rate device, so the first step to develop this

application is to build the link bridge between the hardware and the application.

Besides that, we also need to design a layout to display the heart rate result, we get it

from the HxM device and then to display for the user know either the application has

connected with the heart rate device or not.

Figure 4.9: Coding for communication between the hardware and the application.

33

Figure 4.9 above shows that the coding used to communicate between the

hardware and the app. First, we need to import Bluetooth Adapter into the project so

that we only can use the Bluetooth function in the application. After that we can write

the operation that we want to do when we get the Bluetooth signal.

Figure 4.10: GUI layout design display on eclipse software.

34

Figure 4.11: Actual layout on device.

The figure 4.11 above is the application GUI layout design of the eclipse

software and then for figure 4.12 are the actual GUI layout design on real smartphone

device. There have total ten components in figure 4.11. The list below is the

description for each of the components.

1. “Connect” button to let user connect the HxM hardware with the app.

2. “Disconnect” button for the user to disconnect it the connection.

3. “Map” button to like the Mainactivity page to the map layout page.

4. Heart beat per minute (BPM) reading display in textview.

5. The instant speed for the HxM device.

6. Accelerometer sensor reading display in textview.

7. Gyroscope sensor reading display in textview.

8. Gravity sensor reading display in textview.

9. GPS Longitude and Latitude reading display in textview.

1

2

3

4

5

6

7

8

9

10

35

10. The status message about the connection for the HxM device and the application.

If they are connected, the status will show “Connected to HxM123456” message.

If not it will display “Not Connected to HxM!”

Figure 4.12: “R-Tracker4Life” apps layout has been installed on the smartphone device.

36

Figure 4.13: GUI layout before connection.

Figure 4.14: GUI layout after connection.

37

Figure 4.15: Heart rate reading increase compare with figure above.

Figure 4.16: Google map layout after user click "Map" button.

38

4.4.2 App features analysis with coding discussion

This section is use to discussion about the features for the application R-

Tracker4Life. For this app there have three sensors using which is Accelerometer,

Gyroscope and Gravity sensors and the last one is a GPS tracking feature.

4.4.2.1 Android smartphone sensors implemented into the application

The Android platform provides several sensors that to let us monitor our

motion of the device. There are three types of sensors can be categorize which is

Motion sensors, orientation sensors and environmental sensors. Theses sensors are

capable of providing a raw data with high precision and accuracy. But for the aim of

the application is to develop a workout training application, so we no need to

implement all the sensors in our application. For R-Tracker4Life, we decide to

implement three types of motion sensors which is Accelerometer, Gravity and

Gyroscope sensors.

First, we need to add new project in our eclipse software. So we need to go File

then choose new and select android application project and then a mini new android

application window will pop out as figure 4.17. After that, user needs to key in the

application name in the project window. For minimum required SDK, user can choose

the minimum required SDK for your application and then choose also the target SDK.

For target SDK, users should choose the latest version of the application so that it can

use for almost all of the Android device.

39

.

Figure 4.17: Create a new android application project.

After creating application, we need to add sensor eventlistener in our

application so that our application only able to use the sensor on the devices. The user

can click to the .java class and after the “extends Activity”, put “implements

SensorEventListener” (The error will occur, then point your cursor to the error and

click “Add unimplemented methods”).

 Figure 4.18: Add unimplemented methods to our .java coding.

40

Figure 4.19: Example of sensor coding after adding in the coding.

From the figure 4.19, we can observe that there will have two autogenerated

method stub generate by the eclipse software. For onAccuracyChanged method stub

is do about the operation for the sensor accuracy change. For example, we can set the

sensor delay for the sensor to several environmental conditions in this method. For

example, I set the sensor to user interface environment for this project.

sensorManager.registerListener(SensorEventListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_UI);

This is because I want to display the accelerometer sensor in the user interface. So I

set the sensor_delay with UI. If not, the sensitivity of the sensor will increase and then

we are very hard to read the actual reading from the sensor. Then for the

onSensorChanged method stub is the method for us to write the operation comment

when the sensor reading was change for the sensorevent. Figure 4.20 shows are the

example coding for my application on the onSensorChanged method stub.

41

Figure 4.20: Example coding for onSensorChanged method stub.

After done the mainActivity.jave part, now we need go to edit the layout of the

application. So go to the main.xml and then add textView’s id and modify the string

for the layout.

42

Figure 4.21: Open main.xml under layout folder.

Figure 4.22: main.xml coding.

After doing the layout part, now we go back to mainActivity.java to declare

SensorManager and TextView in our coding so that the coding only can run smoothly

without error.

43

Figure 4.23: Declare sensormanager and textview.

In onCreate method stub, we need to put the initialvaluefor the sensorManager.

Figure 4.24: onCreate method stub coding.

The result will show the sensor value of x, y and z axis in our .xml layout.

Figure 4.25: Accelerometer results on application layout.

44

4.4.2.2 Google map implemented into the application

This part will discuss about how this android application had implemented the

Google map function. Google via google play service provides us a library for utilizing

the Google map function in our application. The following description and procedure

is the step how to use google map in our application by using Google Map Android

API V2 which provides substantial improvements to older API version. The older

version is google map api v1 but that was outdated already by google. The minimum

version to use google map in our application is version 2 and the latest edition is

version 3. Before starting a fresh project, we have to undergo a few pre needed actions

to ascertain that the google map display on our application. These cases of activities

include importing the required library, making the actual SHA1 fingerprint and

configuring maps in google console.

1. Downloading Google Play Services on android eclipse software

Google made new Maps V2 API as a constituent of a Google Play Services SDK.

Hence prior to all of us begin to prepare maps, we bear to download google play

services from SDK manger. You are capable to spread out the SDK manager either

through Eclipse software or through android SDK folder. The steps required are Open

Eclipse ⇒ Windows ⇒ Android SDK Manager and check whether you have already

downloaded Google Play Services or not under Extras section. Otherwise, select play

services and then install the software.

45

Figure 4.26: Google play services had downloading and installed on android sdk.

2. Importing Google Play Services into Eclipse Software

After downloading the google play services, we need to import it into Eclipse,

which will be utilized as a library for our maps project so that we only able to beat the

google map service in our application.

i. In Eclipse go to File ⇒ Import ⇒ Android ⇒ Existing Android Code into

Workspace.

ii. Click on Search and choose Google Play Services project from android

SDK folder. You are able to locate google play services library project

46

from“android-sdk-windows\extras\google\google_play_services\

libproject \google-play-services_lib”.

iii. There is very important to tick up the Copy projects into workspace option

in the window as shown in the figure 4.27.

 Figure 4.27: Importing Google Play Service into Eclipse IDE.

3. Getting the Google Maps API Key

API Key is a key habit to allow our application can access the google play service

and then receive the google map display permission. Before getting the api key, we

need first to generate the SHA-1 fingerprint using java keytool. Foremost, we need to

47

open our terminal and then perform the following instruction to generate our SHA-1

fingerprint.

“keytool -list -v -keystore "%USERPROFILE%\. android\ debug.keystore" -alias

androiddebugkey -storepass android -keypass android”.

Figure 4.28 shows the output that we can get our SHA-1 finger print on the console.

 Figure 4.28: Generating SHA-1 fingerprint using comment prompt in window.

4. Now go to the google api console to activate our google api key and get the

permission with our application.

5. Select Services on the left hand side window and then turn on the google maps

android api v2 as figure 4.29.

 Figure 4.29: Turn on the google map android api v2 on google api console.

48

6. Select the API Access on the left hand side and click on create a new android key

at the right side.

 Figure 4.30: Obtaining google android map api key on google console.

7. It will pop up a window for asking the SHA-1 that we had generated early and the

package name of our application. So enter our SHA-1 key with our application

project package name, separated by a semicolon; and then click on create.

 Figure4.31: Generating the API Key on google console.

49

8. Note down your google api key which are required to include in our project.

 Figure 4.32: Note down the API Key that need to write into our manifest.xml coding file.

9. Now we have to import the google play service project as a library in our project

to support us. Therefore through right click on our project and then select

properties option. After that in the properties window on the left hand side select

Android. On the right hand side you can see an Add button under library section.

Click on this button and then select the google play service project, which we had

imported previously.

50

Figure 4.33: Import google play service as library into our project.

 Figure 4.34: Link google play services to the project.

51

 Figure 4.35: Link google play services to the project.

10. After we importing the google play services into our project, now this is a very

important step to do so that we can get the google map display on our application.

Now we need to open our project’s manifest file in eclipse software and then add

the google map api key we generate just now.

 Figure 4.36: Replace the google api key on the android value.

11. The library provides the “com.google.android.gms.maps. MapFragment” class and

the “MapView” class for displaying the map component in our application. Firstly,

we need to add some additional information in our “AndroidManifest.xml” file so

that we only can use google maps in our application. The figure 4.37 shows the

52

Figure 4.37: Project manifest.xml coding file with permission.

“AndroidManifest .xml” coding file. To access current location information

through location providers, we need to set permissions with android manifest file.

ACCESS_COARSE_LOCATION can be used to look for the user’s current location

by utilizing the network organization and equally well as mobile data. Besides that,

ACCESS_FINE_LOCATION is actually using of supplying the actual user’s current

position by utilizing GPS navigation. INTERNET authorization is really should

within our html coding with regard to using of network provider so that we only able

to display google map with a user’s current location in our application.

WRITE_EXTERNAL_STORAGE can be utilized to determine the authorization for

the apps to make toward the exterior storage as google maps to store the map data in

our external memory. This will be used in the data mining part in later.

12. New google maps are implemented using MapFragments which is a subclass of

Fragments class. First, we need to open our main activity layout file which is

activity_main.xml file and then add the following code. I used a RelativeLayout as

a parent element. You can also remove it and use MapFragment directly.

53

 Figure 4.38: activity_main.xml coding for google map display on GUI Layout.

13. There are several functions that we can work with google map api v2. For example,

we can place a marker on the map to display the user’s current location on the

google map.

// Latitude and longitude
double latitude = ;
double longitude = ;

MarkerOptions marker = new MarkerOptions().position(new
LatLng(latitude, longitude)).title("Hello Maps ");

 Figure 4.39: Display markers on google map coding.

14. In addition, we also can move the camera on google map to zoom in and zoom out

the google map with an animation. Below are the example coding to do this

function.

googleMap.getUiSettings().setZoomControlsEnabled(false); // true to enable

 Figure 4.40: Moving camera function coding on google map.

54

15. The last part of coding that I had used in my application is that the showing current

location function for the google map. By adding this function we are able to display

the user’s current location on google map in our application.

googleMap.setMyLocationEnabled(true); // false to disable

 Figure 4.41: Showing current location example coding.

16. Google map display on our application GUI layout.

Figure 4.42: Google map display on application layout.

4.4.2.3 Data logging and save into memory of the smartphone device

After all the data had been displayed on the application layout, user can save

these data for research purpose. User can get these data in a text file on their SD

memory card. First of all, we need to add the android permission for our application

so that we only able to write data into an external storage such as SD card in our

smartphone device. First, go to our project and then select the file android manifest, in

the project manifest file, add the coding <uses-permission android: name=" android.

Permission. WRITE_EXTERNAL_STORAGE" /> into the file.

55

After that, we need to add some button to our layout so that the application

only knows when we want to record our data. So just simply go to the project.xml file

to add button on our application layout. After doing the adding button part, now we go

to the mainActivity.java file for the project to write our function in our coding. Figure

4.43 show the mainActivity coding to save our data in a file in our SD memory card.

 Figure 4.43 MainActivity.java coding file to write data into a text file.

4.4.2.4 Publish Android Application to Google Play Store

This segment will discuss about how to publish our android application to the

google play store. There are various things we need to take short letter so that our

application only able published. It will this discuss clearly part by part later.

I. Foremost, we need to get our own keystore file on our eclipse software.

This is the most important measure, then we need to act so that our

application only able publish on google play store later. Keystore is a key

used in android platform development to maintain the keys needed to sign

in our application prior to distribution. We can get our own keystore by

56

writing the following command as shown in the figure 4.44 in the command

prompt to bring forth our own secret key. After we generate it, the keystore

file will be saved in our computer. To be make sure that the keystore folder

save in a location that you can access and remember. This is we always to

need it when we want to publish our application.

 Figure 4.44: Command used to generate our private keystore.

II. After we generate the keystore, now we need to request the necessary

android permission in our application so that our application only can be

published. First, go to the androidManifest.xml folder by our project and

then added the coding in fugure 4.4.2.4.2 in the coding.

 Figure 4.45: The permission required to publish our application.

III. After that, we need to configure the version of our application on the

androidManifest.xml folder. This is very important step for us because if

we skip this step, although we edit a lot of function in our application but

we dost not change the version of the application, the android console will

not figure out the different for our application compare with the previous

application. It will pop out a message with “The apk version as same as the

previous version” and this will cause us not able to publish our new

application apk file. Figure 4.46 shows the example of the android version

name that we need to change in androidManifest.xml folder.

 Figure 4.46: Android version Name for android apk version.

57

IV. When we have done all adding the permission on our application on the

eclipse software, now is the time we export our application into an APK

file and then prepare for publishing. Android application package (APK) is

the package file format that we used to distribute and install the android

application software and middleware onto google’s android operating

system. Our android application must be digitally signed with a certificate

that the developer holds so that we only able to publish it. This is why we

need to do these steps previously such as generate a keystore and adding

the epic version. This is used to ensure the authenticity of the application

from the developer.

V. Now we select the project that we want to export it, by selecting the File >

Export and then select the export android application in the pop out window.

After that we need to compile, sign and zip-align our application before

publishing.

 Figure 4.47: Select the project that wants to publish.

58

 Figure 4.48: Using the keystore that we had generated early.

 Figure 4.49: Select the destination for the apk file has been exported.

59

VI. Now we only left the final step for us to publish our own app into google

play store on google play developer console. First of all, we need to register

as a publisher and then setup our own profile, and then read and agree the

android market developer distribution agreement and then pay for a

registration fee of $25 USD via google checkout. This is a must pay fee

and one-time registration fee only for us to publish our application.

VII. After we login our publisher account, click on the “upload new APK to

production” to upload our application apk file that we have exported

previously. Besides that, we also need to provide our title for our

application, short description and some screen shoot for our application

before we publish it. Fill in all the information required and then click “save

and submit” button to publish our apps. Normally it needs to wait few hours

to publish it. And finally we had published our own application on google

play store.

4.4.3 Discussion

This segment will discuss about some problem and solution that I had

encountered when preparing this application. These are the minor error that possibly

occurs when using eclipse software, but it also is a really serious thing we need to take

short letter so that we only can able to bear on our task. Eclipse software is a very

powerful software tool to assist us develop an Android application, but it also is a very

case sensitive error software tool. A small tiny error will cause our application to shut

down and not able to function. Normally it will cause the error shut down

automatically and pop out a message “Unfortunately (your app) has stopped.” This

error will force our app not able to unfold, it will push to close down in the background

on our application. Thus we cannot neglect any one of the faults in our application.

60

1. When there is a connection error occurs between eclipse software with our

smartphone, we can solve this problem by typing “adb kill-server” and “adb

start-server” and restart eclipse software to solve this problem.

2. We can modify our application name manually after we had made an

android application project. So by doing this we need to go to the res file

on our project and then choosing res > values > strings.xml and then change

the value for our package name.

3. We can convert our project software program name by only converting our

project package name in AndroidManifest.xml file and deliver it. After that

go to scr file and then right click it and select refactor > rename selection.

A window will pop out and then type the package name we want for our

application in the window and click ok. Why we want to do this is because

the default for package name for Android application in eclipse software

will be abc.example.com. But if we want to publish our application into

google play store we need to eliminate the example in our application

package name.

4. We need keystore to update the same application on google play store and

it already explain in detail in the part 4.4.2.4. Besides that, the version of

the application also needs to be taken note before publishing the application.

5. There may will have missing jar file in our application. So to solve this

application, we can go to the build path part and select configure, build path

to check there is a missing jar file or not in our project. If all the jar files

are there, but the problem still occurs then we can move the missing jar on

the top of the order and export folder.

6. Java.null error will occur when there is an empty value that has taken from

the coding to do some function. It will cause our application to shut down

automatically and show out the message with “Unfortunately (your app)

61

has stopped.” So by solving this problem you need to go through all your

coding, especially for some looping function or some getting value function

to make sure there is no empty value to be called and used it. This also is

the most common error that beginner for android developer facing it.

CHAPTER V

CONCLUSION & RECOMMENDATION

5.1 Introduction

 This project aim to develop an Android application that provides a facility to

the researcher to do a data collection of the basic data available from the mobile device

for different type of activity. By using this application, the user is able to get the user’s

heart rate and instant speed reading display on the GUI of the application. Besides that,

user also able to get the motion sensors data such as accelerometer, gyroscope and

gravity sensors data in the application layout. In addition, users also can see their

current location on google map and get their current location point from the

application. Lastly, user also can get all of these data in a text file on their device

memory card for other purpose

64

Besides that, for using the heart rate monitoring feature for this application,

user need to wear the Zephyr Hxm BT device so that the application only able to

display the user’s heart rate. By using this feature, there have many possibility feature

that can be done with heart rate monitoring features. So this also is an important

motivation that this application had been developed. All of these data can be used to

develop a lot of applications, there is still a lot of possibilities that can be added into

this project in the future. It will be discussed in detail in the project recommendation

part.

5.2 Project Recommendation and Sustainability

 There is a lot of possibilities can be added into this project in the future. For

example, when we gather enough data and manage to detect the activity by using a

machine learning, we can automatically predict the daily activity for headphone user

and estimate their calorie burn and many other applications. This kind of additional

feature can be part of the update on the published app in Google Store. There are some

suggestion features that can be added into this application, such as:

a. Step counter by using accelerometer and GPS data collected from this

application.

b. Activity tracking system by using 9DOF accelerometer data getting

from this application.

c. Running training program with heart rate monitoring function

d. Cardio workout progress tracking such as distance, duration and

calories burned calculator

e. Other activity monitoring such as running, jogging, biking, swimming

and walking.

65

5.3 Conclusion

 As a conclusion, this application has been successfully developed and

published on the google play store to let user download and use it. Besides that, we

can conclude that 9DOF of accelerometer data are very useful to develop our own

algorithm and then use it to develop our own project.

 In addition, this project has increased my knowledge in Android Development

by using Eclipse Software. Google Android has a very large market value as Apple’s

IOS operating system. They are two of the main top operating systems that apply to

the most of the smartphone device are using nowadays. I believe that with these

android application development knowledge it will give me a lot of opportunity in my

future career. Lastly, it can be concluded that this final year project has been

successfully completed and all of the objectives have been achieved.

66

REFERENCE

[1] “Zephyr HxMTM Smart Heart Rate Monitor”. [Online] Available:

http://zephyranywhere.com [Accessed: Sept 18, 2014].

[2] Praveen Kumar Diwakar, Young Keun Oh, Seung-Hun Park, Young-Ro

Yoon. “Personal Digital Exercise Trainer for Managing, Monitoring and

Recording the exercise”, 2005.

 [3] Wei-Meng Lee. “Beginning Android Application Development”, 2011.

[4] Onur Cinar. “Pro Android C++ with the NDK”, 2012.

[5] Wallance Jackson. “Android Apps for Absolute Beginneers”, 2012.

[6] Muhammad Shoaib, Hans Scholten, P.J.M. Havinga. “Towards Physical

Activity Recognition Using Smartphone Sensors”, 2013.

[7] Ekachai Thammasat. “The Statistical Recognition of Walking, Jogging, and

Running Using Smartphone Accelerometers”, 2013.

[8] Arkham Zahri Rakhman, Lukito Edi Nugroho, Widyawan, Kurnianingsih.

“Fall Detection System Using Accelerometer and Gyroscope Based on

Smartphone”,2014.

[9] Armir Bujari, Bogdan Licar, Claudio E.Palazzi. “Movement Pattern

Recognition through Smartphone’s Accelerometer”, 2012.

[10] Hui-Huang Hsu, Wei-Jan Peng, Timothy K.Shih, Tun-Wen Pai, Ka Lok Man.

“Smartphone Indoor Localization with Accelerometer and Gyroscope”, 2014.

[11] Esmond Mok, Guenther Retscher and Chen Wen. “Initial Test on the Use of

GPS and Sensor Data of Modern Smartphones for Vehicle Tracking in Dense

High Rise Environments”, 2012.

[12] American Heart Association. “All about Heart Rate (Pulse)”, [Online]

Available: http://www.heart.org/HEARTORG/Conditions/More/. [Accessed:

Sept 17, 2014].

67

[13] Lakshmanan Sornanathan and Ibrahim Khalil. “Fitness Monitoring System

Based on Heart Rate and SpO2 Level”, 2010.

[14] Yaofeng Wen, Rong Yang, Yu Quan Chen. “Heart Rate Monitoring in

Dynamic Movements from a Wearable System”, 2008.

[15] Jelena Nikolic-Popovic, Rafik Goubran. “Measuring Heart Rate, Breathing

Rate and Skin Conductance during Exercise”, 2011.

[16] “What is Eclipse”, [Online], and Available: http://www.eclipse.org/org/.

[Accessed: Nov, 25, 2014].

[17] “UML Class Diagrams: An Agile Introduction”, Available:

http://www.agilemodeling.com /classDiagram. [Accessed: May, 30, 2015].

[18] “Google map android api”, Available: http://www.developers.google/.

[Accessed: Feb, 15, 2015].

[19] Motion Sensor, Available: http://www.developers.android.com/sensors/.

[Accessed: Jan, 7, 2015].

http://www.eclipse.org/org/
http://www.developers.android.com/sensors/

68

APPENDIX A

69

70

71

APPENDIX B

72

73

74

75

76

APPENDIX C

77

78

79

80

81

82

83

84

APPENDIX C

85

@SuppressLint("NewApi") @SuppressWarnings("deprecation")

public class MainActivity<DrawerLayout> extends Activity implements

 SensorEventListener, LocationListener,

ListView.OnItemClickListener{

 private static final String SensorDelay = null;

 private static final SensorEventListener SensorEventListener =

null;

 BluetoothAdapter adapter = null;

 BTClient _bt;

 ZephyrProtocol _protocol;

 NewConnectedListener _NConnListener;

 private final int HEART_RATE = 0x100;

 private final int INSTANT_SPEED = 0x101;

 private TextView view;

 private TextView tv1;

 private TextView tv2;

 protected LocationManager locationManager;

 protected LocationListener locationListener;

 protected Context context;

 protected String latitude,longitude;

 protected boolean gps_enabled,network_enabled;

 private SensorManager mSensorManager;

 private Sensor mAccelerometer;

 private FileWriter writer;

 private Handler handler = new Handler();

 EditText txtData;

 Button startButton;

 Button stopButton;

 float[] acceleration = new float[3];

 File myFile;

 FileOutputStream fOut;

 OutputStreamWriter myOutWriter;

 BufferedWriter myBufferedWriter;

 PrintWriter myPrintWriter;

 boolean stopFlag = false;

 boolean startFlag = false;

 boolean isFirstSet = true;

 TextView txtLat;

 String lat;

 String provider;

 SensorManager sensorManager;

 String currentTime = (String) DateFormat.format("yyyy-MM-dd

hh:mm:ss", new Date());

 static String exits = "No";

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 //for sensor

 view = (TextView) findViewById(R.id.Accelerometer);

 sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 sensorManager.registerListener(this,

 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

 SensorManager.SENSOR_DELAY_NORMAL);

sensorManager.registerListener(this,sensorManager.getDefaultSensor(Sensor.

),SensorManager.SENSOR_DELAY_NORMAL);

 view = (TextView) findViewById(R.id.Gyroscope);

 sensorManager.registerListener(this,

 sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE),

 SensorManager.SENSOR_DELAY_NORMAL);

86

sensorManager.registerListener(this,sensorManager.getDefaultSensor(Sensor.

),SensorManager.SENSOR_DELAY_UI);

 view = (TextView) findViewById(R.id.Gravity);

 sensorManager.registerListener(this,

 sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),

 SensorManager.SENSOR_DELAY_NORMAL);

sensorManager.registerListener(this,sensorManager.getDefaultSensor(Sensor.

),SensorManager.SENSOR_DELAY_NORMAL);

 setContentView(R.layout.main);

 txtLat = (TextView) findViewById(R.id.GPS);

 locationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0,

this);

 /*Sending a message to android that we are going to initiate a

pairing request*/

 IntentFilter filter = new

IntentFilter("android.bluetooth.device.action.PAIRING_REQUEST");

 /*Registering a new BTBroadcast receiver from the Main Activity

context with pairing request event*/

 this.getApplicationContext().registerReceiver(new

BTBroadcastReceiver(), filter);

 // Registering the BTBondReceiver in the application that the

status of the receiver has changed to Paired

 IntentFilter filter2 = new

IntentFilter("android.bluetooth.device.action.BOND_STATE_CHANGED");

 this.getApplicationContext().registerReceiver(new BTBondReceiver(),

filter2);

 //Obtaining the handle to act on the CONNECT button

 TextView tv = (TextView) findViewById(R.id.labelStatusMsg);

 String ErrorText = "Not Connected to HxM ! !";

 tv.setText(ErrorText);

 Button btnConnect = (Button) findViewById(R.id.ButtonConnect);

 if (btnConnect != null)

 {

 btnConnect.setOnClickListener(new OnClickListener() {

 private Runnable r;

 public void onClick(View v) {

 String BhMacID = "00:07:80:9D:8A:E8";

 //String BhMacID = "00:07:80:88:F6:BF";

 adapter = BluetoothAdapter.getDefaultAdapter();

 Set<BluetoothDevice> pairedDevices =

adapter.getBondedDevices();

 if (pairedDevices.size() > 0)

 {

 for (BluetoothDevice device : pairedDevices)

 {

 if (device.getName().startsWith("HXM"))

 {

 BluetoothDevice btDevice = device;

 BhMacID = btDevice.getAddress();

 break;

 }

 }

 }

87

 //BhMacID = btDevice.getAddress();

 BluetoothDevice Device =

adapter.getRemoteDevice(BhMacID);

 String DeviceName = Device.getName();

 _bt = new BTClient(adapter, BhMacID);

 _NConnListener = new

NewConnectedListener(Newhandler,Newhandler);

 _bt.addConnectedEventListener(_NConnListener);

 TextView tv1 =

(EditText)findViewById(R.id.labelHeartRate);

 tv1.setText("000");

 tv1 =

(EditText)findViewById(R.id.labelInstantSpeed);

 tv1.setText("0.0");

 if(_bt.IsConnected())

 {

 _bt.start();

 TextView tv = (TextView)

findViewById(R.id.labelStatusMsg);

 String ErrorText = "Connected to HxM

"+DeviceName;

 tv.setText(ErrorText);

 //Reset all the values to 0s

 }

 else

 {

 TextView tv = (TextView)

findViewById(R.id.labelStatusMsg);

 String ErrorText = "Unable to

Connect !";

 tv.setText(ErrorText);

 }

 }

 });

 }

 /*Obtaining the handle to act on the DISCONNECT button*/

 Button btnDisconnect = (Button)

findViewById(R.id.ButtonDisconnect);

 if (btnDisconnect != null)

 {

 btnDisconnect.setOnClickListener(new OnClickListener() {

 @Override

 /*Functionality to act if the button DISCONNECT

is touched*/

 public void onClick(View v) {

 // TODO Auto-generated method stub

 /*Reset the global variables*/

 TextView tv = (TextView)

findViewById(R.id.labelStatusMsg);

 String ErrorText = "Disconnected from HxM!";

 tv.setText(ErrorText);

 /*This disconnects listener from acting

on received messages*/

 _bt.removeConnectedEventListener(_NConnListener);

 /*Close the communication with the

device & throw an exception if failure*/

 _bt.Close();

 }

 });

 }

88

 Button button = (Button) findViewById(R.id.map);

 button.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 if(exits.equals("YES")){

 finish();}

 else{

 Intent Intent = new

Intent(MainActivity.this,Map.class);

 startActivity(Intent);

 }

 }

 });

 // start button

 startButton = (Button) findViewById(R.id.startButton);

 startButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 txtData = (EditText) findViewById(R.id.txt1);

 Handler handler = new Handler();

 handler.postDelayed(new Runnable() {

 public void run() {

 Bundle bundle = new Bundle();

 // start recording the sensor data

 try {

 myFile = new File("/sdcard/mysdfile.txt");

 myFile.createNewFile();

 fOut = new FileOutputStream(myFile);

 myOutWriter = new OutputStreamWriter(fOut);

 myBufferedWriter = new BufferedWriter(myOutWriter);

 myPrintWriter = new PrintWriter(myBufferedWriter);

 myOutWriter.append(currentTime +"\n" +

txtData.getText() +"\n" + tv_main +"\n" + result1+"\n" + result2+"\n" +

result3+"\n" + result4);

 myOutWriter.close();

 fOut.close();

 Toast.makeText(getBaseContext(), "Start recording the

data set", Toast.LENGTH_SHORT).show();

 } catch (Exception e) {

 Toast.makeText(getBaseContext(), e.getMessage(),

Toast.LENGTH_SHORT).show();

 } finally {

 startFlag = true;

 }

 }

 }, 1000);

 }

 });

 // stop button

 stopButton = (Button) findViewById(R.id.stopButton);

 stopButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 // stop recording the sensor data

 try {

 stopFlag = true;

 Toast.makeText(getBaseContext(), "Done recording the

data set", Toast.LENGTH_SHORT).show();

89

 } catch (Exception e) {

 Toast.makeText(getBaseContext(), e.getMessage(),

Toast.LENGTH_SHORT).show();

 }

 }

 });

 sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 }

 private class BTBondReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Bundle b = intent.getExtras();

 BluetoothDevice device =

adapter.getRemoteDevice(b.get("android.bluetooth.device.extra.DEVICE").toS

tring());

 Log.d("Bond state", "BOND_STATED = " +

device.getBondState());

 }

 }

 private class BTBroadcastReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 Log.d("BTIntent", intent.getAction());

 Bundle b = intent.getExtras();

 Log.d("BTIntent",

b.get("android.bluetooth.device.extra.DEVICE").toString());

 Log.d("BTIntent",

b.get("android.bluetooth.device.extra.PAIRING_VARIANT").toString());

 try {

 BluetoothDevice device =

adapter.getRemoteDevice(b.get("android.bluetooth.device.extra.DEVICE").toS

tring());

 Method m =

BluetoothDevice.class.getMethod("convertPinToBytes", new Class[]

{String.class});

 byte[] pin = (byte[])m.invoke(device, "1234");

 m = device.getClass().getMethod("setPin", new

Class [] {pin.getClass()});

 Object result = m.invoke(device, pin);

 Log.d("BTTest", result.toString());

 } catch (SecurityException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 } catch (NoSuchMethodException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 } catch (IllegalArgumentException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (InvocationTargetException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 private String tv_main;

 private String result1;

 private String result2;

 private String result3;

 private String result4;

 final Handler Newhandler = new Handler(){

90

 public void handleMessage(Message msg)

 {

 TextView tv;

 switch (msg.what)

 {

 case HEART_RATE:

 String HeartRatetext =

msg.getData().getString("HeartRate");

 tv = (EditText)findViewById(R.id.labelHeartRate);

 System.out.println("Heart Rate Info is "+

HeartRatetext);

 if (tv != null) tv.setText(HeartRatetext);

 tv_main = HeartRatetext;

 break;

 case INSTANT_SPEED:

 String InstantSpeedtext =

msg.getData().getString("InstantSpeed");

 tv = (EditText)findViewById(R.id.labelInstantSpeed);

 if (tv != null)tv.setText(InstantSpeedtext);

 break;

 }

 }

 };

 private TextView view1;

 private float a;

 private float b;

 private float c;

 //case sensor

 @SuppressLint("DefaultLocale") @Override

 public void onSensorChanged(SensorEvent event) {

 // TODO Auto-generated method stub

 float[] value = event.values;

 float[][] cached_values;

 switch (event.sensor.getType()) {

 case Sensor.TYPE_ACCELEROMETER:

 float x = value[0];

 float y = value[1];

 float z = value[2];

 result1 = String.format(" x=%.4f\n y=%.4f\n

z=%.4f", x,y,z);

 view1 = (TextView)

findViewById(R.id.labelAccelerometer);

 view1.setText(result1);

 break;

 case Sensor.TYPE_GYROSCOPE:

 float[] value1 = event.values;

 a = value1[0];

 b = value1[1];

 c = value1[2];

 result2 = String.format(" x=%.3f\n y=%.3f\n z=%.3f",

a,b,c);

 view1 = (TextView)

findViewById(R.id.labelGyroscope);

 view1.setText(result2);

 break;

 case Sensor.TYPE_GRAVITY:

 float[] value2 = event.values;

91

 a = value2[0];

 b = value2[1];

 c = value2[2];

 result3 = String.format(" x=%.4f\n y=%.4f\n z=%.4f",

a,b,c);

 view1 = (TextView) findViewById(R.id.labelGravity);

 view1.setText(result3);

 break;

 }

 }

 private void save() {

 // TODO Auto-generated method stub

 }

 @Override

 protected void onResume() {

 super.onResume();

 // register this class as a listener for the sensors

 sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);

 sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE),

SensorManager.SENSOR_DELAY_NORMAL);

 sensorManager.registerListener(this,

sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),

SensorManager.SENSOR_DELAY_NORMAL);

 }

 @Override

 protected void onPause() {

 // unregister listener

 super.onPause();

 sensorManager.unregisterListener(this);

 }

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 // TODO Auto-generated method stub

 sensorManager.registerListener(SensorEventListener,

 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

 SensorManager.SENSOR_DELAY_UI);

 sensorManager.registerListener(SensorEventListener,

sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),

 SensorManager.SENSOR_DELAY_UI);

 }

 @Override

 public void onLocationChanged(Location location) {

 txtLat = (TextView) findViewById(R.id.labelGPS);

 result4 = String.format("Latitude=%.4f

Longitude=%.4f",location.getLatitude(), location.getLongitude());

 txtLat.setText(result4);

 }

 @Override

 public void onProviderDisabled(String provider) {

 Log.d("Latitude","disable");

 }

 @Override

 public void onProviderEnabled(String provider) {

 Log.d("Latitude","enable");

92

 }

 @Override

 public void onStatusChanged(String provider, int status, Bundle

extras) {

 Log.d("Latitude","status");

 }

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int

position,

 long id) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onBackPressed() {

 new AlertDialog.Builder(this)

 .setIcon(android.R.drawable.ic_dialog_alert)

 .setTitle("Closing Tracker4Life")

 .setMessage("Are you sure you want to leave Tracker4Life?")

 .setPositiveButton("Yes", new

DialogInterface.OnClickListener()

 {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 finish();

 }

 })

 .setNegativeButton("No", null)

 .show();

 }

 public void onStartClick(View view) {

 mSensorManager.registerListener(this, mAccelerometer,

SensorManager.SENSOR_DELAY_NORMAL);

 }

 public void onStopClick(View view) {

 mSensorManager.unregisterListener(this);

 }

}

93

APPENDIX D

94

 <ScrollView

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/drawer_layout"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 <RelativeLayout

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:background="@drawable/heart_rate1" >

 <TextView

 android:id="@+id/Welcometext"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <Button

 android:id="@+id/ButtonConnect"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@+id/Welcometext"

 android:text="Connect" >

 </Button>

 <Button

 android:id="@+id/ButtonDisconnect"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignTop="@id/ButtonConnect"

 android:layout_toRightOf="@id/ButtonConnect"

 android:text="Disconnect" >

 </Button>

 <EditText

 android:id="@+id/labelHeartRate"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/ButtonConnect"

 android:text="000" >

 </EditText>

 <TextView

 android:id="@+id/HRTextBox"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_below="@+id/ButtonConnect"

 android:text="Heart Rate"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <EditText

 android:id="@+id/labelInstantSpeed"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/labelHeartRate"

 android:text="000" >

 </EditText>

 <TextView

 android:id="@+id/InstantSpeed"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

95

 android:layout_alignTop="@+id/labelInstantSpeed"

 android:text="Instant Speed"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <TextView

 android:id="@+id/Accelerometer"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/labelInstantSpeed"

 android:text="Accelerometer(m/s^2)"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <EditText

 android:id="@+id/labelAccelerometer"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignTop="@+id/Accelerometer"

 android:ems="10"

 android:inputType="textMultiLine"

 android:width="120dp"/>

 <TextView

 android:id="@+id/Gyroscope"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/labelAccelerometer"

 android:text="Gyroscope(rad/s)"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <EditText

 android:id="@+id/labelGyroscope"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/labelAccelerometer"

 android:ems="10"

 android:inputType="textMultiLine"

 android:width="120dp" />

 <EditText

 android:id="@+id/labelGravity"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/labelGyroscope"

 android:ems="10"

 android:inputType="textMultiLine"

 android:width="120dp" />

 <TextView

 android:id="@+id/GPS"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/labelGravity"

 android:text="GPS"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <EditText

 android:id="@+id/labelGPS"

 android:layout_width="wrap_content"

96

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_below="@+id/labelGravity"

 android:layout_centerHorizontal="true"

 android:ems="10"

 android:width="150dp" />

 <Button

 android:id="@+id/map"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_above="@+id/HRTextBox"

 android:layout_toRightOf="@+id/ButtonDisconnect"

 android:text="MAP" />

 <EditText

 android:id="@+id/labelStatusMsg"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/StatusTextBox"

 android:ems="10"

 android:text="Status Message Box" >

 <requestFocus />

 </EditText>

 <TextView

 android:id="@+id/Gravity"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/labelGyroscope"

 android:text="Gravity(m/s^2)"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <TextView

 android:id="@+id/StatusTextBox"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_below="@+id/labelGPS"

 android:text="Status Message"

 android:textColor="#FFFF00"

 android:textSize="20sp" />

 <Button

 android:id="@+id/stopButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignLeft="@+id/labelGPS"

 android:layout_below="@+id/labelStatusMsg"

 android:layout_marginTop="68dp"

 android:onClick="onStopClick"

 android:text="Stop Record" />

 <Button

 android:id="@+id/startButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBaseline="@+id/stopButton"

 android:layout_alignBottom="@+id/stopButton"

 android:layout_alignParentLeft="true"

 android:layout_marginLeft="21dp"

 android:onClick="onStartClick"

 android:text="Start Record" />

97

 <EditText

 android:id="@+id/txt1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignRight="@+id/labelStatusMsg"

 android:layout_below="@+id/labelStatusMsg"

 android:layout_marginTop="14dp"

 android:ems="10"

 android:hint="Enter type of activity here..."

 android:textSize="15sp" />

 </RelativeLayout>

 </ScrollView>

98

APPENDIX E

99

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.R_Tracker4Life"

 android:versionCode="4"

 android:versionName="1.0" >

 <supports-screens

 android:anyDensity="true"

 android:largeScreens="true"

 android:normalScreens="true"

 android:resizeable="true"

 android:smallScreens="true" />

 <uses-sdk

 android:minSdkVersion="12"

 android:targetSdkVersion="21" />

 <permission

 android:name="com.R_Tracker4Life.permission.MAPS_RECEIVE"

 android:protectionLevel="signature" />

 <uses-permission android:name="android.permission.BLUETOOTH" />

 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

 <uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.CAMERA" />

 <uses-permission android:name="android.permission.VIBRATE" />

 <uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission

android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />

 <uses-permission android:name="android.permission.READ_PHONE_STATE" />

 <uses-permission android:name="android.permission.RECEIVE_SMS" />

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <uses-permission

android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

 <uses-permission android:name="android.permission.READ_CONTACTS" />

 <uses-permission android:name="android.permission.WRITE_CONTACTS" />

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />

 <uses-permission android:name="android.permission.BROADCAST_STICKY" />

 <uses-permission

android:name="in.wptrafficanalyzer.locationdistancetimemapv2.permission.MA

PS_RECEIVE" />

 <uses-permission

android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"/

>

 <!-- Required OpenGL ES 2.0. for Maps V2 -->

 <uses-feature

 android:glEsVersion="0x00020000"

 android:required="true" />

 <application

 android:icon="@drawable/logo2"

 android:label="@string/app_name" >

 <activity

 android:name=".MainActivity"

 android:configChanges="keyboardHidden|orientation"

 android:label="@string/app_name"

 android:screenOrientation="portrait" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

100

 <category android:name="android.intent.category.LAUNCHER"

/>

 </intent-filter>

 </activity>

 <activity

 android:name="org.apache.cordova.DroidGap"

 android:configChanges="orientation|keyboardHidden"

 android:label="@string/app_name" >

 <intent-filter>

 </intent-filter>

 </activity>

 <activity

 android:name=".DataBasePage"

 android:label="@string/title_activity_data_base_page" >

 </activity>

 <activity

 android:name=".ViewPager"

 android:label="@string/title_activity_view_pager" >

 </activity>

 <activity

 android:name=".Map"

 android:label="@string/title_activity_map" >

 </activity>

 <meta-data

 android:name="com.google.android.gms.version"

 android:value="@integer/google_play_services_version" />

 <meta-data

 android:name="com.google.android.maps.v2.API_KEY"

 android:value="AIzaSyCBmf5f5QUmXmteNKP5-rcvAkUMHW9qBN0" />

 <activity

 android:name=".Tracking"

 android:label="@string/title_activity_tracking" >

 </activity>

 </application>

</manifest>

101

APPENDIX F

102

103

APPENDIX G

104

