

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LAPORAN PROJEK SARJANA MUDA

MOTION STUDY OF BIONIC LEG USING

HYDRAULIC MOTOR

QUAK ZHI YUAN

BACHELOR OF MECHATRONIC ENGINEERING

JUNE 2014

🔘 Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read through this report entitle "Motion Study of bionic leg using hydraulic motor" and found that it has comply the partial fulfilment for awarding the degree of Bachelor of Mechatronic Engineering ."

Signature :

Supervisor's Name :

Date :

MOTION STUDY OF BIONIC LEG USING HYDRAULIC MOTOR

QUAK ZHI YUAN

A report submitted in partial fulfilment of the requirements for the degree of Bachelor of Mechatronic Engineering

Faculty of Electrical Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

C Universiti Teknikal Malaysia Melaka

I declare that this report entitle "Motion study of bionic leg using hydraulic motor" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name :

Date :

ACKNOWLEDGEMENT

For the preparation of this report, I was able to communicate well with lots of people, friends, lecturers as well as my supervisor. They aid me in term of technical knowledge, and supportive idea for me during the progressing of the report and this project. Firstly, I wish to thanks to my project supervisor, Engr. Anuar bin Mohamed Kassim for his guidance as well as encouragement for me to move onwards whenever I meet any obstacle. He will be the first person I met and the problem that I faced will be solved and lots of understanding I'm able to adapt in term of the knowledge for this project.

Besides, I would like to thanks ceria lab senior that undergo their master currently. Their suggestion and assistance during this project had help me enable to finally done my project on time.

Lastly, I would like to thank to my friends who had provided help for me during this project whenever I met problems. Their point of view or opinions aid me a lot. The most importantly, I would like to thank to my family members whom fully support me to persuade my study in "University Technical Malaysia Melaka".

ABSTRACT

Nowadays, several sicknesses such as stroke, injury on the lower limb and elder people cannot walk in a proper way due to joints' injury. These sicknesses may cause lots of inconvenient in their daily life especially when their lower limb cannot move well in a proper motion. From the research of journal, lots of designs regarding exoskeleton leg (bionic leg) were done to assist the human in term of gait. Different types of method proposed according to the research such as gravity balancing orthosis (GBO), MATLAB software as controller, sliding mode controller (SMC) and humanoid robot biped with heterogeneous legs (BRHL) and etc. Some methods relate to the hydraulic motion study and some relate to the motion of exoskeleton legs. Derivation of mathematical modelling on bionic leg in term of kinematic analysis is the first objective. Another objective of this project is to design the motion of bionic leg using hydraulic actuator for stand and sit position. Besides, analysis on the design of motion study of hydraulic actuator in overall performance to give accuracy and reliability for rehabilitation application was done. There are three phases to be undergone according to the objectives. The derivation of mathematical modelling on bionic leg in term of kinematic analysis was done for the phase 1. The design of motion of bionic leg using hydraulic actuator with stand and sit position was done in phase 2 whereas analysis of the overall performance is done for the phase 3 for bionic leg. FluidSIM used as simulation to test the forces relative to the time taken for the hydraulic actuator. The result to be expected achieve is that able to control the hydraulic actuator for stand and sit position and analysis on overall performance such as accuracy needed so that it suitable used for rehabilitation purpose.

ABSTRAK

Pada zaman ini, pelbagai penyakit seperti strok, kecederaan pada anggota badan yang lebih rendah dan orang tua yang tidak mampu berjalan dalam perjalanan yang betul atas sebab kecederaan pada sendi lutut. Semua penyakit ini akan memberi kesan dan menyusahkan aktiviti harian terutamanya sendi lutut yang tidak mampu bergerak dalam posisiyang betul. Dalam kajian jurnal, pelbagai reka bentuk mengenai exoskeleton kaki (kaki bionik) telah dikaji untuk membantu manusia dari segi gaya pengerakan. Terdapat pelbagai jenis kaedah yang dicadangkan menurut kajian jurnal seperti ' gravity balancing orthosis(GBO), 'MATLAB software' sebagai pengawal, ' sliding mode controller(SMC)' dan ' humanoid robot biped with heterogeneous legs(BRHL)', serta yang lain. Terdapat sebahagian kaedah yang mengenai dengan kajian pengerakan hidraulik da nada yang berkaitan dengan pengerakan kaki exoskeleton. Objektif utama ialah perolehan pemodelan matematik di kaki bionic dari segi analisis kinematik. Objektif kedua dengan projek ini adalah untuk reka bentuk kajian usul kaki bionik dengan menggunakan penggerak hidraulik pada gerakan yang digunakan bagi posisi berdiri dan duduk. Selain itu, analisis mengenai reka bentuk kajian gerakan penggerak hidraulik dalam prestasi keseluruhan untuk memberikan ketepatan dan kebolehpercayaan bagi pemulihan telah dikaji. Terdapat tiga tahap untuk dikaji berdasarkan objektif. Asal pemodelan matematik pada kaki bionik dari segi analisis kinematik telah dilaksanakan bagi fasa 1. Reka bentuk gerakan kaki bionik dengan menggunakan penggerak hidraulik bagi posisi berdiri dan duduk telah dilaksanakan dalam fasa 2 manakala analisis prestasi keseluruhan dilakukan bagi fasa 3 untuk kaki bionik. FluidSIM digunakan untuk menguji kuasa relatif kepada masa yang diperlukan untuk penggerak hidraulik daya .Hasil kajian yang dijangka mencapai ialah mampu mengawal penggerakan hidraulik untuk berdiri dan duduk serta analisis mengenai prestasi keseluruhannya seperti ketepatan yang diperlukan supaya ia boleh digunakan sesuai untuk tujuan pemulihan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	TABLE OF CONTENTS	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	ix
	LIST OF ABBREVIATIONS	xiv
	LIST OF APPENDICES	XV
1	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Motivation	2
	1.3 Problem Statement	3
	1.4 Objective	4
	1.5 Scope	4
	1.6 Significant of Study	5
	1.7 Report Outlines	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Controller	7
	2.3 Actuator	14
	2.4 Microcontroller	21
	2.5 Summary of review	23

3

PAGE

METHODOLOGY	27
3.1 Flowchart	27
3.2 K-Chart	29
3.3 Phases of Project	30
3.3.1 Phase 1: To derive mathematical modelling of	
bionic leg in term of kinematic analysis	30
3.3.2 Phase 2: To design the motion of bionic leg in	
application of hydraulic actuator	30
3.3.3 Phase 3: To analyze the overall performance in	
term of accuracy and reliability on the bionic leg	
using hydraulic actuator for rehabilitation	
application	31
3.4 Free body diagram of the bionic leg with hydraulic	
actuator for derivation of mathematical modelling in term	
of kinematic analysis	32
3.5 Design of motion for bionic leg in application of hydraulic	
actuator for stand and sit position	38
3.5.1 Actuator selection and valve selection	38
3.5.2 Equipment Used	40
3.5.3 Electro-hydraulic circuit design	42
3.5.4 Electrical circuit design	43
3.5.5 Arduino Coding Uno R3 design	49
3.6 Analyze the overall performance in term of accuracy and	
reliability on the bionic leg using hydraulic actuator for	
rehabilitation application	53
3.6.1 Fluidsim simulation test	53
3.6.2 Experimental design	55
3.6.2.1 Experimental test 1	56
3.6.2.2 Experimental test 2	58

CHAPTER TITLE

vi

	3.6.2.3 Experimental test 3	60
	3.6.2.4 Experimental test 4	62
	3.6.3 Implementation on hardware	64
	3.7 Safety Precaution	68
	RESULT & DISCUSSION	70
4	4.1 Introduction	70
	4.2 Fluidsim simulation test	70
	4.3 Experimental Test 1	73
	4.4 Experimental Test 2	77
	4.5 Experimental Test 3	79
	4.6 Experimental Test 4	82
	4.7 Comparison of Limit Switches and Flex Sensor	
	performance for position control	84
	4.8 Implementation on Hardware	85
	4.9 Potential application	93
5	CONCLUSION AND RECOMMENDATIONS	94
	5.1 Conclusion	94
	5.2 Recommendation	95
REFERENCI	ES	96
APPENDICE	S	99

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of controller used with its advantages	11
2.2	Comparison on the type of actuator used with its criteria	18
2.3	Type of hydraulic motors	19
2.4	Arduino Uno R3 specification	22
2.5	PIC 16F876A Device features	22
2.6	Comparison of summarized solutions	23
3.1	Link parameter for bionic leg	35
3.2	Specification of double acting cylinder	40
4.1	Time taken for extend and retract of different forces	
	acting on double acting cylinder	71
4.2	Time taken for double acting cylinder to extend and	
	retract at different position and different pressure	73
4.3	Accuracy Test of double acting cylinder to extend and	
	retract at pressure of 20 Bar	74
4.4	Actual distance and desire distance of two double acting	
	cylinders to extend and retract with the use of flow	
	control valve	77
4.5	Time taken for the double acting cylinder to extend and	
	retract at different limit switches with different pressures	80

TABLE	TITLE	PAGE
4.6	Accuracy test on the rotation angle of hip and knee at sit	
	and stand position using Flex Sensor 4.5"	82
4.7	Accuracy test on the rotation angle of hip and knee at sit	
	and stand position	85

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Type of injury by sport among age 25 to 40 years	2
1.2	Number of injuries at the age of 25 to 40 years and by	3
	gender	
2.1	Schematic of gravity balancing exoskeleton	15
2.2	BRHL model	15
2.3	Schematic drawing of hydraulic cylinder with the	
	system	16
2.4	Photo and valve connection to hydraulic cylinder	17
2.5	Schematic drawing of rectilinear actuator and servo	
	valve	17
2.6	Hydraulic vane motor	20
2.7	Axial piston motor	20
2.8	Hydraulic gear motor	20
2.9	Double acting cylinder	21
2.10	Single acting cylinder	21
3.1	Flow chart of overall project	27
3.2	K-chart	29
3.3	Block diagram of hydraulic actuator	31

FIGURE	TITLE	PAGE
3.4	Free body diagram of one bionic leg with two hydraulic	22
	actuator	33
3.5	Double acting cylinder	39
3.6	Symbol of double acting cylinder	39
3.7	4/3 way directional control valve	39
3.8	Pressure gauge	40
3.9	Flow control valve	40
3.10	Compressed air regulator	41
3.11	Connectors with hydraulic coupling	41
3.12	International electrotechnical commission, IEC	42
3.13	Hydraulic circuit of two double acting cylinders	43
3.14	Schematic diagram of electrical circuit design	44
3.15	Actual connection on the virtual board for the electrical	45
	circuit flow	45
3.16	Schematic diagram of 3 limit switches used with 4 relays	46
	-	10
3.17	Actual electrical circuit design with the used of limit switches	47
3.18	Actual electrical circuit design with the used of	
	flexibility sensor	47
3.19	Schematic diagram of flexibility sensor used with 4 relays	48
	-	10
3.20	Pin definitions	49

FIGURE	TITLE	PAGE
3.21	Pin selections for input and output	49
3.22	Coding for the serial monitor	50
3.23	Serial monitor with the different position show cylinder extend	51
3.24	Serial monitor with the different position show cylinder retract	51
3.25	Coding to test flex sensor values for unbent and bent	52
3.26	Flex sensor 4.5" unbent value	52
3.27	Bent value of flex sensor	53
3.28	Initial parameter of double acting cylinder	54
3.29	Double acting cylinder extend at a distance of 5 cm with 20N force applied with its state diagram	55
3.30	The experimental test 1 set up	57
3.31	One double acting cylinder extend and retract	57
3.32	Experimental test 2 set up of two double acting cylinders with 3 limit switches	59
3.33	Extend and retract of two double acting cylinders at the same time	59
3.34	Flow control valve	60
3.35	Experimental test 2 set up of two double acting cylinders with 6 limit switches	61
3.36	Extend and retract of double acting cylinder with consequences	61

FIGURE	TITLE	PAGE
3.37	Overall set up of experimental test 4 of two double acting cylinders	63
3.38	One double acting cylinder extend while flex sensor 4.5" was bent	63
3.39	Two double acting cylinders extend while flex sensor 4.5" was bent	64
3.40	Bionic leg in standing position	65
3.41	Bionic leg in sit position	65
3.42	Bionic leg in partial stand position	66
3.43	Actual bionic leg in sit position	67
3.44	Actual bionic leg in stand position	67
3.45	Actual bionic leg in partial stand position	68
3.46	Accelerometer used on the bionic leg	68
3.47	Push Button, emergency push button and the red stick	69
3.48	Oil seal used for hydraulic coupling	69
4.1	Timing diagram of on hydraulic cylinder	75
4.2	Graph of Velocity against Pressure	76
4.3	Timing diagram of two double acting cylinder	78
4.4	Graph of Time Extend and Retract against Limit Switch Position	81
4.5	Graph of position of cylinders against the number of tests taken	84

FIGURE	TITLE	PAGE
4.6	Standing position of bionic leg with unknown label	88
4.7	Sit position of bionic leg with unknown label	89
4.8	Partial Stand position of bionic leg with label	90
4.9	Design of bionic leg whereby cable tie is used to tighten	
	double acting cylinder	92

LIST OF ABBREVIATIONS

Abbreviation

Description

VDHM	Variable displacement hydraulic motor
PID	Proportional, Integration, Derivative
SISO	Single Input Single Output
MIMO	Multiple Input Multiple Output
BRHL	Humanoid robot biped with heterogeneous legs
FCV	Flow Control Valve
PRR	Prismatic-revolute-revolute
GBO	Gravity balancing orthosis
COG	Centre of gravity
GA	Genetic Algorithm
HSS	Hydraulic servo system
VDHM	Variable (different) displacement hydraulic motor
DH	Denavit Hartenberg
LQR	Linear Quadratic Regulator
IEC	International Electrotechnical Commission

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Gantt Chart	99
В	Arduino Coding with the use of 3 limit switches	100
С	Arduino Coding with the use of 6 limit switches	106
D	Arduino Coding with the use of 6 limit switches	115
	whereby double acting cylinder extend accordingly	
E	Arduino coding of Flex Sensor with one double acting	124
	cylinder	
F	Arduino coding of Flex Sensor with two double acting	126
	cylinder	
G	Arduino coding of Accelerometer	128

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Project Background

Bionic legs had been developed few years recently. They are widely used for people whom had injury on their lower limb or loss of legs due to some accidents or sickness. This may cause inconvenient for them to walk in normal pattern and cause a lot of difficulty in their daily lifestyle. There are lots kind of application on the bionic leg either using pneumatic actuator or hydraulic actuator. Lots of studies had been done to improvise the development on bionic legs. The design on bionic leg itself are complex and require lots of engineering knowledge to enable the succeed in the project. In order to aid the elder people with difficulty to walk due to several illnesses or injury, the studies of bionic leg was introduced to aid them. Other than aid the patients, the previous research on the exoskeleton suit to let the soldier to carry heavy load for the running and climbing which include the armor or weapon. This may reduce the injuries on the lower limb and ease the soldier in term of their movement. The motion study of bionic leg using hydraulic motor was proposed to overcome and improve the situation for the real life application. This will improve their lifestyle and provide a comfortable condition for the elders whom faced difficulty on walking. This bionic leg which is used in rehabilitation should not be heavy weight and the material used for the design should be reliable so that it is not too heavy which may cause burden to them.

1.2 Motivation

Bionic which is also known as the bionical creativity engineering which is the method used to study and design of the engineering systems and modern. This bionic leg can be used in lots of field such as medical field which help patient in term of their walking gait during their physiotherapy. Patients are able to walk in a proper way with the aid of bionic legs using hydraulic actuator.

For instances, patient that had stroke may have difficulty to walk and statistic shown that there are nearly 1 in 6 people may have stroke in their lifetime. About 50, 000 Australians suffered these strokes and there are nearly 1000 strokes every week. For the global, there are over 420, 000 people living with stroke and this value may be predicted to be continue increase. This shown that the bionic leg is useful in medical field to aid these stroke patients and improve their daily lifestyle. [1]

For the injuries of sport, there are lot of sports activities can be categorized for different type of injuries. Sport such as football, soccer, basketball and baseball may have their own risk and injuries on different part of body. Statistics showed that sports such as basketball, football and soccer had the high risk of injuries on ankle and knee. Thus, this project of the bionic leg using hydraulic actuator able to aid these patients too. Figure 1.1 shows the bar chart of type of injury for different sports among age 25 to 40 years.[2]

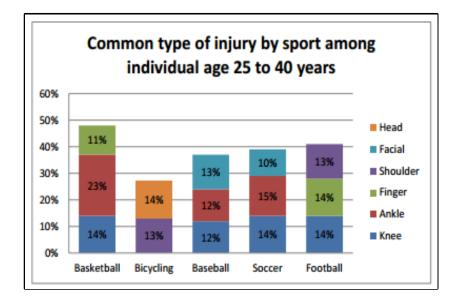


Figure 1.1 Type of injury by sport among age 25 to 40 years [2]

(C) Universiti Teknikal Malaysia Melaka

Figure 1.2 shows the number of injuries at the age of 25 to 40 years and by gender. We noticed that about nearly 80, 000 injured for the basketball sports and 93% of injuries were among men. For the soccer players, there were around 30,000 people injured and 83% of injuries are men whereas for the football, about 38,000 people injured and 88% were men. This statistic shows that how important on this research to aid those injuries especially on the lower limb and hydraulic actuator is used because hydraulic actuator able to withstand high load and accurate in position. [2]

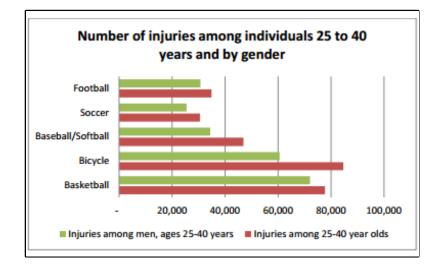


Figure 1.2: Number of injuries at the age of 25 to 40 years and by gender

1.3 Problem Statement

Most of the patient with several sicknesses such as stroke, injury on the lower limb and some elder people cannot walk in a proper way due to their joints' injury. These sicknesses may cause lots of inconvenient in their daily life especially when their lower limb cannot move well in a proper motion. Thus, this motion study with the used of bionic leg using hydraulic actuator is proposed to overcome the problem faced. These would benefit them and provide a more comfortable, reliable and convenient in their daily life. Besides, previous study on pneumatic actuator on the bionic legs had some limitation as well. In term of compression, the pneumatic cylinder is not always possible to get the uniform and constant piston speeds of compressed air. Besides, pneumatic cylinder only able to withstand 600 to 700KPa (6 to 7 bar) only compare with hydraulic cylinder which is able to withstand more load. Thus, in order to improve the efficiency of the pneumatic actuator, this project was proposed. Hydraulic cylinder can provide constant force and it is flexible whereby it can be stores under pressure for long periods. Hydraulic cylinder able to transfer huge amounts of power too. The hydraulic cylinder pressure can be controlled until the best pressure is selected depend on the load needed. For instance, pneumatic cylinder unable to withstand high load for the patient that had heavy weight and the pressure inside the pneumatic cylinder may not be constant flow which may cause the improper movement of the bionic leg. However, hydraulic cylinder may overcome this situation because the fluid flows in the hydraulic cylinder incompressible. Other than that, hydraulic cylinder is accurate for the control motion of extend and retract in term of its position.

1.4 Objective

- 1. To derive mathematical modelling of bionic leg in term of kinematic analysis.
- 2. To design the motion of bionic leg in application of hydraulic actuator for stand and sit position.
- 3. To analyze the overall performance in term of accuracy and reliability on the bionic leg using hydraulic actuator for rehabilitation application.

1.5 Scope

- 1. Derivation of mathematical modelling focus on the hydraulic actuator of one leg with two degree of freedom in term of kinematic analysis.
- 2. Stand and sit position with the use of two hydraulic actuator which include hip and knee parts on one leg is analyzed.
- 3. The analysis performance on hydraulic actuator done in experimental lab is discussed about time taken for hydraulic actuator to extend, retract and its velocity with different pressures, accuracy on hydraulic cylinder stroke position with the use

of limit switches and flex sensor as well as synchronization of two cylinder movement.

- 4. The analysis performance on accuracy done on hardware in term of the knee and hip rotation angle in stand and sit position with the used of limit switches.
- This project focus on using the FluidSIM as computer simulation on hydraulic cylinder with forces provided and Arduino UNO R3 as microcontroller to actuate the hydraulic cylinders.

1.6 Significant of study

This proposed motion study of bionic leg using hydraulic motor will provide lot of opportunity and beneficial for the people who in difficulty of the walking especially for the elder people or people who had injury on the lower limbs. This study may improve the previous study which using pneumatic actuator by replacing it with hydraulic actuator in order to obtain high accuracy performance for rehabilitation purpose.

1.7 Report outlines

Chapter 1 discussed about the project background regarding the related project, problem statement, objectives, scope of research and significant of study. Chapter 2 was the literature review with its theory and the related on the previous work of research or study. Comparison on the review was done too. Chapter 3 discussed about the research methodology. Flow chart, K-chart, derivation of mathematical modelling in term of kinematic analysis, experimental design and implementation on hardware were done. Chapter 4 was the result obtained with the discussion for the experimental design, comparison on derivation of mathematical modelling in term of kinematic analysis in theory with result for the implementation on hardware. Chapter 5 was the conclusion for this project with the recommendation.