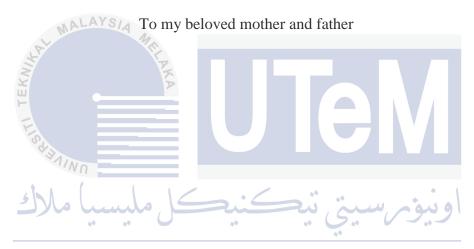
DESIGN VISION SYSTEM TO RECOGNIZE THE SCRIBED NUMBER ON THE WAFER

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering (Control, Instrument and Automation)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


"I hereby declare that I have read through this report entitle "Design of Vision System to Recognized the Scribed Number on the Wafer" and found that it has comply the partial fulfilment for awarding the degree of Bachelor of Electrical Engineering (Control,

Instrumentation and Automation)"	
Signature	UTeM
Supervisor's Name	: Mr.Lim Wee Teck
UNIVERSITI TEK	NIKAL MALAYSIA MELAKA
Date	·

I declare that this report entitle "Design of Vision System to Recognized the Scribed Number on the Wafer" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Date:.....

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENT

In preparing this report, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my main project supervisor, Mr. Lim Wee Teck, for encouragement, guidance critics and friendship. I am also very thankful to my panel Pn. Saleha Binti Mohamad Saleh and Dr. Lim Kim Chuan for their guidance, advices and motivation. Without their continued support and interest, this project would not have been same as presented here. My sincere appreciation also extends to all my classmate and others who have provided assistance at various occasions. Their views and tips are useful indeed. Lastly, I am

EKNIKAL MALAYSIA ME

ABSTRACT

This project is carry on as industrial implementation with Silterra. Sdn. Bhd. The company existing vision machine very expensive and the sample being scanned and stored in the database unable to modified or editable. The company requested to design vision system to replace the existing one. Therefore, the objective of the project is to design a vision system by using Matlab Simulink to recognize the scribed number on the wafer and store the detected scribed number in Excel file. Due to unable to physically test at the company, therefore the testing sample and hardware setup to mimic the environment at the production line should be considered. Besides that, the theory for techniques of Optical Character Recognition (OCR) and previous work related to project are studied and a concept of designing the vision system is carried out. To validate the result, the hardware setup to mimic the environment at the Silterra production line and testing sample both are considered. Besides being valid, a test should also be reliable, to ensure the vision system able to perform well, three experiments are carry out and each experiment are tested by 100 good and 100 not good testing samples which is to identify the best image size, median filter, and the matching percentage respectively. For the confirmation test, with the best identified parameter from previous experiment, to test others 100 good and 100 not good testing sample to the system in the existing of white and yellow color of light to ensure system can produce up to 95% of recognition, and this also can identify whether the final result will or will not be affected by color of light. Based on the result finding, the vision system design actually can have up to 100% of recognition, and cheaper price compare to the existing vision machine at the company. As the conclusion, hopefully the vision system design can really apply at Silterra Sdn. Bhd.

ABSTRAK

Projek ini berjalan seperti pelaksanaan industri dengan Silterra. Sdn. Bhd syarikat yang sedia ada mesin visi yang sangat mahal dan sampel scan dan disimpan dalam pangkalan data tidak dapat diubah atau disunting. Syarikat itu meminta untuk mereka bentuk sistem penglihatan untuk menggantikan yang sedia ada. Oleh itu, objektif projek ini adalah untuk merekabentuk satu sistem penglihatan dengan menggunakan Matlab Simulink untuk mengenali nombor tersebut scribed pada wafer dan menyimpan nombor scribed yang dikesan dalam fail Excel. Oleh kerana tidak dapat fizikal menguji di syarikat itu, oleh itu sampel ujian dan persediaan perkakasan untuk meniru alam sekitar di barisan pengeluaran perlu dipertimbangkan. Selain itu, teori untuk teknik Aksara Optik (OCR) dan kerja-kerja sebelum ini yang berkaitan dengan projek yang dikaji dan konsep mereka bentuk sistem penglihatan yang dijalankan. Untuk mengesahkan keputusan, persediaan perkakasan untuk meyerupai alam sekitar di barisan pengeluaran Silterra dan sampel ujian kedua-dua akan dipertimbangkan. Selain menjadi sah, ujian juga perlu boleh dipercayai, untuk memastikan sistem penglihatan yang dapat menunjukkan prestasi yang baik, tiga eksperimen yang menjalankan dan setiap uji kaji diuji oleh 100 baik dan 100 sampel ujian tidak baik iaitu untuk mengenal pasti saiz imej yang terbaik, iaitu median menapis, dan peratusan yang hampir sama masing-masing. Untuk ujian pengesahan, dengan parameter yang terbaik yang dikenal pasti daripada eksperimen sebelum ini, untuk menguji dengan mengunakan 100 baik dan 100 sampel ujian tidak baik kepada sistem yang sedia ada dalam keadaan yang bercahaya warna putih dan kuning untuk memastikan sistem boleh menghasilkan sehingga 95% daripada pengiktirafan, dan ini juga boleh mengenal pasti sama ada keputusan akhir akan atau tidak akan terjejas oleh warna cahaya. Berdasarkan penemuan hasil, reka bentuk sistem penglihatan sebenarnya boleh mempunyai sehingga 100% daripada pengiktirafan, dan harga lebih murah berbanding dengan mesin yang sedia ada di syarikat itu. Sebagai kesimpulan, diharapkan reka bentuk sistem penglihatan boleh diaplikasikan di Silterra Sdn. Bhd

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	ABSTRAK	iv
	TABLE OF CONTENT	vi
	LIST OF FIGURES	ix
	LIST OF TABLES	xii
1 TEKWHA	LIST OF APPENDICES INTRODUCTION	xiv 1
1 E	1.1 Motivation	2
di	1.1 Wortvarion 1.2 Problem Statement	3
	1.3 Objective	3
الاك	1.4 Scope	3
	/ERSITI TEKNIKAL MALAYSIA MELAKA LITERATURE REVIEW	4
	2.1 Journals Literature	4
	2.1.1 Automatic License Plate Recognition	6
	2.1.2 Recognition based on document	8
	2.1.3 Optical Character Recognition on Product Item	10
	2.2 Summary Previous Works Related To Project	11
	2.3 Journal Theory Literature	14
	2.3.1 Image Acquisition	15
	2.3.2 Preprocessing	19
	2.3.3 Segmentation	21
	2.3.4 Feature Extraction	23

	2.3.5 Recognition	24
	2.3.6 Post-processing	24
	2.4 Proposed Model After Studied the Previous Work Related	25
	to Project and Theory	
	2.4.1 Image Acquisition	25
	2.4.2 Preprocessing	26
	2.4.3 Segmentation and Character Extraction	26
	2.4.4 Recognition	29
	2.4.5 Post-processing	29
3	METHODOLOGY	30
	3.1 Test Validity and Reliability	31
	3.2 Validity	32
3	3.2.1 Hardware Setup	33
KN	3.2.2 Sample Preparation	35
TEX	3.3 Technique	38
E	3.3.1 Training Phase	43
	3.3.2 Matching Phase	53
4	3.4 Reliability of data	53
	3.4.1 Experiment 1	55
_	3.4.2 Experiment 2	56
UI	3.4.3 Experiment 3 L MALAYSIA MELAKA	57
	3.4.4 Confirmation Test	58
4	RESULT AND DISCUSSION	73
5	CONCLUSION AND RECOMMENDATION	74
REFERENC	CES	76
APPENDIC	ES	132

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	The existing tracking process in Silterra Sdn. Bhd.	2
1.2	After implement the proposed low cost vision system	2
2.1	Phases of OCR technique	14
2.2	Conventional preprocessing steps	15
2.3	Color Image	15
2.4	Grey image SIA	15
2.5	Original ship image	16
2.6	After low pass filtering image	16
2.7	Intensity Image	17
2.8	Noise applied	17
2.9	Median Filter applied	17
2.10	Method for binarization	17
2.11	Before Otsu' method	18
2.12	After Otsu' method	18
2.13	Before Optimal threshold	18
2.14	After Optimal threshold	18
2.15	(a) a skewed typewritten text; (b) skew corrected image	19
2.16	(a) Original pattern; (b) result of thinning	19
2.17	Strategies for character segmentation	20
2.18	Line segmentation	20
2.19	Word segmentation	21
2.20	Character Segmentation	21
2.21	Three feature extraction method	22
2.22	Before and after the edge detection	22
2.23	The difference size of zoning	23

2.24	After normalization in each difference size of character will become	23
	same size.	
2.25	The proposed OCR model to designing the vision system.	25
2.26	The sample 'ABC123'	25
2.27	The process in preprocessing.	26
2.28	The segmented character in 30x20 size image	26
2.29	Generic of Character Recognition Model	27
2.30	(a), (b), (c), (d), (e) shows that the white pixel left after match	28
	between the Sample and Template	
2.31	The process to recognize the character with the range of pixel	29
	difference	
3.1	The flow chart of project	31
3.2	Overview flow to carry out validity and reliability test	31
3.3	The hardware setup to mimic the environment in the Silterra Sdn.	32
	Bhd. manufacturing plant	
3.4	White color of light	33
3.5	Yellow color of light	33
3.6	The sample for creating the template	34
3.7	The two set of good testing sample(G sample)	34
3.8	The two set of not good testing sample(NG sample)	34
3.9	A group of not good(NG) sample printed on 80mg paper	35
3.10	A group of good(G) sample printed on 80mg paper	35
3.11	The proposed OCR technique to vision system.	36
3.12	The methodology for vision system design.	37
3.13	Simulink block diagram for template saving in training phase.	38
3.14	Simulink block diagram for recognition process in matching phase.	44
3.15	Simulink block for recognition of sample B when the sample is	49
	matching with template B.	
3.16	Simulink block for recognition of sample C when the sample is	49
	matching with template	
3.17	The flow to carry out the confirmation test.	58

4.8 The overall process of the project and data in Excel file.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	The OCR techniques used by Muhammad Sarfraz, Mohammed	5
	Jameel Ahmed, and Syed A. Ghazi to recognize the license plate.	
2.2	The OCR techniques used by Serkan Ozbay, and Ergun Ercelebi to	5
	recognize the license plate.	
2.3	The OCR techniques used by Kumar Parasuraman and P.Vasantha	6
	Kumar to recognize the license plate.	
2.4	The OCR techniques used by G.Vamvakas, B.Gatos, N.	7
	Stamatopoulos, and S.J.Perantonis to recognize the historical	
	documents.	
2.5	The OCR techniques used by Junaid Tariq, Umar Nauman, and	7
	Muhammad Umair Naru to recognize for name cards reading.	
2.6	The OCR techniques used by Teresa Vania Tjahja, Anto Satriyo	
	Nugroho, Nur Aziza Azis, Rose Maulidiyatul Hikmah, and James	
	Purnama to recognize for (IADR)	
2.7	The OCR techniques used by Ernest Valveny, and Antonio L'opez	9
	to recognize for numerical information in sachets with surgical	
	material	
2.8	The OCR techniques used by Huihuang. Zhao, and Zhaohua. Wu to	9
	recognize characters in surface mount technology (SMT) product	
2.9	The OCR techniques used by Rakhi P. Ghugardare, Sandip P.	10
	Narote, P. Mukherji, and Prathamesh M. Kulkarni to recognize	
	Temperature Monitoring System	
2.10	Summary of all the previous work related to the project and the	11
	proposed model that implement to the project after studied all the	
	previous work.	

2.11	The idea of apply OCR technique that get from the previous work related.	12
2.12	White pixel left after match with sample and template in size 30x20	28
3.1	The description for each process in training phase	39
3.2	The list of template need to save in the system. (Kindly refer to	443
	Appendix B).	
3.3	The description for each process.	45
3.4	The difference result between more and less than 90 white pixel left.	49
3.5	The list for declaration of character.	50
3.6	The white pixel left after match for character from 'A' to 'Z' and '0' to	54
	'9'	
3.7	The comparison between the percentages of recognition with	55
	difference image size	
3.8	The comparison between the percentages of recognition with	56
	difference median filter.	
3.9	The comparison between the percentages of recognition with	57
	difference matching percentages.	
4.1	The comparison between the percentages of recognition with	60
	difference image size.	
4.2	The list of character unable to read with difference image size	61
4.3	The comparison between the percentages of recognition with	62
	difference matrix of median filter.	
4.4	The list of character unable to read and character wrong recognition	63
	with difference matrix of median filter	
4.5	The comparison between the image with different matrix of median	64
	filter.	
4.6	The comparison between the percentages of recognition with	66
	difference matching percentage.	
4.7	The list of character unable to read and character wrong recognition	67
	with difference matric of median filter.	

71

4.8	The comparison between the percentages of recognition after	68
	adjustment of white pixel value left at character C, F, and 3 in white	
	light condition.	
4.9	The comparison between the percentages of recognition after	69
	adjustment of white pixel value left at character C, F, and 3 in yellow	
	light condition.	

The expenses for sorting machine design.

4.10

LIST OF APPENDICES

APPENDICES	TITLE	PAGE			
A1	100 good(G) testing sample.				
A2	100 not good(NG) testing sample.				
B1	The original template with white color light.	81			
B2	The original template with yellow color light.	83			
В3	The template with different image size and median filter with	85			
	white color light stored in database of the vision system.				
B4	The template with different image size and median filter with	101			
M N	yellow color light stored in database of the vision system.				
C	White pixel value left after match for all the character and	118			
Too.	alphabet.				
D	The result for the comparison between the percentages of	119			
5/1	recognition after matching with 100 good(G) sample to the				
	template with difference image size when the 3x3 median				
UNIN	filter and 86% of matching percentage is fixed and in white light condition.				
Е	The result for the comparison between the percentages of	121			
	recognition after matching with 100 good(G) sample to the				
	template with difference matrix of median filter when the				
	30x20 of image size and 86% of matching percentage is fixed				
	and in white light condition.				
F1	The result for the comparison between the percentages of	123			
	recognition after matching with 100 good(G) sample to the				
	template with difference matching percentage when the 30x20				
	of image size and 3x3 of median filter is fixed and in white				
	light condition.				

F2	The result for the comparison between the percentages of	125
	recognition after matching with 100 not good(NG) sample to	
	the template with difference matching percentage when the	
	30x20 of image size and 3x3 of median filter is fixed and in	
	white light condition.	
G1	The comparison between the percentages of recognition after	127
	adjustment of white pixel value left at character C, F, and 3 in	
	white light condition with the three best parameter for 100	
	good(G) and 100 not good(NG) testing sample.	
G2	The comparison between the percentages of recognition after	129
	adjustment of white pixel value left at character C, F, and 3 in	
	yellow light condition with the three best parameter for 100	
	good(G) and 100 not good(NG) testing sample.	
Н	Gantt Chart	131
I	Photo visiting Silterra Company	132
	اويوسيني تتكنيكل ملسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

This chapter will discuss the background of machine vision with Optical Character Recognition; problem statement, objective and scope of the project.

1.1 Motivation

Machine vision provided important advantage in term of cost and precision. It has been proven successful in controlled environment such as factory production line to ensure repeatability and reproducibility in good quality control, and can run continuously without rest.

However, the existing sorting machine in Silterra manufacturing plant is used as a wafer tracking process to scan and sort the wafer base on the scribed number and this can help the workers to determine the wafer position. Unfortunately, the sorting machine is very expensive (around RM600 000). Therefore, this causes the limited number of sorting machine available in the production line.

Furthermore, the large quantities of wafer produced in short period with good quality which can saving cost and time. Due to limited number of sorting machine available in the production line, this will take a long time when large quantities of wafer need to process, and if any system breakdown will causes loss to the company in both cost and time. Figure 1.1 shows the existing tracking process in Silterra Sdn. Bhd.

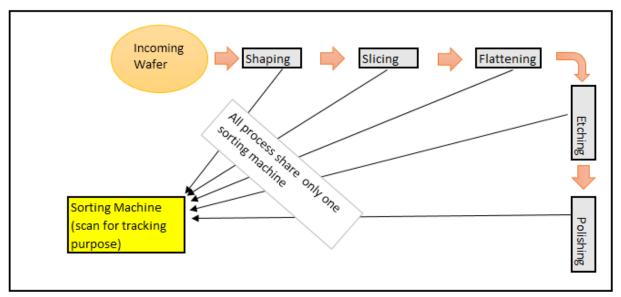


Figure 1.1: The existing tracking process in Silterra Sdn. Bhd.

MALAYSIA

For this reason, a low cost vision system design with Optical Character Recognition is created to increase the number of sorting machine in industry, especially dealing with high volume of wafer produced. Figure 1.2 shows after implement the low cost vision system design.

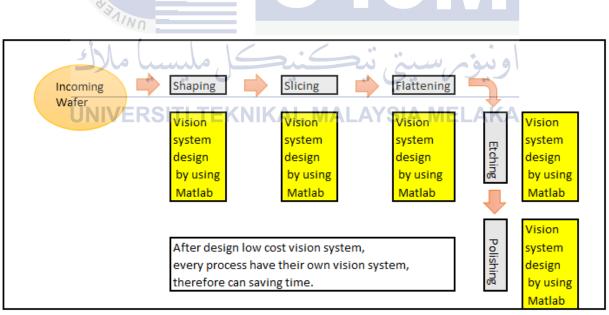


Figure 1.2: After implement the proposed low cost vision system

1.2 Problem Statement

As a semiconductor manufacturing company, Silterra Sdn. Bhd produces microchip and the wafer processing are one of the existing process in the production. The existing sorting machine are used to scan the scribed number on wafer and store data to an Excel file for wafer tracking process to determine the position of the wafer. But the machine is very expensive (around RM 600,000) and causes limited number of machine available in the manufacturing plant, therefore the time taken of the scanning process will be long and if any breakdown will directly cost the company in both money and time.

1.3 ObjectiveThe aim of this project are:1) To design a vision system to recognize the scribed number on the wafer.

- 2) To store the detected scribed number to Excel file.

1.4 Scope UNIVERSITI TEKNIKAL MALAYSIA MEL

The scope of this project are the vision system design by using Matlab Simulink and low cost Logitech Webcam HD C615 (RM 200) to captured the image. Due to unable to get the real wafer sample, therefore to prepare the printed sample based on standard SME M12/M13. Required percentage of recognition up to 95%. To mimic the environment illuminated by white and yellow light. The prototype with the size of 18cm width x10.5cm height and the distance between the webcam and sample is 5cm.

CHAPTER 2

LITERATURE SURVEY AND PROJECT BACKGROUND

This chapter discuss the summary of previous work related to the project, the theory of OCR technique and proposed model of the vision system design.

2.1 Journal Literature

The comparison between all the previous works related to project such as Optical Character Recognition for Automatic License Plate Recognition, Optical Character Recognition on document reading, and Optical Character Recognition on surface product item. All this previous work are very helpful by giving a lot of ideas and knowledge which can implement and apply to the project.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2.1.1 Automatic License Plate Recognition

In 2003, Muhammad Sarfraz, Mohammed Jameel Ahmed, and Syed A. Ghazi et al.[1] presented the license plate recognition methods as shown in Table 2.1. Recognition rate proved to be 96.22% for the extraction of plate region, 94.04% for the segmentation of the characters and 95.24% for the recognition unit accurate, giving the overall system performance 95% recognition rate. This approach having some problem in extracting the plate, diplomatic cars and military vehicles, are not addressed since they are rarely seen. Detection only for white, black, red, and green color plate or numbers.

Table 2.1: The OCR techniques used by Muhammad Sarfraz, Mohammed Jameel Ahmed, and
Syed A. Ghazi to recognize the license plate.

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquisition	processing		Extraction		processing
Digital			Vertical edge	Normalization,	
camera			detection by	Template	
			sobel	matching	
			algorithm,		
			Filtering by		
			seed filling		
			algorithm,		
	MALAYSIA	11	Vertical Edge		
NA		THE RESERVE TO THE RE	Matching		

In 2005, Serkan Ozbay, and Ergun Ercelebi et al.[2] recognized OCR techniques as shown in Table 2.2. Final output it is proved to be 97.6% for the extraction of plate region, 96% for the segmentation of the characters and 98.8% for the recognition unit accurate, giving the overall system performance 92.57% recognition rate. This system is designed for the identification of Turkish license plates only.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 2.2: The OCR techniques used by Serkan Ozbay, and Ergun Ercelebi to recognize the license plate.

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquisition	processing		Extraction		processing
		Smearing	Edge detection	Template	
		algorithms,	algorithms,	matching	
		Filtering,	Smearing		
		Morphological	algorithms		
		algorithms			

In 2010, Kumar Parasuraman and P.Vasantha Kumar et al. [3] proposed an algorithm consists of three major parts as shown in Table 2.3. The overall system performance 98% recognition rate. The proposed method is mainly designed for real-time Malaysian license plate, and can be readily extended to cope with license plates of other countries, especially those using Latin characters.

Table 2.3: The OCR techniques used by Kumar Parasuraman and P.Vasantha Kumar to recognize the license plate.

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquisition	processing		Extraction		processing
	Thinning	Vertical and	Edge detection	Chain code	
	MALAYSIA	horizontal	algorithm,		
3		projection	Vertical		
TEKN	•	XA	projection		

2.1.2 Optical Character Recognition on document reading

In 2010, G. Vamvakas, B. Gatos, N. Stamatopoulos, and S. J. Perantonis et al. [4] proposed a methodology for recognizing historical documents as shown in Table 2.4. The overall system performance 98.4% of recognition for the test line detection rate, 98% for the text line recognition accuracy and 97% for the word segmentation detection rate, 90.3% for word segmentation recognition accuracy, giving the overall system performance 95.8% recognition rate. This methodology can be applied to either machine printed or handwritten documents. It requires neither any knowledge of the fonts nor the existence of standard database because it can adjust depending on the type of documents that want to process.

Table 2.4: The OCR techniques used by G.Vamvakas, B.Gatos, N. Stamatopoulos, and S.J.Perantonis to recognize the historical documents.

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquis	processing		Extraction		processing
ition					
	Binarization	Text line	Normalization,	Radial basis	
	and	segmentation,	Zoning, Upper	function	
	Enhancement	Word and	and lower	(RBF) kernel	
		character	character profiles,		
		segmentation	Left and right		
	MALAY	SIA	character profiles		

In 2010, Junaid Tariq, Umar Nauman, and Muhammad Umair Naru et al. [5] presented a simple, efficient, and less costly approach to construct OCR for cards reading or any document that has fix font size and style are shown in Table 2.5. Line extraction accuracy is 100%. Character extraction accuracy is 100%. The accuracy result of both the hard matching and soft matching (2 value range) also 100% but in soft matching (4 value matching) is 96.15%. It having some limitation like to use soft matching. For example: character explanation mark "!" might be matched with character capital "L" or small letter "I".

Table 2.5: The OCR techniques used by Junaid Tariq, Umar Nauman, and Muhammad Umair Naru to recognize for name cards reading.

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquis	processing		Extraction		processing
ition					
scanner	Binarization	Line	"height", "width",	Hard	
		segmentation,	and "checksum"	matching, Soft	
		Character		matching	
		segmentation			

In 2011, Teresa Vania Tjahja, Anto Satriyo Nugroho, Nur Aziza Azis, Rose Maulidiyatul Hikmah, and James Purnama et al. [6] proposed Indonesian Automated Document Reader (IADR) is an assistive system for Indonesian citizens with visual impairment, which converts textual information on papers to corresponding speech that are used as shown in Table 2.6. The average accuracy for text segmentation result without recursion is 98%, for text segmentation result with recursion is 100%, and for text segmentation result with color images is 96%. Besides that, the recognition rate for character recognition result for letters and numbers is 98.31%, for character recognition result for symbols and punctuation marks is 95%, and giving 95% in word correction result. The proposed algorithm for grayscale images also serves as the basis of text segmentation algorithm for color images.

Table 2.6: The OCR techniques used by Teresa Vania Tjahja, Anto Satriyo Nugroho, Nur Aziza Azis, Rose Maulidiyatul Hikmah, and James Purnama to recognize for (IADR)

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquis	processing		Extraction		processing
ition	1182				
	Noise 1/Nn	Text and	Normalization,	Multilayer	lexicon-
	removal,	character	histogram	Perceptron	based,
	Binarization	Segmentation	analysis	(MLP) neural	Longest
	(Otsu's	TI TEKNIK	AL MALAYS	network	Common
	thresholding)	III IENNIK/	AL WALAYS	IA WIELANA	Subsequence
					(LCS)

2.1.3 Optical Character Recognition on surface product item

In 2003, Ernest Valveny, and Antonio L´opez et al. [7] proposed an application of OCR techniques for quality control in industrial production which is to verify the correct printing of numerical information in sachets with surgical material. OCR technique used as shown in Table 2.7. The percentage of rejected sachets due to printing errors has been 0.22%. There are only three different numerals, which is the minimal difference between two reference numbers.

Moreover different numerals are 3 and 8, 0 and 3, and 9 and 6, some of which could be easily confused.

Table 2.7: The OCR techniques used by Ernest Valveny, and Antonio L´opez to recognize for numerical information in sachets with surgical material

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquisition	processing		Extraction		processing
Webcam	Skew	Connected	Zoning	Template	
	correction,	components		matching	
	Binarization				
	(Optimal				
	threshold),				
N N	Thinning	LAX TOTAL			

In 2010, Huihuang. Zhao, and Zhaohua. Wu et al. [8] presented an approach to recognizing characters in surface mount technology (SMT) product. The process of SMT product character recognition based on BP neural network can be described as shown in Table 2.8. Experimental results indicate the proposed character recognition can obtain satisfactory character-recognition rate and the recognition rate reached over by 98.6%.

TEA

Table 2.8: The OCR techniques used by Huihuang. Zhao, and Zhaohua. Wu to recognize characters in surface mount technology (SMT) product

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquisition	processing		Extraction		processing
Image	Binarization	Low pass	Character		BP neural
sampling		filter, Median	segmentation,		network
equipment		filter	Character		
			normalization,		
			Character		
			compact		

In 2009, Rakhi P. Ghugardare, Sandip P. Narote, P. Mukherji, and Prathamesh M. Kulkarni et al. [9] a generalized module for automatic calibration of any measuring instruments (e.g. Temperature Monitoring System) using optical character recognition approach that are shown in Table 2.9. Final output is proved to be 92% for the recognition accuracy in digital multi-meter, and 100% for temperature measuring instrument. The current restrictions are: The distance between the camera and display, the skew in the image and these should be dealt with if required depending on the factory environment.

Table 2.9: The OCR techniques used by Rakhi P. Ghugardare, Sandip P. Narote, P. Mukherji, and Prathamesh M. Kulkarni to recognize Temperature Monitoring System

Image	Pre-	Segmentation	Feature	Recognition	Post-
Acquisition	processing		Extraction		processing
4		THE PARTY OF THE P			
IK	Binarization	Image	Statistical	Template	
F		scissoring	extraction	matching	
		algorithm,			
	ANINU	Character			
5	Ma ()	normalization		ا منین ا	
	* *				

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

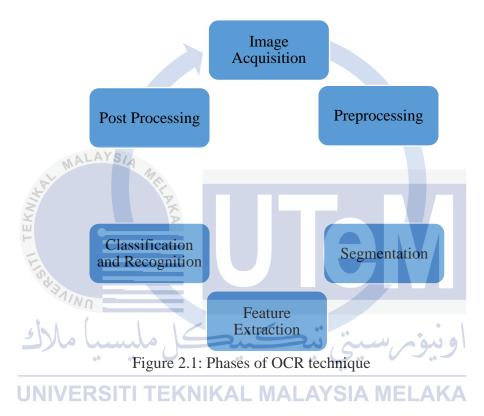
2.2 Summary Previous Works Related to Project

To analysis the OCR technique used by all the researcher as the reference which can apply and use the techniques to project. Table 2.10 show the summary of all the previous work related to the project and the proposed model that implement to the project after studied. The proposed method is obtain by referring to the OCR techniques that majority researcher are used and related to the requirement from the Silterra. Sdn. Bhd.

Table 2.10: The summary of all the previous work related to the project and the proposed model that implement to the project after

Post-processing Longest Common exicon-based, Subsequence LCS) Multilayer Perceptron Function (RBF) kernel (MLP) neural network Template Matching Template Matching Template Matching Recognition Femplate matching **Femplate matching** BP neural network Hard matching, Normalization, off matching Radial Basis Chain code Vertical Edge Detection Vertical Edge Matching Feature Extraction Filtering by seed filling 'height", "width", and Statistaical Extraction Smearing algorithms by sobel algorithm, Vertical projection his togram analysis character profiles, character profiles Upper and lower Edge detection Edge detection Normalization, Normalization, Left and right checksum" algorithms, algorithm, algorithm, Zoning, Zoning Zoning TEKNIK studied all the previous work. Character Segmentation, Character Segmentation, Character Normalization, Character Normalization Character Normalization character segmentation Character compact and connected components Segmentation Horizontal projection Smearing algorithms. Line Segmentation, Text and character Image Scissoring **Morphological** segmentation, Segmentation Segmentation Vertical and algorithms Character Algorithm, Text Line word and Thinning, Filte ring, Grey processing, Median Filter Preprocessing Ske w correction, Binarization and Low Pass Filter, Grey processing Noise removal, Enhancement Median Filter, Binarization, Binarization, Binarization, Binarization Binarization Binarization Thinning 00 Image Acquisition digital camera image sampling equipment Webcam Webcam Automatic License Plate of Measuring Instrument 2013 Design of Vision System to Recognized the Scribed Number on the Wafer Recursive Text Segment Segment Display Images 2010 Automatic License Plate SMT Product Character OCR System for Seven Indonesian Automated Recognition Based on for Quality Control of Numeral Recognition Historical Document Recognition(A State Invariant Automatic for Color Image for **BP** Neural Network Distance and Color Document Reader 2010 A Complete OCR Methodology for Surgical Sachets Language OCR 2010 α-Soft: English of Art Review) License Plate Journal Title Recognition Recognition 2003 2005 2011 2003 2010 2009 Year **Car Plate Recognition Document Recognition Character Product Recognition** Proposed mode Based on the previous work related, the proposed model that implement to vision system design to recognize the scribed number on the wafer as shown in Table 2.11:

Table 2.11: The idea of apply OCR technique that get from the previous work related.

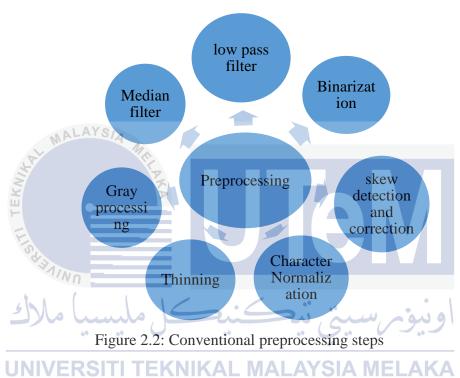

	oply OCR technique that get from the previous work related.
OCR technique	nat decide to implement to the vision system design Description
Image Aquisition	Webcam
MALAYS/4	Due to the hardware setup, the device should be hang on top of the testing sample to scan the image, therefore require less weight and small device. By choosing webcam because have less weight and smaller size compare to cheap price camera.
LA	
Preprocessing	Based on the requirement from the company, the incoming wafer are color image. Therefore, according to the previous work, the researcher using gray processing to convert the color image to gray image for easier visualization of detail. Median filter
UNIVERSITI	The vision system design by choosing the median filter rather than low pass filter because median filter is the method effective method that can suppress isolated noise without blurring sharp edges whereas for loss pass filter can reduce noise but it will the blurs image Binarization
	Dinarization
	There are most of the previous researcher used binarization to convert the gray image to black and white image
	The skew correction and thinning are not suitable use in this vision system design, because the incoming wafer sample all are in well print condition, therefore unable to use the correction method.

Segmentation	Character segmentation and normalization		
	 The character are then segmented to separate each character and normalize to same size, this is easier for further recognition. Text and line segmentation usually use to segment the character on document which consist a sentences and paragraph. 		
Feature Extraction	Zoning method		
	Is the simple and easier method compare to others		
Recognition	Template Matching		
TAL MALAYSIA	 Based on the scope of the project, the vision system design by using Matlab Simulink, therefore the Multilayer Perceptron neural network is not suitable for this system. Template matching is the one of the simple and easier to understand method compare to radial basic function kernel. 		

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2.3 Journal Theory Literature

The theory discussed is based on the OCR technique normally used from each previous works related. Optical Character Recognition means a technique of recognition of machine printed or hand written text by computer and then its conversion to an editable form as per the requirement. The various phases of OCR technique are shown in Figure 2.1. [10]



2.3.1 Image Acquisition

The recognition system obtains a scanned image as an input image and have a particular format such as JPEG which can be obtain by a scanner, webcam or any other suitable digital input device [11]. OCR can be divided into two, which is online recognition and offline recognition. The online recognition is linked with dynamic application where need to recognized result simultaneously or within a fraction of time whereas the offline recognition is linked with static application which means entire document first scanned and then processed to recognize. [12].

2.3.2 Preprocessing

After document scanned, a sequence of data preprocessing operations are normally applied to the images of the documents in order to put them in a suitable format ready for next operation. Preprocessing are usually specialized image processing operations that transform the image into another with reduced noise and variation to enhance the visual appearance of images. The conventional preprocessing step as shown in Figure 2.2. [13]

Grey Processing

Convert the color image into a grey image. The gray-scale image contains all the details of information, it is easy for understanding and has not ambiguities typical of black-and-white images. In a gray scale image a particular pixel takes an intensity value lying between 0 to 255 where as a binary image it could take only two values either 0 or 1. Figure 2.3 and Figure 2.4 show the color image and grey image respectively. [14]

Low Pass Filter

Low-pass filter are used for image smoothing and noise reduction. The effect is an averaging of current pixel with the value of its neighbors, most of the time blurring the output image and just allow to pass the low frequency of the image. However, low pass filter can reduce noise but it will the blurs image. The worse the noise, the image need to blur to remove the noise. In Figure 2.5 and Figure 2.6 show the ship image before and after the low pass filter is applied respectively.[15]

Figure 2.5: Original ship image [16]

Figure 2.6: After low pass filtering image [16]

Median Filter

Median filtering is a very important and widely used technique of filtering and best known for its excellent noise reduction ability. During filtering it keeps the edges while removing the noise. This makes the image not to blur as other smoothening methods. Figure 2.7 shows the original image and for Figure 2.8 the image is first exposed to a noise then applied to the median filtering technique to remove the noise. The resulting image noise free is in Figure 2.9 has a better view and, as can be seen.[17]

Figure 2.7:Intensity Image[18]

Figure 2.8: Noise applied [18]

Figure 2.9:Median Filter applied[18]

UTeM

Binarization

Binarization is the processes of translating a gray-scale image to a binary image by choosing threshold selection method to categorize the pixels of an image, if above the threshold value is classified as white and if below than the threshold value is classified as black. Binarization is classified in otsu' threshold and optimal threshold as shown in Figure 2.10. [19]

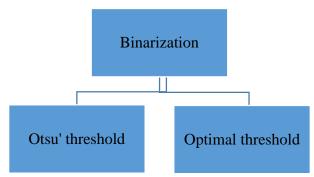


Figure 2.10: Method for binarization

Otsu's Threshold

Convert intensity images to binary images. Otsu method is one of the best automatic thresholding methods. The basic principle in Otsu method is to split the image into two classes which are the objects and the background. For Figure 2.11 and Figure 2.12 is show the image before and after the otsu' threshold is applied respectively. [19]

Figure 2.11: Before Otsu' method [19]

Figure 2.12: After Otsu' method [19]

Optimal Threshold

Optimal threshold should near the cross where the object and the background intersect, the probability of occurrence at the threshold value should divide into two parts. Its half belongs to object and half belongs to background. For Figure 2.13 and Figure 2.14 shows the image before and after the optimal threshold is applied respectively. [19]

Figure 2.13: Before Optimal threshold [19]

Figure 2.14: After Optimal threshold[19]

Skew Detection and Correction

Document skew often occurs during document scanning or copying. However, and it should be eliminated because it dramatically reduces the accuracy of the subsequent processes. Skew detection necessary for aligning a document image before further processing. In Figure 2.15(a) and (b) shown the before and after the skew correction is applied respectively. [20]

y-critical system istinction can be tes. The mission haviour while the

y-critical system istinction can be tes. The mission haviour while the y controller when

Figure 2.15(a): Before skew correction [20]

Figure 2.15(b): After skew correction [20]

Thinning

Thinning is the process of peeling off a pattern as many pixels as possible without affecting the general shape of the pattern. In other words, after pixels have been peeled off, the pattern can still be recognized as shown in Figure 2.16 (a) and (b).[20]

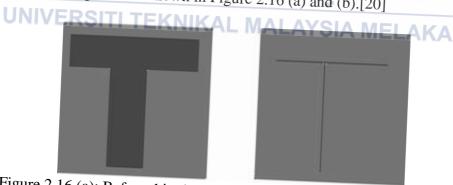
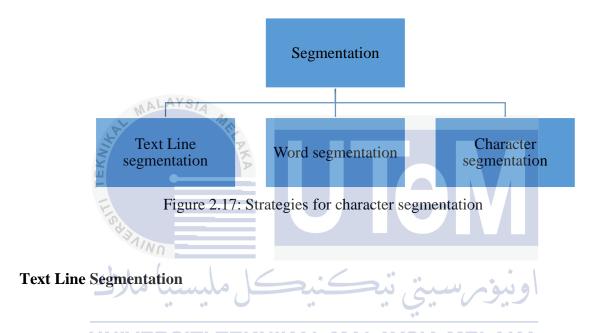



Figure 2.16 (a): Before thinning [20] Figure 2.16(b): After thinning [20]

2.3.3 Segmentation

After the preprocessing stage, many OCR systems isolate the individual characters or strokes before recognizing them. It is one of the hardest, crucial, and time-consuming phases. It represents the main challenge in many character recognition systems, even more than the recognition process itself. It is considered as the main source of recognition errors. A poor segmentation process produces misrecognition or rejection. The strategies for segmentation shown as Figure 2.17.[21]

To separate each sentences by text line segmentation. If the script is composed by a type-machine therefore the font size will be uniform and the text line are almost same height provided that script is written in specific font size.[21] Between two text lines there is a narrow horizontal band with either no pixel or very few pixels as shown in Figure 2.18.

समाज की ऐसी व्यवस्था, जिसमें कुछ लोग मौज करें और अधिक लोग पीसें और खपें, कभी सुखद नहीं हो सकती। पूँजी और शिक्षा, जिसे मैं पूँजी ही का एक रूप समझता हूँ, इनका क़िला जितनी जल्द टूट जाय, उतना ही अच्छा है। जिन्हें पेट की रोटी मयस्सर नहीं, उनके अफ़सर और नियोजक दस-दस पाँच-

Figure 2.18: Line Segmentation [22]

Word Segmentation

From the extracted text line words get separated. Word segmentation aims to determination individual word in a script document. This is done based on the boundary of each word. [21] The boundary of each word is identified and word separation is done according to it as shown in Figure 2.19.

Figure 2.19: Word Segmentation [23]

Character Segmentation

Character segmentation is used to isolate and separate the character. During the process, check for full white pixel column at starting and ending point of the isolated character. Initial character is identified when any red pixel is scanned in the column. Scan continuous until another white pixel column is identified. [21]Every separate image of isolated character is now completely void on four sides as shown in Figure 2.20.

Figure 2.20: Character Segmentation [24]

2.3.4 Feature Extraction

Feature extraction is one of the most difficult and important problems of recognition and an important step in achieving good performance of character recognition system. Figure 2.21 shows that the three feature extraction method. [24]

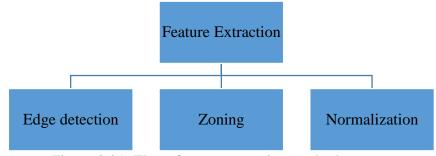


Figure 2.21: Three feature extraction method

Edge Detection

Edge detection is to produce a line drawing of a scene from an image of that scene and also is important features can be extracted from the edges of an image. [24] A set of connected curves that indicate the boundaries of objects and try to find out the edges in an image as shown in Figure 2.22 (a) and (b) shows the before and after the edge detection.

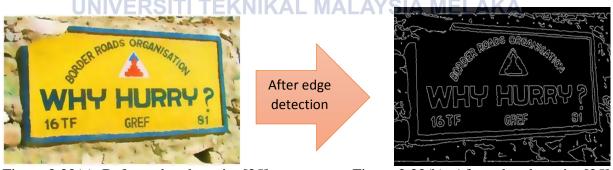


Figure 2.22(a): Before edge detection[25]

Figure 2.22(b): After edge detection[25]

Zoning

Character matrix is divided into small portions or zones. The densities of pixels in each zone are calculated and used as features. Figure 2.23 shows that the difference size of image after zoning.

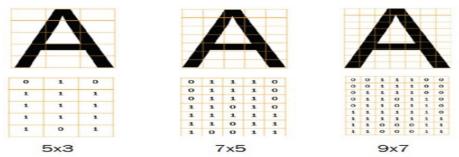


Figure 2.23: The difference size of image after zoning [26]

Character Normalization

The results of segmentation process provides isolated characters which are ready to pass through feature extraction stage, thus the isolated characters are reduced to a specific size depending on the methods used. The goal for character normalization is to reduce the within-class variation of the shapes of the characters/digits in order to facilitate feature extraction process and also improve their classification accuracy. After normalization in each difference size of character will become same size. Figure 2.24 (a) and (b) shows that the before and after the character normalization. [27]

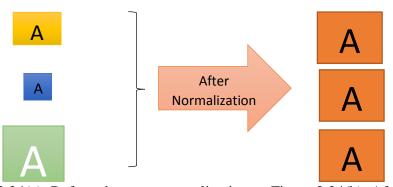


Figure 2.24(a): Before character normalization Figure 2.24(b): After character normalization

2.3.5 Classification

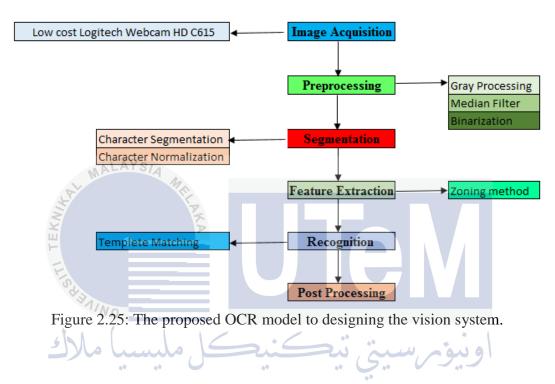
Classification is usually done by comparing the feature vectors corresponding to the input character.

Template Matching

MALAYSIA

Template matching and correlation methods basically compare a pattern pixel by-pixel to a set of pattern templates; the pattern is considered to belong to the class of the template to which it is most similar. [28]

A gray-level or binary input character is directly compared to a standard set of stored prototypes. The matching techniques can be as simple as one-to-one comparison or as complex as decision tree analysis in which only selected pixels are tested. Although direct matching method is intuitive and very fast to execute, the recognition rate of this method is very sensitive to noise. [28]



Post-processing stage is the final stage of the proposed recognition system. It prints the corresponding recognized characters in the structured text form by calculating equivalent ASCII value using recognition index of the test samples. [29]

TEKNIKAL MALAYSIA MELAKA

2.4 Proposed Model After Studied the Previous Work Related to Project and Theory

Furthermore, after studied all the previous work related to project and the theory of OCR techniques that often used by the researcher, then comes out the proposed OCR model for design vision system to detect the scribed number on the wafer as shown in Figure 2.25.

2.4.1 Image Acquisition ITI TEKNIKAL MALAYSIA MEL

By using the webcam to scan the sample image as shown in Figure 2.26.

Figure 2.26: The sample 'ABC123' with noise

2.4.2 Preprocessing

The first step to read the script number on wafer in image processing is to convert the color image into a grey image. After convert to grey image the median filter is apply as noise remover to make the image become clearer. Binarization process converts a gray scale image into a binary image. Figure 2.27 shows the process of preprocessing.

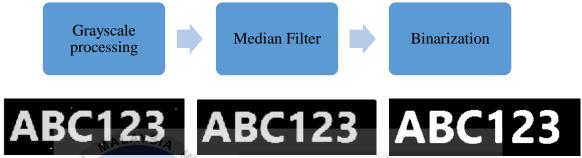


Figure 2.27: The process in preprocessing.

2.4.3 Segmentation and Character Extraction

In the segmentation stage, an image of sequence characters is decomposed into sub-images of individual character. In the proposed system, the pre-processed input image is segmented into isolated characters by assigning a number to each character using a labelling process. Each individual character is uniformly resized(Character Normalization) as shown in Figure 2.28.

Figure 2.28: The segmented character in 30x20 size image

2.4.4 Recognition

Due to the script number on the wafer is well printed and the font type and font size is fix, then the matching percentage and the recognition rate must be very high and the template matching method for recognition is suitable for the application. In the character recognition model in Figure 2.29 shows that at training section the template is created in system database for matching purpose. When the input image is scanned and go through the several process and need to recognize the character then the template matching involved to identify and recognized the character.

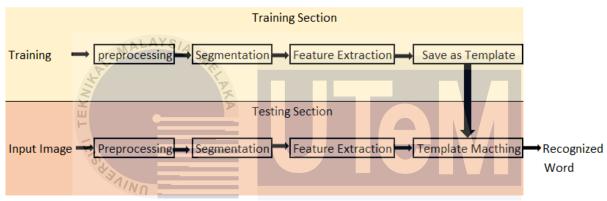


Figure 2.29: Generic of Character Recognition Model [29]

In recognition stage, the recognition process as shown in Figure 2.30. From the matching process, can obviously notice that if less white pixel left means the sample and template are same character or match with the template whereas if sample matching with difference template the more of the white pixel left means the sample is not match with the template or different to the template.

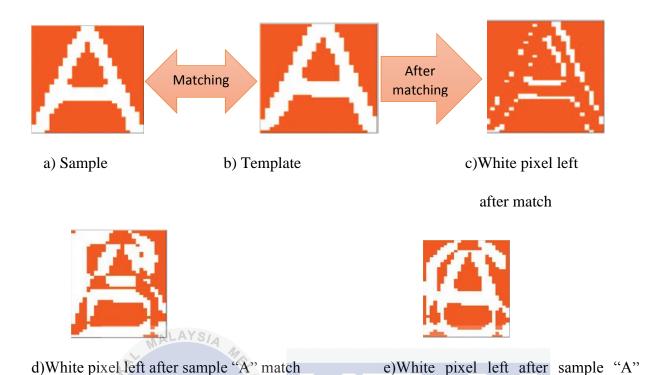


Figure 2.30: (a), (b), (c), (d), (e) shows that the white pixel left after match between Sample and the Template [26]

with template "C"

match with template "B"

According to the Ivy Tan [26], the diagonal of the Table 2.11 is taken out and find the maximum white pixel left after match. The sample 'A' has the less white pixel left (70) after matching with template 'A' compared to match with others template such as 398, 398, 323, 345, and 284.

Table 2.12: White pixel left after match with sample and template in size 30x20. [26]

sample						
Template	Α	В	С	1	2	3
Α	70	398	398	323	345	284
В	432	74	363	334	333	370
С	416	256	80	199	234	334
1	287	378	308	75	378	299
2	300	376	265	267	76	377
3	298	254	245	289	178	75

Hence, calculation for the percentage of recognition:

%76.08 =

Matching Percentage =
$$\frac{Size \text{ of } image - White pixel left after match}{Size \text{ of } image}$$
Percentage of Matching =
$$\frac{(30x20) - (80)}{(30x20)}x100\%$$
Percentage of Matching =
$$\frac{(30x20) - (80)}{(000)}x100\%$$

This is the minimum percentage of character matching in 30x20 image size. Therefore the system can only recognize the character when less than 80 white pixel value left after match.

The process to recognize the character with the range of pixel difference as shown Figure 2.31. All the alphabets and numbers have the range of pixel difference respectively. For this example, the white pixel left after matching for character 'A' is 70, and the pixel difference is set a range less than 75. Therefore, only the white pixel left after matching less than 75 then the character 'A' will display 'A' if not the system not to read. The large white pixel left because of the sample and template not match whereas the smaller the white pixel left because of sample and template is match.

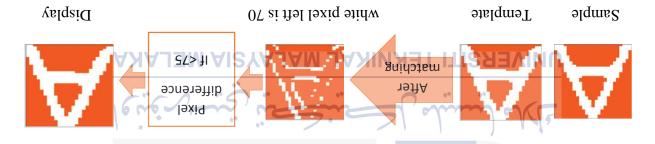
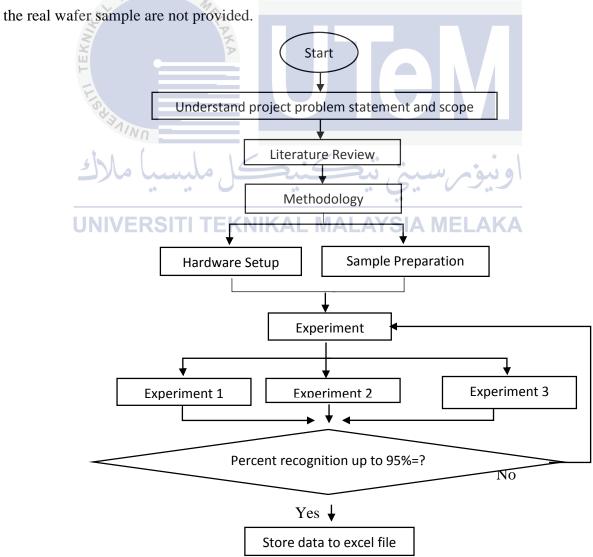


Figure 2.31: The process to recognize the character with the range of pixel difference. [26]


2.4.5 Post processing

Store the detected character to Excel file by using the related coding. Due to Matlab workspace unable to display character, therefore need to insert alphabet to represent the character. For example, 11 represent character A, 12 represent character B and etc. After that, by using Lookup Function in Excel to convert and display the actual character in the Excel file.

CHAPTER 3

RESEARCH METHODOLOGY

The methodology of this project is described and represented in a flow chart as shown in Figure 3.1. The methodology declare and explain on how the validity and reliability test to produce high percentage of recognition. In mechanical part of the hardware implementation, the prototype to mimic the environment at Silterra is done and the testing sample are created due to

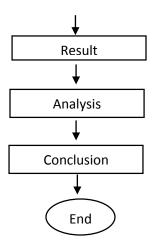


Figure 3.1: The flow chart of project

3.1 Test Validity and Reliability

MALAYSIA

The two most important and fundamental characteristics of any measurement procedure are reliability and validity. Whenever a test is used as part of the data collection process, the validity and reliability of that test is important. After all, everyone relying on the results to show support or a lack of support for our theory and if the data collection methods are erroneous, the data analyze also will be erroneous. The overview flow to carry out validity and reliability test as shown in Figure 3.2.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

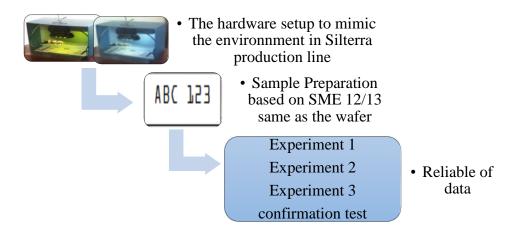


Figure 3.2: Overview flow to carry out validity and reliability test

3.2 Validity

Validity is an indicator of how much meaning and trust can be placed upon a set of test results. However, the accuracy of tests is paramount, but the validity is crucial to gather enough evidence to defend the work. Therefore to validate the result, the hardware setup and sample preparation to mimic the environment and the wafer should be considered as well.

3.2.1 Hardware Setup

To mimic the environment at Silttera production line, the hardware is setup as Figure 3.3. The workspace, the distance between webcam and workspace, and the position to place the light are fix. The available workspace is 9cm length and the distance between camera with the workspace is 5cm therefore the webcam able to capture 6 character in one shot.

Figure 3.3: The hardware setup to mimic the environment in the Silterra Sdn. Bhd. manufacturing plant.

,

Besides that, the color of light for the production line in the Silterra Company also should be considered, to validate the result should not simply assume and used the color of light as what researcher prefer, therefore the preparation for different color of light is necessary to test, identify whether different color of light either will or will not have different effect to the result.

Furthermore, due to unable to get the exact color of light from the company, therefore the color that decided to test is white and yellow color which is more likely to the environment in the Silterra production line as shown in Figure 3.4 and Figure 3.5.

The scribed number on wafer is fixed font type, size and in well printed based on standard M12/M13, due to unable to get the real wafer, therefore the testing sample need to prepare which is same as the character on the wafer. There are 3 testing sample that are used in the experiment which is the sample for creating the template, two good testing sample, and 2 not good testing sample as shown in Figure 3.6, 3.7, and 3.8 respectively.

Figure	3 6.	The	cample	for	creating	the	template
Liguie	$\mathcal{D}_{\bullet}(0)$	1116	Samble	Ю	Creating	uie	tempiate

Α	В	C	D	E	F	G	Н	I	J	K	L	М	N	0
Р	Q	R	Z	Т	U	٧	W	Χ	Υ	Z	ŀ	2	3	4
5	Ь	7	8	9	0									

Figure 3.7: The two set of good testing sample(G sample)

			Tiguic	5.7.1	nc two	SCI OI	good ii	csung	sample	(O sai	iipic)			
Α	В	C	D	Ē	F	G	Н	I	J	K	L	M	N	0
Р	Q	R	Z	Т	U	V	W	Χ	Y	Z	ŀ	2	3	4
5	Ь	7	MALAY	9										
Α	В	S C	D	E	F	G	Н	I	J	K	L	M	N	0
Р	Q	R R	S	Т	U	٧	W	X	Y	Z	1	2	3	4
5	Ь	=7	8	9	0					41				

Figure 3.8: The two set of not good testing sample(NG sample)

Δ	ם	الإك	با م •• د	لس ٤٠٠	ليما	ن	بنا	Ξ	ين (بېخ	مي س	ونيو	\ 	**	ם
ú	ī	JŅIV	/ER	SIŢI	TIE	(Mik	A	MAI	<u>-A</u> Y	ShA	M <u>E</u> L	.AK	Α'n	Ξ	5
7	ላ	7	Ð												
h	Ь	ς.	Đ	Ę	.=	6	끮	ı	d	ķ	:_	ŗ	M	0	Б
ų	L;	5	÷	ιI	v	<u>l</u>	X	,	Ž	ı,	ū	<u>-</u>	4	5	į.
9	Ľ	ņ	נז												

The step for preparation the sample as below:

- 1) Open Paint.
- 2) Write 100 good(G) group combination of character based on the Standard SME 12/13. For example:

ABC123 JKL245 GHI789 YUI876 DEF456 HUI976

3) Write 100 not good(NG) group combination of character based on the Standard SME 12/13. For example:

ADCSED UKLEME DEFMES MIDARS SUDRAR HIDERS

- 4) Crop equal size for all the sample have been write.
- 5) Print each sample on 80mg paper and cut equally.
- 6) For the example in Figure 3.9 and 3.10:

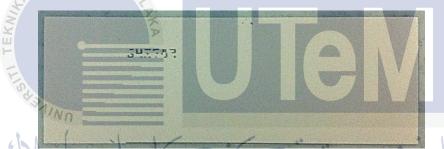


Figure 3.9: A group of not good(NG) sample printed on 80mg paper with the size of 12cm width x 4cm height.

Figure 3.10: A group of good(G) sample printed on 80mg paper with the size of 12cm width x 4cm height.

3.3 Technique

To achieve the objective, the vision system design based on the theory studied in literature review and the previous work related to project as shown in Figure 3.11. The vision system will be built in Matlab Simulink by using Computer Vision Toolbox.

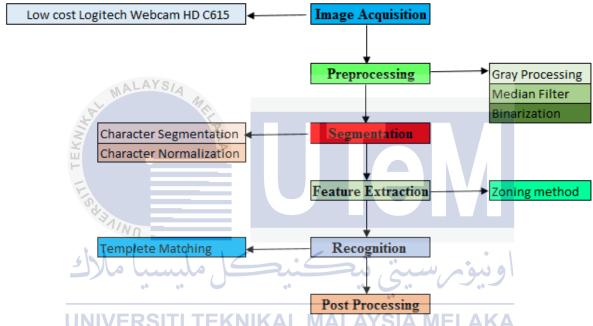


Figure 3.11: The proposed OCR technique to vision system.

For the vision system design, the methodology can be separated into two phase as shown in Figure 3.12. First phase is the training phase and for second is the matching phase. The training phase is regarding to saving the template in the system for the purpose of recognition process which is template matching process. For the matching phase, by using the template from the training phase to implement the template matching process with the incoming sample.

Figure 3.12: The methodology for vision system design.

3.3.1 Training Phase

Figure 3.13 shows that the overall vision system design for template saving in Matlab Simulink by using the Computer Vision Toolbox.

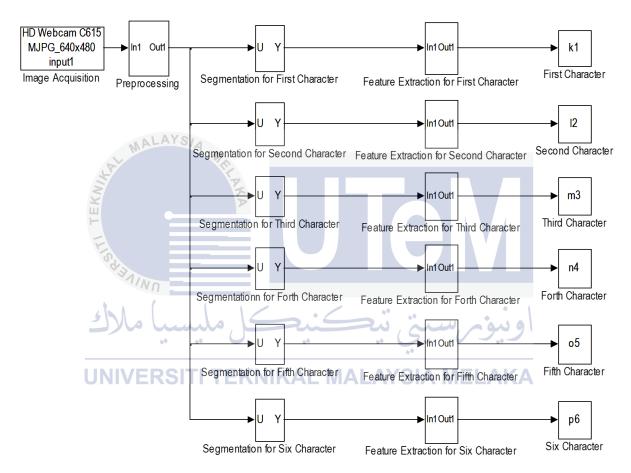


Figure 3.13: Simulink block diagram for template saving in training phase.

Besides that, Table 3.1 shows that the overall process for template saving in training phase. The first column is process of OCR technique, second column is the Simulink block diagram to implement the process and the last is the result.

Table 3.1: The description for each process in training phase.

	Table 3.1: The description for each process in training p	
Process	Vision system design using Matlab Simulink	Result
Prepared		ABCDEF
character from A to Z		GHIJKL
and alphabet		MNOPQR
from 0 to 9		XWVUTZ
		AZ0753
		456789
	MALAYSIA	For example:
TEKNIK	WILL AK	ABCDEF
Image	In this stage, camera capture the image with the	For example:
Acquisition	existing of white and yellow color of light, after that	
	camera directly change the image into grey image	ADCNEE
ك	(grey processing). HD Webcam C615	اويو
UNI	VERSIPUTI TEKNIKAL MALAYSIA MEI	AKA
Preprocessing	In this stage, the image is filtered by using median	For example
	filter such as 3x3,5x5,7x7, and 9x9 and convert to	3x3 median filter:
	binary(0 and 1) image which is black and white image.	ABCDEF
	1 Median Filter Convert Image to single Out1 Median Filter Relational Operator Image Data Type Conversion Constant	

Segmentation

Each character has their own selector block and index number. Selector block used to segment the character and the index number is represent of each character's position whereas the output size for each character are the same.

For example:

UNI

The index number for First Character:

	Index	Option	Index	Output Size
1	Startina index (dialoa)	-	73	32
2	Starting index (dialog)	▼	212	19

First Character:

Second Character:

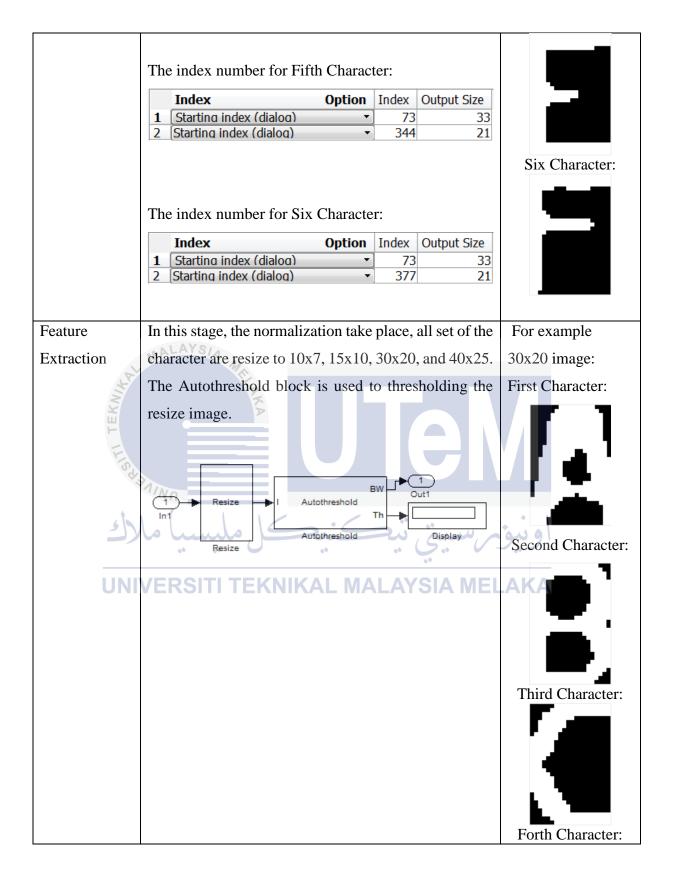
The index number for Second Character:

	Index		Option	Index	Output Si	ze
1	Starting index (dialog))		7 3		33
2	Starting index (dialog)		_	245		21

Third Character:

The index number for Third Character:

		Index	Option	Index	Output Size
1	1	Starting index (dialog)	· · · · ·	. 73	33
J	2	Starting index (dialog)	AL MA	278	SIA M21


The index number for Forth Character:

	Index	Option	Index	Output Size
1	Startina index (dialoa)	_	73	33
2	Starting index (dialog)	_	311	21

Forth Character:

Fifth Character:

Template saving	For template saving, all the character and alphabet (A to Z and 0 to 9) are resize to 10x7, 15x10, 30x20, and 40x25 with different median filter such as 3x3,5x5,7x7, and 9x9 respectively at different color of light and save as template in the system. As the conclusion, the Table 3.2 shows that the group of template need to save in the system for the purpose of template matching for matching phase with the incoming sample:
-----------------	---

	Table 3.2: The list	Appen	o save in the system. (dix B).	(Kindly refer to
		Templat	e saving	
	with Wh	ite Light	with Yellow	Light
	Image size	Median Filter	Image Size	Median Filter
	10x7		10x7	
	15x10		15x10	
	30x20	3x3	30x20	3x3
	40x25		40x25	
	10x7		10x7	
	15x10		15x10	
	30x20	5x5	30x20	5x5
	40x25		40x25	
SITI TEKNIHA	10x7		10x7	
TEX	15x10		15x10	
E	30x20	7x7	30x20	7x7
OG!	40x25		40x25	
	10x7		10x7	
الك	15x10	كنك	15x10	9
	30x20	9x9	30x20	9x9
UNI	ER 40x25 TEK	NIKAL MAL	AYS40x25 ELA	KA

3.3.2 Matching Phase

Figure 3.11 shows that the overall vision system design for template matching process or recognition in Matlab Simulink by using the Computer Vision Toolbox.

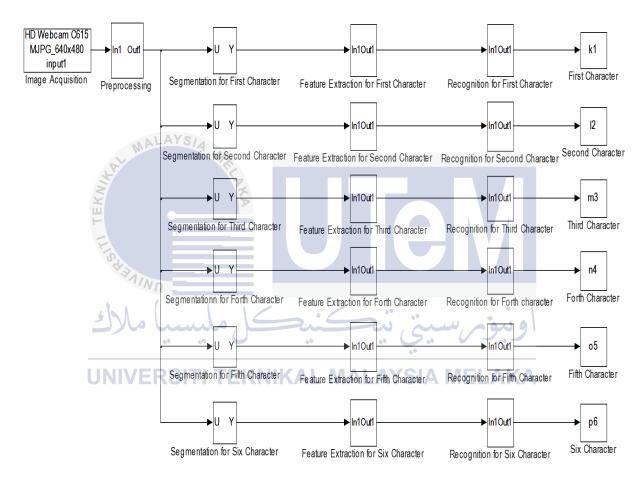


Figure 3.14: Simulink block diagram for recognition process in matching phase.

Besides that, Table 3.3 shows that the overall process for recognition process in matching phase. The first column is process of OCR technique, second column is the Simulink block diagram to implement the process and the last is the result.

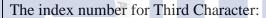
Table 3.3: The description for each process in matching phase.

Process	Table 3.3: The description for each process in matching J Vision system design using Matlab Simulink	Result
Sample preparation as in Appendix B		For example:
Image	In this stage, camera capture the incoming sample with	For example:
Acquisition	the existing of white light and yellow light, camera directly change the image to grey image (grey processing). HD Webcam C615 MJPG_640x480 input1 Image Acquisition	ABC753
Preprocessing	In this stage, the image filtered by using median filter	For example
5	such as 3x3,5x5,7x7, and 9x9 and convert to binary(0	3x3 median filter:
UNI	and 1) image which is black and white image. VERSITI TEKNIKAL MALAYSIA MEL Median Filter Median Filter Median Filter Operator Operator Onvert Image to single Out1 Out1	ABC153
Segmentation	Each character has their own selector block and index number. The index number is represent of each character's position whereas the output size for each character are the same.	

For example:

The index number for First Character:

	Index	Option	Index	Output Size
1	Starting index (dialog)	▼	73	32
2	Starting index (dialog)		212	19


Second Character:

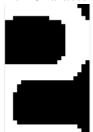
	Index	Option	Index	Output Size
1	Startina index (dialoa)		73	33
2	Starting index (dialog)	_	245	21

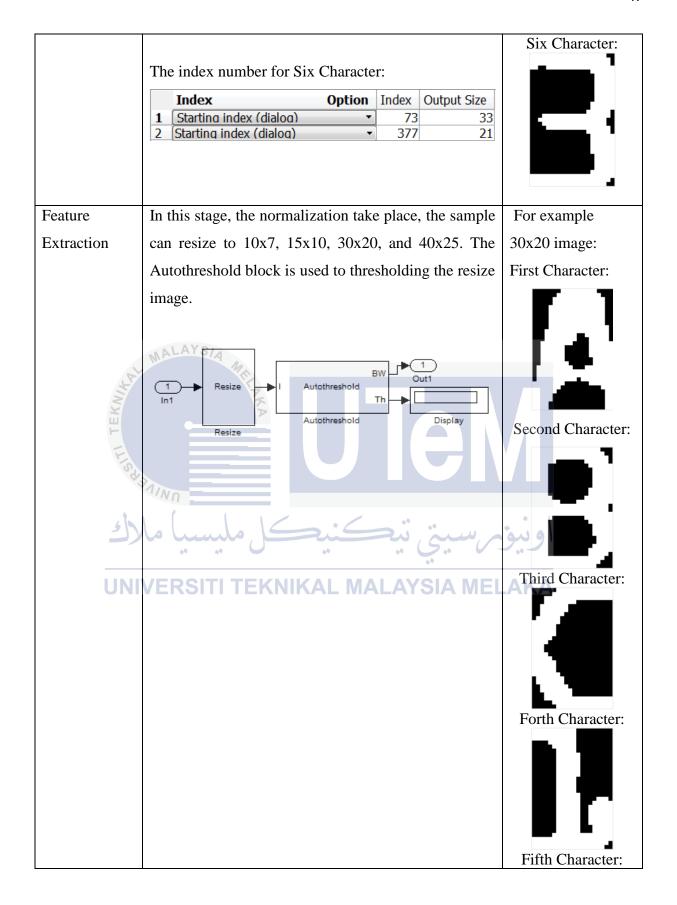
Third Character:

	Index	Option	Index	Output S	ize
1	Startina index (dialoa)	•	73		33
2	Starting index (dialog)	•	278		21

Forth Character:

UNIV


Æ	Index TEKNIKA Option	Index	Output Size
1	Startina index (dialoa)	73	33
2	Starting index (dialog)	311	21



Fifth Character:

The index number for Fifth Character:

	Index	Option	Index	Output Size
1	Startina index (dialoa)	▼	73	33
2	Starting index (dialog)		344	21

Six Character:
_

Recognition

In recognition part, the incoming sample undergoing several process which is from image acquisition to feature extraction and then the sample matching with the template have been save. In matching process, able to set the matching percentage such as 80%, 85%, and 90%. For example, if the matching percentage set to 85% which means at the IF block (Figure 3.12) in Matlab Simulink need set to 90 of white pixel left because:

For example:

Matching Percentage = $\frac{Size \ of \ image - White \ pixel \ left \ after \ match}{Size \ of \ image}$

Equ(1)

VERSITI TEKNIK
$$\frac{(30 \times 20) - (90)}{(30 \times 20)} \times 100\%$$

$$= \frac{(600) - (90)}{(600)} \times 100\%$$

$$= 85\%$$

However, when the sample matching with the template and the number of white pixel left is less than 90 then the output will be send to further recognition, whereas if the number of white pixel left is more than 90 then the output unable to recognize. For example in Table 3.4 below:

Table 3.4: The difference result between more and less than 90 white pixel left.

After matching less than 90 of white pixel left

Sample(B) Template(B) Output

Therefore, the less of the white pixel left, then consider is correct match. The output then send to If Action block for recognition process. Due to the Matlab Simulink unable to support char data type in workspace therefore require use the alphabet to represent the character. Refer to Figure 3.15, the white pixel left in this case is 61 and is less than 90 then the output send to the If Action block and the character will be display at workspace which is 12, 12 is represent B. The list of declaration of character will be explain in next process as shown in Table 3.8.

UNI

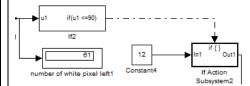


Figure 3.15: Simulink block for recognition of sample B when the

After matching more than 90 of white pixel left

Sample(B) Template(C) Output

Therefore, the more of the white pixel left, then consider wrong matching. However, since there is wrong matching and the output unable send to If Action Block for further recognition. The output at workspace will present zero(0) and unable to represent any of character and alphabet. Refer to Figure 3.16, the white pixel left in this case is 267 and is more than 90 then the output unable send to the If Action block and the output will not be correctly display at workspace.

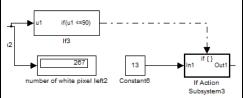
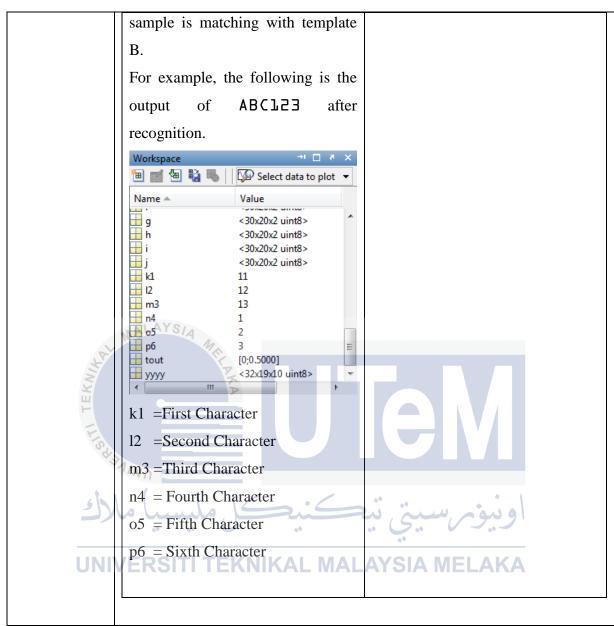



Figure 3.16: Simulink block for recognition of sample C when the sample is matching with template B.

Store data to Excel file

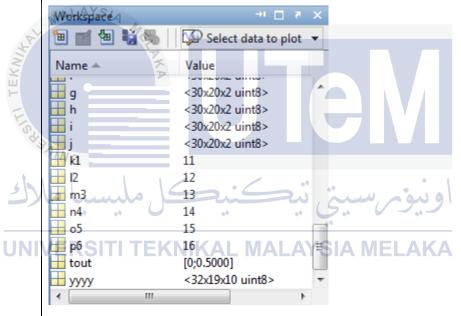

As mention before, the Matlab Simulink in workspace unable to support char data type, therefore require used the alphabet to represent the specific character. The Table 3.5 shows that the declaration of character that can be obtained out from workspace.

Table 3.5: The list for declaration of character.

Data from Simulink	1	2	3	4	5	6	7	8	9	10
Character	1	2	3	4	5	6	7	8	9	0

Data from Simulink	11	12	13	14	15	16	17	18	19	20
Character	A	В	С	D	Е	F	G	Н	I	J
		1	I	I	I	I	ı	I	I	1
Data from Simulink	21	22	23	24	25	26	27	28	29	30
Character	K	L	M	N	О	P	Q	R	S	Т
					I	I	I		I	
										_
Data from Simulink	31	32	33	34	35	36	37	38	39	40

However, each alphabet represent their own character. For example:

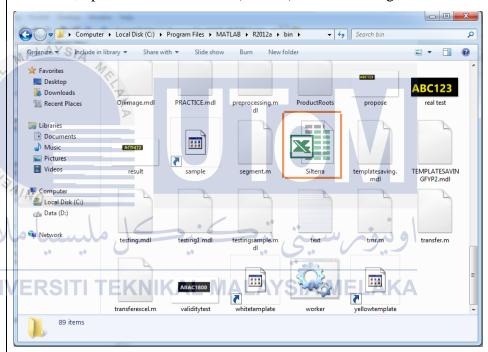
k1 =First Character = 11 = represent as A

12 = Second Character = 12 = represent as B

m3 = Third Character = 13 = represent as C

n4 = Forth Character = 14 = represent as D

o5 = Fifth Character = 15 = represent as E

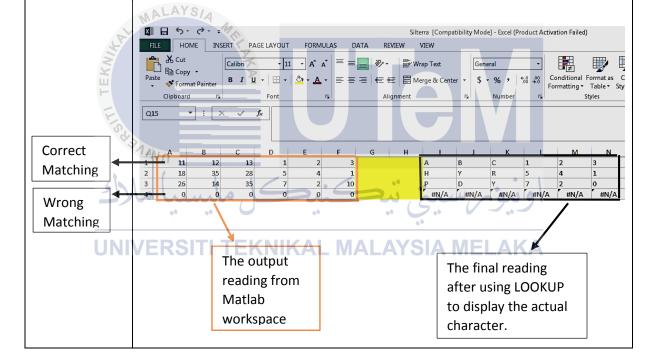

p6 = Six Character = 16 = represent as F

Besides that, the objective is to store the character in the Excel file, therefore the following coding are used:

```
offset =5
for i=1:1

xlswrite('Silterra.xls', [k1 12 m3 n4 o5 p6], 1,
sprintf('A%d',offset));
```

After that, open Excel file as name(Silterra) it in the coding:


By using Lookup in Excel,

=LOOKUP(A1,{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,2 2,23,24,25,26,27,28,29,30,31,32,33,34,35,36},{"1","2","3","4","5","6", "7","8","9","10","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"})

After the recognition process,

- 1. The output reading will be display at Matlab workspace.
- 2. Insert coding to store the reading to Excel file.
- 3. Using LOOKUP to display the actual character.

From the Figure below, the left side of the Excel file is the output reading from Matlab workspace whereas on the right side of Excel file is the final reading after using LOOKUP to display the actual character. If there is correct matching then the system can recognize correctly and able to display the correct character. For example, if there is a good sample which is ABC123 then in Excel file will display ABC123. Whereas if there is a not good sample ADC123 then in Excel file will display nothing(NA).

3.4 Reliability of data

Reliability is concerned with questions of stability and consistency, does the same vision system yield stable and consistent results when repeated over time. However, there are three experiment are carry out to identify the best parameter respectively, and used these parameter apply to the vision system to perform a confirmation test, which is to ensure the system can produced up to 95% of recognition.

3.4.1 Experiment 1

The objective for experiment 1 is to determine and identify the best image size which can produced the highest recognition rate.

1) Initially set median filter to 3x3 and matching between the sample for creating the template in Table 3.6 and template in the database in image size of 30x20 to identify the matching percentage. In Table 3.4 shows the white pixel left after match for character from 'A' to 'Z' and '0' to '9'.

Table 3.6: The white pixel value left after match for character from 'A' to 'Z' and '0' to '9'

Sample Template	TI TEKNIKA From A	to Z and 0 to 9ELAKA
'0' to '9'		Identify the maximum white pixel left after match
From 'A' to 'Z' and '	Character matching in the condition when the median filter is 3x3 and image size is 30x20.	

After identify all the white pixel left after match, therefore the range for pixel difference can be set for each alphabets and numbers. However, to calculating matching percentage, the diagonal of each table is taken out then find the largest white pixel left and to calculate the percentage of the matching by Equation 1 for each image size:

$$\label{eq:matching} \text{Matching Percentage} = \frac{\textit{Size of image} - \textit{White pixel left after match}}{\textit{Size of image}} - \text{Equ}(1)$$

- 2) Fix the identified matching percentage, set the median filter to 3x3 matrix, and prepared 100 difference testing samples by choosing from the good testing sample in Table 3.2 and arrange them into a word form such as 'ABC123' in the experiment.
- 3) After that, matching these 100 difference testing samples with template in difference image size which is 40x25, 30x20, 15x10, and 10x7 respectively. For example, if the template in database after matching with 100 different good testing samples in image size of 40x20, then have 90 samples can be recognized correctly means that the percentage of recognition is 90%. The comparison between the percentages of recognition with difference image size when the 3x3 median filter and matching percentage is fixed as shown in Table 3.7.

Table 3.7: The comparison between the percentages of recognition with difference image size.

Image Size			المرة المراب	
Matching	40x25	30x20	5 15x10	10x7
Template with			•	
100G testing sample	I TEKNIKA	I MALAYS	SIA MELAK	Δ
Fixed Parameter				
3x3 median filter	% of recognition	% of recognition	% of recognition	% of recognition
Matching Percentage				

4) After the comparison, the best image size is identified which is able to produce the highest percentage of recognition.

3.4.2 Experiment 2

The objective for experiment 2 is to determine and identify the best median filter which can produced the highest recognition rate.

- 1) Fix the identified image size and matching percentage as in Experiment 1.
- 2) Prepare same 100 difference good testing sample as in Experiment 1.
- 3) After that, matching these 100 difference good testing samples with template with difference median filter which is 3x3, 5x5, 7x7, and 9x9 respectively. For example, if the template in database after matching with 100 difference test samples with 3x3 median filter, then have 90 samples can be recognized correctly means that the percentage of recognition is 90%. The comparison between the percentages of recognition with difference median filter when the image size and matching percentage is fixed as shown in Table 3.8.

Table 3.8: The comparison between the percentages of recognition with difference median filter

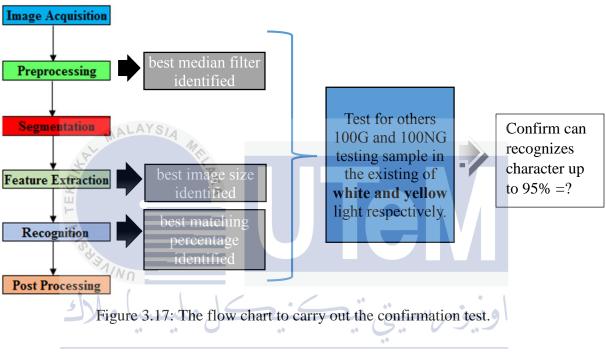
Median Filter				
Matching	3x3	5x5	7x7	9x9
Template with		. /		1
100G testing sample			و بيوم رسي	
Fixed Parameter			7 0 3 3	
Image Size	% of recognition	% of recognition	% of recognition	% of recognition
Matching Percentage	I IEKNIKA	L MALAYS	IA MELAK	A

4) After the comparison, the best median filter is identified which is able to produce the highest percentage of recognition.

3.4.3 Experiment 3

The objective for experiment 3 is to determine and identify the best matching percentage which can produced the highest recognition rate.

- 1) Fix the identified median filter and image size as in Experiment 2.
- 2) Prepare same 100 difference good testing samples as in Experiment 1.
- 3) Prepare other 100 difference not good testing samples by choosing from the not good testing sample in Table 3.3 and arrange them into a word form such as 'ABC123' in the experiment.
- 4) After that, matching these 100 difference good testing samples with template with difference matching percentage which is 90%, 85%, and 80% respectively. For example, if the template in database after matching with 100 difference good testing samples and 100 difference not good testing samples with 90% of matching percentage, then have 90 good samples can be recognized correctly and 0 not good sample can be recognized means that the percentage of recognition is 90% and 0%. The comparison between the percentages of recognition in difference matching percentages when the image size and median filter is fixed as shown in Table 3.9.


Table 3.9: The comparison between the percentages of recognition with difference matching percentages.

- INVEDOITE TO	Porcontagos.	L AVOLA BAEL	A 1/ A
Matching Percentage	KNIKAL WA	LAYSIA MEL	AKA
Matching	80%	85%	90%
Template with			
100G testing sample			
Fixed Parameter			
Image Size	% of recognition	% of recognition	% of recognition
Median Filter			
Matching ercentage			
Matching	80%	85%	90%
Template with			
100NG testing sample			
Fixed Parameter			
Image Size	% of recognition	% of recognition	% of recognition
Median Filter			

5) After the comparison, the best matching percentage is identified which is able to produce the highest percentage of recognition.

3.4.4 Confirmation Test

All the best parameter is identified from the previous experiments. After that, apply these parameter to the vision system design and test with others 100 good and 100 not good samples to ensure the system can produced percentage of recognition up to 95%. Figure 3.17 shows the process flow to carry out the confirmation test.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 4

RESULT AND DISCUSSION

This chapter will discuss about the result and discussion of the project. Validity and reliability test is carry out to show how the vision system achieved the objective. However, because of unable physically testing at Silterra Sdn. Bhd, therefore the environment and testing sample are created as shown in Appendix A to carry out the experiment.

4.1 Experiment 1- To determine and identify the best image size which can produced highest percentage of recognition.

According to the previous work related, before started the experiment, the initial parameter for the matrix of median filter, image size, and matching percentage should be determined first. Therefore, based on the result from the previous researcher[26], by using 3x3 median filter and 30x20 of image size to determine the matching percentage.

If there are occur correct character match then have less white pixel value left whereas if wrong character match have more white pixel value left as shown in Appendix C. However, to determine the matching percentage, first which is identified the largest white pixel value left(84) after match from the diagonal of the table as shown in Appendix C, and calculate percentage of the matching by using Equation 1.

$$\label{eq:mage_match} \text{Matching Percentage} = \frac{\textit{Size of image } - \textit{White pixel left after match}}{\textit{Size of image}} - \cdots - \text{Equ}(1)$$

Percentage of Matching =
$$\frac{(30x20) - (84)}{(30x20)} \times 100\%$$
$$= \frac{(600) - (84)}{(600)} \times 100\%$$
$$= 86\%$$

After that, set the white pixel value left after match for the recognition block in Matlab Simulink which is 84. Besides that, the initial parameter which is 3x3 median filter, 86% of matching percentage.

However, for this experiment, to identify the best image size which can produced highest percentage of recognition when the 3x3 median filter and 86% of matching percentage are fixed in the existing of white light condition. The result as shown at Table 4.1, after matching the template with 100 good testing samples, the percentage of recognition for 10x7, 15x10, 30x20, and 40x25 of image size are 63%, 72%, 81%, and 78% respectively.

Therefore, 30x20 of the image size produced the highest percentage of recognition and this image size will be used for next experiment. WALAYSIA MELAKA

Table 4.1: The comparison between the percentages of recognition with difference image size.

Image Size				
Matching	40x25	30x20	15x10	10x7
Template with				
100G testing sample				
Fixed Parameter				
3x3 median filter	78% of recognition	81% of recognition	72% of recognition	63% of recognition
86% of Matching Percentage				

However, there are also have some limitation for recognition the character with difference image of size which is the character unable to read(NA) as shown in Appendix D.

From Table 4.2 show the list of character are unable to read at 10x7, 15x10, 30x20, and 40x25 of image size are NU0O9Q, NUOIQ9, UI9QV, and U9ONI0Q respectively. This is because the parameter will affect the articulation and identification precision to the image.

Table 4.2: The list of character unable to read occur at difference image size

Image Size	40.05	20.20	15.10	10.7
Matching	40x25	30x20	15x10	10x7
Template with				
100G testing sample				
Character unable to read	N,U,0,O,9,Q	N,U,O,Q,9	U,I,9,Q,V,O	U,9,O,N,I,0,Q
MALAY	SIA			

As the conclusion, when system set to 3x3 median filter, 86% of matching, and 30x20 of image size able to produced 81% of recognition and can recognize more character compare to others image size. Therefore, 30x20 of image size are chosen to use for second experiment.

اونيوسيني نيكنيكل مليسياً ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

4.2 Experiment 2- To determine and identify the best median filter which can produced highest percentage of recognition.

In the second experiment, to identify the best matrix of median filter which can produced highest percentage of recognition when the 30x20 of image size and 86% of matching percentage are fixed and in white light condition.

The result as in Table 4.3 show that the percentage of recognition for 3x3, 5x5, 7x7, and 9x9 of median filter are 83%, 41%, 11%, and 0% respectively. Therefore, 3x3 of the median filter produced the highest percentage of recognition and this matrix of median filter will be used for next experiment.

Table 4.3: The comparison between the percentages of recognition with difference matrix of median filter.

A Y				
Median Filter	P			
Matching	3x3	5x5	7x7	9x9
Template with				
100G testing sample				
Fixed Parameter				
30x20 of Image Size	83% of recognition	41% of recognition	11% of recognition	0% of recognition
86% of Matching Percentage				
	1			

However, there are also have some limitation for recognizing the character with each matrix of median filter which is the character unable to read(NA) and some of the character occur wrong recognition such as for 7x7 median filter occur wrong recognize character E as character F and so forth as shown in Appendix E.

ونيوسيتي نيكنيكل مليسيا ملاك

From Table 4.4 show that the list of character are unable to read at 3x3, 5x5, 7x7, and 9x9 of median filter are NUOQ9, HIJPQSUW0579, BHMNOPQSUVW025789, and BCDEHMNOPQRSUVWY01256789 respectively.

However, for wrong recognition occur at 7x7 and 9x9 of median filter are E=L, F=EU, L=FU and F=E9, L=EF69, U=J2 respectively. Besides that, E=F means that, the character E occur wrong recognize as character F and character F wrong recognize as character E.

Table 4.4: The list of character unable to read and character wrong recognition occur at difference matrix of median filter

Median Filter				
Matching	3x3	5x5	7x7	9x9
Template with				
100G testing sample				
				B,C,D,E,H,M,N,O,
Character unable to read	N,U,O,Q,9	H,I,J,P,Q,S,U,W,	B,H,M,N,O,P,Q,S,	P,Q,R,S,U,V,W,Y,
		0,5,7,9	U,V,W,0,2,5,7,8,9	0,1,2,5,6,7,8,9
			E=L	F=E9
Occur wrong recognition	NA	NA	F=EU	L=EF69
			L=FU	U=J2

From the observation, at each matrix of median filter also have the character unable to read by system and this is because the matrix of median filter will affect the articulation and identification precision to the image and also due to the problem of accuracy to insert the sample into the hardware workspace.

Therefore, sometime the system unable to read the character due the samples are different from the template then causes the character unable to perfectly matching with the template and finally system unable to read the character.

The wrong recognition occur due to the shape and pattern of the character are nearly the same to the template. This is because after apply median filter, the image is filtered, even though the median filter is used to make the image clearer and increase the sharpness of the image but if used over the limit will causes the image become different, and make the system confuse when during the matching process.

Therefore, the wrong recognition occur. For example, the image for character B with different matrix of median filter when 30x20 of image size and 86% of matching percentage is fixed and in white light condition as Table 4.5.

Median Filter Matching Template B with	3x3	5x5	7x7	9 _x 9
B testing sample				
Fixed Parameter 30x20 of Image Size 86% of Matching Percentage	9.0			**

Table 4.5: The comparison between the characters B with different matrix of median filter

As the conclusion, when system set to 30x20 of image size, 86% of matching, and 3x3 of median filter can produced 83% of recognition and can recognize more character compare to others image size and does not occur any wrong recognition. Therefore, 3x3 of median filter are chosen to use for next experiment.

4.3 Experiment 3 - To determine and identify the best matching percentage which can produced highest percentage of recognition.

In the third experiment, to identify the best matching percentage which can produced highest percentage of recognition when the 30x20 of image size and 3x3 of median filter are fixed and in white light condition.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The result as in Table 4.6 show that the percentage of recognition for good sample at 80%, 85%, and 90% of matching percentage are 38%, 100%, and 0% respectively whereas for not good(NG) sample at 80%, 85%, and 90% of matching percentage are 100%, 28%, and 4% respectively

Therefore, 85% of the matching percentage produced the highest percentage of recognition for recognize good sample and 28% of recognition for not good sample. The 80%, 85%, and 90% of matching percentage represent the white pixel value left need to set at the recognition block in recognition stage, only the white pixel value left after match less than the value have been set then the character can be send for further recognition.

Therefore the white pixel value left at 80% of matching percentage when 30x20 of image size and 3x3 of median filter is fixed as below:

Matching Percentage =
$$\underbrace{Size\ of\ image\ - White\ pixel\ left\ after\ match}_{Size\ of\ image}$$
 ------Equ(1)

Percentage of Matching = $\underbrace{\frac{(30x20) - (120)}{(30x20)}}_{(30x20)}$ x100%

$$=\frac{(600)-(120)}{(600)}x100\%$$

$$= 80\%$$

MALAYSIA

The white pixel value left after match at 85% of matching percentage when 30x20 of image size and 3x3 of median filter is fixed as below:

Percentage of Matching =
$$\frac{(30x20) - (90)}{(30x20)}$$
x100%
= $\frac{(600) - (90)}{(600)}$ x100%
= 85%

However, the white pixel value left after match at 90% of matching percentage when 30x20 of image size and 3x3 of median filter is fixed as below:

Percentage of Matching =
$$\frac{(30x20) - (60)}{(30x20)} x 100\%$$
$$= \frac{(600) - (60)}{(600)} x 100\% = 90\%$$

Therefore, this means that increase the matching percentage, the less is the number of white pixel left after match.

Table 4.6: The comparison between the percentages of recognition with difference matching percentage.

	1 0		
Matching Percentage			
Matching	80%	85%	90%
Template with			
100G testing sample			
Fixed Parameter			
30x20 of Image Size	38% of recognition	100% of recognition	0% of recognition
3x3 Median Filter			
Matching ercentage			
Matching	80%	85%	90%
Template with			
100NG testing sample			
Fixed Parameter			
30x20 of Image Size	100% of recognition	28% of recognition	4% of recognition
3x3 Median Filter WALAYS/A			

There are also have limitation for recognizing the character with each matching percentage and shows the word 'NA' means that the character unable to read and some of the character occur wrong recognition such as for 80% of matching percentage occur wrong recognize character H as character B and so forth as shown in Appendix F1 and F2.

From Table 4.7 show that the list of character are unable to read only at 90% of matching percentage are ABDNOQRSTVWZ02345679. Only for the 80% of matching percentage have occur wrong recognition which is E=L, F=E, H=B, I=T, L=E, T=I, 0=BU whereas at 85% of matching percentage can read 100% correctly.

However, after matching 100 not good(NG) samples with the template, the wrong recognition occur at 80% of matching percentage are B=0,2=E,7=Z,7=F,D=0,5=G,E=L6,I=T,I=E,Z=E,3=C, for 85% and 90% of matching percentage are C=C,F=F,3=3, and F=F respectively.

Table 4.7: The list of character unable to read and character wrong recognition with difference matric of median filter.

Martin Day			
Matching Percentage	000/	0.50/	200/
Matching	80%	85%	90%
Template with			
100G testing sample			
_			A,B,D,N,O,Q,R,S,T,
Character unable to read	NA	NA	V,W,Z,0,2,3,4,5,6,7,9
	E=L, F=E, H=B,		
Occur wrong recognition	I=T, O=BU	NA	NA
Matching ercentage			
Matching	80%	85%	90%
Template with			
100NG testing sample			
·	Z		
Character unable to read	A,C,E,B,D,F,L,	NA	NA
F	Z,2,3,4,6,9		
E	B=0,2=E,7=Z,7=F	C=C	
Occur wrong recognition	D=0,5=G,E=L6,	F=F	F=F
NO N	I=T,I=E,Z=E,3=C	3=3	1-1
	1-1,1-E,Z-E,3-C	A.0	•
مليسيا مالاك	ڪنيڪل	رسيني تيد	اوييوم

4.4 Confirmation test SITI TEKNIKAL MALAYSIA MELAKA

Even though 85% of matching percentage can produced 100% of recognition but have some limitation which is have 28% of recognition when recognize the flaws sample.

This is because some of the character in flaws sample have only small different compared with the template, when the recognition block is set to 90 of white pixel value left after match, the sometime the flaw character will also less than the 90 of white pixel value left.

Therefore, to solve this problem can do the adjustment and increase the matching percentage up to 92% for the specific character which is character C, F, and 3

Therefore, after the adjustment of white pixel value left for the specific character, now the system unable to read all the flaws character even though a small different from template as shown in Table 4.8 and Appendix G1:

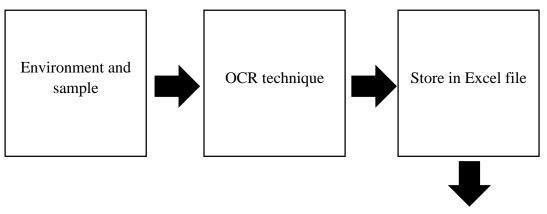
Table 4.8: The comparison between the percentages of recognition after adjustment of white pixel value left at character C, F, and 3 in white light condition.

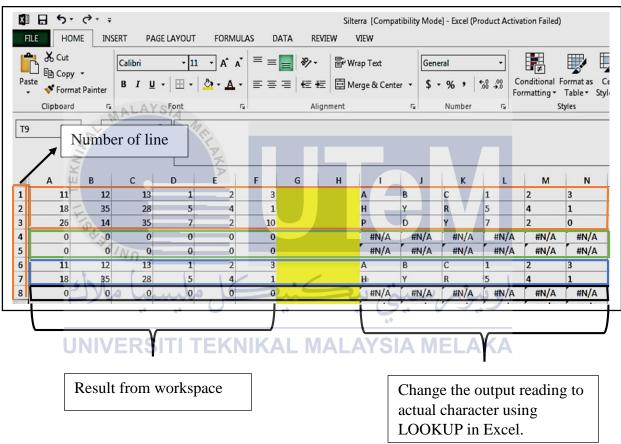
Best Parameter	Image Size	Median Filter	Matching Percentage
Matching	30x20	3x3	85%(only 92% for C,F,3)
Template 100 Good Samples		100%	
Template 100 Not Good Samples	MILLAKA	0%	

As the conclusion, when system set to 30x20 of image size, 3x3 of median filter, and 85%(92% for character C,F,3) of matching percentage can produced 100% of recognition Therefore, all these best parameter are chosen to use for next test.

However, all the experiment have been done only in existing of white light condition, therefore able to identify and determine whether the different color of light either have or have not different effect to the result.

Therefore, used the best identified parameter and installed yellow color of light to the hardware and save template with the existing of yellow light condition. Refer to Table 4.9 and Appendix G2 can conclude that by using different color of light have not affect the result and able produced same result as white color of light when apply that three identified parameter, the important thing is that all the process such as template saving and recognition process must at same light condition. For example, if the environment is green color, then the process for template saving and recognition process also must in green light condition.


Table 4.9: The comparison between the percentages of recognition after adjustment of white pixel value left at character C, F, and 3 in yellow light condition


Best Parameter	Image Size	Median Filter	Matching Percentage
Matching	30x20	3x3	85%(only 92% for C,F,3)
Template 100 Good Samples		100%	
Template 100 Not Good Samples		0%	

4.5 Store data to Excel file

However, after the vision system able to scan, recognize scribed number correctly and next is to store data in Excel file for tracking the wafer position. Therefore, the Excel file will store data from incoming sample after undergoing the OCR technique as in Figure 4.1:

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

**Noted

Orange color = good sample(ABC123,HYR541,PDY720) with yellow light condition.

Green color = not good sample(4073E3,547.73) with yellow condition

Blue color = good sample(ABC123,HYR541) with white light condition.

Black color = not good sample(43433) with white light condition.

Figure 4.1: The overall process of the project and data in Excel file.

4.6 Project Expenses

MALAYSIA

Besides that, the sorting machine in Silterra Company consist of two part. First is vision system and other part is dual paddle robot for an Automation Retrofitting Wafer Sorting Machine which is 'Rotating and Indexing Movement Paddle' and this machine cost Siterra Company a lot. According to the Senior Engineer Silterra Company- Mr.Ravi, he declared that the machine price is around RM 600,000, therefore as one of the project objective which is produced low cost sorting machine to solve the existing problem in the company. Therefore, the combination price for the vision system design and the mechanical mechanism design which is RM11,525. Therefore compared with the existing sorting machine, Silterra Company can save up to RM588,475 and directly solve the existing problem. The calculation as shown in Table 4.10:

	4, 4,			
	Table 4.10: The expenses for sor	ting machine of	design.	
No	Description	Quantity	U/Prices	Amount
			(RM)	(RM)
Visi	on System Design			
1	Logitech Webcam HD C615	ا سىنى نىچ	200.00	200.00
	Sum UNIVERSITI TEKNIKAL MA	LAYSIA I	MELAKA	200.00
Mecl	nanical Mechanism Fabrication			
1.	Robot Arm –Aluminium 6061	2	470.00	940.00
	Primary Arm			
	Secondary Arm			
2.	Hub – Aluminium 6061	1	120.00	120.00
3.	Arm Shaft –Aluminium 6061	2	240.00	480.00
4.	Flange for Joint Couple-Alum 6061	1	180.00	180.00
5.	Outer Hollow Shaft-Alum 6061	1	340.00	340.00

	T TT 11 01 0 A1 00 61	1	250.00	250.00	
6.	Inner Hollow Shft - Alum 6061	1	350.00	350.00	
7.	Main Holder - Alum 6061	1	250.00	250.00	
8.	Base Hub - Alum 6061	1	150.00	150.00	
9.	Joint Couple - Alum 6061	1	300.00	300.00	
10.	Bottom Base - Alum 6061	1	450.00	450.00	
	Sum			2,620.00	
Mecl	nanical Component Parts				
1.	HIWIN Ball Screw +L480	1	800.00	800.00	
2.	IKO Ball Spline +L381mm	1	1400.00	1,400.00	
3.	Ball Screw End-support	1	350.00	350.00	
4.	BOSCH Shaft SZ 20, L 300mm	4	42.50	170	
5.	Ball Screw Lubrication	1	50.00	50.00	
6.	Ball Bearing id20 od35	8	20	160.00	
7.	Ball Bearing id45 od 58	3	60	180.00	
	Sum	٠٠.	19.3	3,110.00	
UNIVERSITI TEKNIKAL MALAYSIA MELAKA					
Tim	ing Pulley & Timing Belt				
1.	MXL-140T Alum.T/Pulley	1	120.00	120.00	
2.	MXL-70T Alum.T/Pulley	1	80.00	80.00	
3.	MXL-589.3-15mm Alum.T/Belt	1	245.00	245.00	
4.	OD:75Alum.T/Pulley	1	90.00	90.00	
5.	OD:75Alum.T/Pulley	1	60.00	60.00	
6.	MXL-520.1-15mm	1	225.00	225.00	
7.	Alum. Flange	1	40.00	40.00	

8.	MXL-40T Alum.T/Pulley	1	145.00	145.00	
9.	MXL-48T Alum.T/Pulley	1	175.00	175.00	
10.	MXL-104T Alum.T/Belt	1	220.00	220.00	
11.	MXL-48T Alum.T/Pulley	1	160.00	160.00	
12.	OD:25Alum.T/Pulley	1	50.00	50.00	
13.	OD:50Alum.T/Pulley	1	75.00	75.00	
14.	OD:30Alum.T/Pulley	2	60.00	120.00	
15.	OD:120Alum.T/Pulley	1	120.00	120.00	
16.	OD:60Alum.T/Pulley	1	80.00	80.00	
17.	OD:70Alum,T/Pulley	1	85.00	85.00	
18.	OD:45Alum.T/Pulley	1	75.00	75.00	
	Sum			2,165.00	
Electronic Component					
1.	R-Series Minetia Motor	2	900.00	1,800.00	
	R01SAKOE UTOPI – 100MX		اويور		
2.	R-Series Minetia Motor R02SAKOE UTOPI – 200SE	AYSIA N	1300.00 ELAKA	1,300.00	
3.	Switching Power Supply 12V 8.5A	1	45.00	45.00	
٥.					
1	111				
4.	Switching Power Supply 24V 6.5A	1	135.00	135.00	
4.5.	Switching Power Supply 24V 6.5A Arduino & Sheild Set			135.00 150.00	
	Switching Power Supply 24V 6.5A	1	135.00	135.00	
	Switching Power Supply 24V 6.5A Arduino & Sheild Set Sum	1	135.00	135.00 150.00	

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This chapter will discuss about the conclusion and recommendation of the project. In conclusion part, regarding about an overview of content and summarize of the project. However, the recommendation presents suggestions relating to the project.

5.1 Conclusion

A lot of literature reviews had been done through this few months. Any relevant work, article, journal, and sources had been put into the project chapter two. From study, the detail of OCR technique that used to carry out the project had been explain in section 2.4.

The methodology explain on how the validity and reliability test to produce high percentage of recognition. For validity, the prototype to mimic the environment at Silterra production line is done and the testing sample are created due to the real wafer sample are not provided. The validation is important but a test should also be reliable, three inter related experiment and confirmation test are carry out to identify the best parameter that used in the system and also verify the system performance.

According to the result, the best image size, matrix of median filter, and matching percentage in the system are 30x20, 3x3, and 85% respectively. Besides that, there have some limitation when using 85% of matching percentage, which is the system occur wrong recognition when system read the flaws sample in character C, F, and 3, but can read and recognize all the good sample correctly. Therefore, to solve this problem, the adjustment value of white pixel left at recognition block for character C, F, and 3 is necessary to make the system recognize correctly. However, the environment is the important matter and should be consider.

From the result finding, for both white and yellow light condition can produce same result which is produced 100% of recognition when read good sample and 0% of recognition when read flaws sample. This can conclude that by using different color of light have not affect the result and able to produce same result but the important thing is all the process in training phase and matching phase must at same light condition. For example, if the environment is green color, then the process for template saving and recognition process also must in green light condition.

However, from the requirement from the Silterra Company, all the data are needed to store in Excel file for tracking purpose. Therefore, by applying Matlab coding and LOOKUP function in Excel, finally all the data can store to Excel file for tracking process and help the workers to have a better visualization and it is more user friendly.

Through this, the first and second objective had achieved.

5.2 Recommendation

For future work, implementation of Graphical User Interface(GUI) into the vesion system design to allow everyone have a better visualization and more user friendly. The GUI will enhance the system with graphical image, and include button that can check error and adjust the alignment on the incoming wafer.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REFERENCES

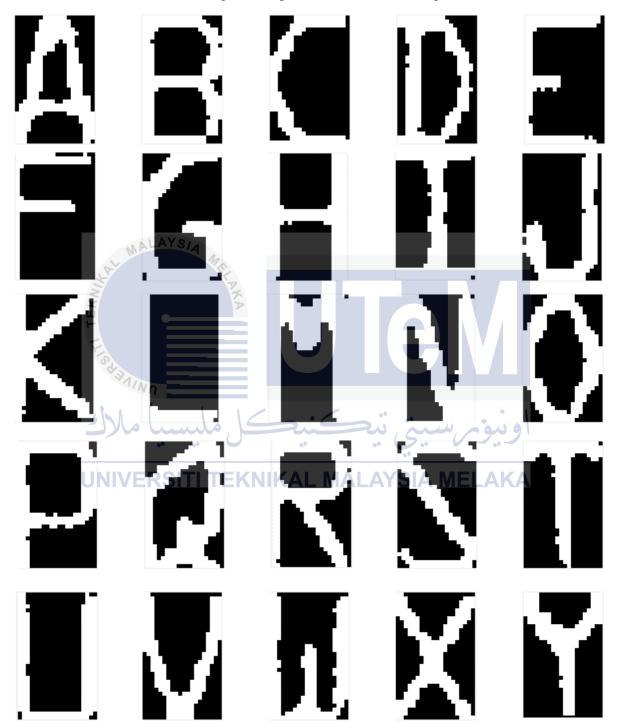
- [1] W. Badawy, "Automatic License Plate Recognition (ALPR): A State of the Art Review," 2013.
- [2] N. Y. Khan, A. Imran, and N. Ali, "Distance and Color Invariant Automatic License Plate Recognition System," in *Emerging Technologies*, 2007. *ICET* 2007. *International Conference on*, 2007, pp. 232–237.
- [3] S.-L. Chang, L.-S. Chen, Y.-C. Chung, and S.-W. Chen, "Automatic license plate recognition," *Intelligent Transportation Systems, IEEE Transactions on*, vol. 5, no. 1, pp. 42–53, 2004.
- [4] G. Vamvakas, B. Gatos, N. Stamatopoulos, and S. J. Perantonis, "A complete optical character recognition methodology for historical documents," in *Document Analysis Systems*, 2008. DAS'08. The Eighth IAPR International Workshop on, 2008, pp. 525–532.
- [5] U. Garain, S. Debnath, A. Mandal, and B. Chaudhuri, "Compression of scan-digitized indian language printed text: a soft pattern matching technique," in *Proceedings of the 2003 ACM symposium on Document engineering*, 2003, pp. 185–192.
- [6] T. V. Tjahja, A. S. Nugroho, N. A. Azis, R. M. Hikmah, and J. Purnama, "Recursive Text Segmentation for color images for Indonesian Automated Document Reader," in *Advanced Computer Science and Information System (ICACSIS)*, 2011 International Conference on, 2011, pp.337–342.
- [7] E. Valveny and A. López, "Numerical recognition for quality control of surgical sachets," in *Document Analysis and Recognition*, 2003. Proceedings. Seventh International Conference on, 2003, pp. 379–383.
- [8] H. Zhao, D. Zhou, and Z. Wu, "Smt product character recognition based on bp neural network," in *Natural Computation (ICNC), 2010 Sixth International Conference on*, vol. 2, 2010, pp. 589–593.

- [9] R. P. Ghugardare, S. P. Narote, P. Mukherji, and P. M. Kulkarni, "Optical character recognition system for seven segment display images of measuring instruments," in *TENCON 2009-2009 IEEE Region 10 Conference*, 2009, pp. 1–6.
- [10] V. Rani and others, "Segmentation of Handwritten Text Document Written in Devanagri Script for Simple character, skewed character and broken character," *INTERNATIONAL JOURNAL OF COMPUTERS* & *TECHNOLOGY*, vol. 8, no. 1, pp. 686–691, 2013.
- [11] M. Hanmandlu, K. R. M. Mohan and H. Kumar, "Neural-based Handwritten character recognition", in Proceedings of Fifth IEEE International Conference on Document Analysis and Recognition, ICDAR'99, Bangalore, India, (1999), pp. 241-244.
- [12] T. V. Ashwin and P. S. Sastry, "A font and size-independent OCR system for printed Kannada documents using support vector machines", in Sadhana, vol. 27, Part 1, (2002) February, pp. 35–58.
- [13] P. Singh and S. Budhiraja, "Feature Extraction and Classification Techniques in OCR Systems for Handwritten Gurmukhi Script-A Survey," International Journal of Engineering, 2011.
- [14] Mantas J , "An overview of character recognition methodologies," Pattern Recognition .vol.19, Jan,1986, pp.425–430.
- [15] V. Rani and others, "Segmentation of Handwritten Text Document Written in Devanagri Script for Simple character, skewed character and broken character," INTERNATIONAL JOURNAL OF COMPUTERS \& TECHNOLOGY, vol. 8, no. 1, pp. 686–691, 2013.
- [16] Samantha, P, Low Pass Filter. Image processing, [online]. Available at: http://www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4_02. [accessed 13 September 2013]
- [17] F. A. Jassim and F. H. Altaani, "Hybridization of Otsu Method and Median Filter for Color Image Segmentation," arXiv preprint arXiv: 1305.1052, 2013.
- [18] Satalkar, B, Median Filter. Filter.com. [online]. Available at: http://web.engr.oregonstate.edu/~enm/cs519.[accessed [17 September 2013]

- [19] B. Gatos, I. Pratikakis, and S. J. Perantonis, "Adaptive degraded document image binarization," Pattern recognition, vol. 39, no. 3, pp. 317–327, 2006.
- [20] M. Cheriet, N. Kharma, C.-L. Liu, and C. Suen, Character recognition systems: a guide for students and practitioners. Wiley. Com, 2007.
- [21] M. S. M. El-Mahallawy, "A large scale HMM-based omni front-written OCR system for cursive scripts," 2008.
- [22] Aaron, C, Text Line Segmentation. Image processing, [online]. Available at: http://sourceforge.net/projects/devocroncbe/. [accessed 27 September 2013]
- [23] R. R. Hashemi, D. Owen, M. S. Smith, T. Flanigan, and J. R. Talburt, "The effects of image enhancement in OCR systems: a prototype," in Information Technology: Coding and Computing, 2000. Proceedings. International Conference on, 2000, pp. 495–500.
- [24] Joseph, M, Word Segmentation. Image processing.[online] Available at: http://www.licenseplatesrecognition.com/how-lpr-works.html.3. [accessed 15 October 2013]
- [25] Wyatt, B, Character Segmentation. Image processing.[online] Available at: http://stackoverflow.com/questions/7776400/edge-detection-issue-on-text-detection-in-images. [accessed 15 October 2013]
- [26] Ivy Tan, "Design System To Recognize The Scribed Number On The Wafer", 2013.
- [27] O. P. Sharma, M. Ghose, K. B. Shah, and B. K. Thakur, "Recent Trends and Tools for Feature Extraction in OCR Technology," International Journal of Soft Computing and Engineering (IJSCE), 2013.
- [28] M. S. M. El-Mahallawy, "A large scale HMM-based omni front-written OCR system for cursive scripts," 2008.
- [29] K. Prasad, D. C `. Nigam, A. Lakhotiya, and D. Umre, "Character Recognition Using Matlab's Neural Network Toolbox."

APPENDIX A1

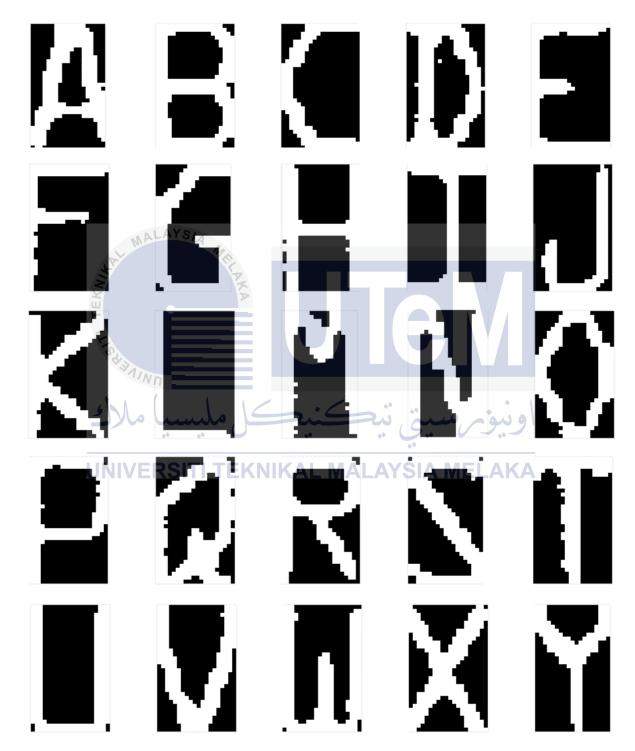
100 good(G) testing sample. **ABC753** SER421 HU0975 BY0853 HYR541


	SERTEL	птисип	110 11 11 11 11 11 11 11 11 11 11 11 11	010033
DEF456	JUO964	CGR475	SDR541	MNA960
GHI789	TYU765	BYI865	OPBUYT	AT0521
JKL245	0PJ876	FRE567	CSE579	LIX763
YUI876	GTR432	MI0965	VYT371	PXT496
HUI976	NJU765	SCE327	NI0047	ZUOB3L
GYUL78	LOBP 24	MXY543	ZWQ35L	X0P042
UIP945	NBV543	PAC698	ВU074Ь	ZU0490
KIY890 ¥	CDS345	ZY0963	СТQ479	A0P645
YRT543 Forthally	LPI754	TDW370	BYA490	LBEZTH
QYE375	QQQ456	НННЕРР	FFF45b	IIIO64
PDY720	ĞURSLO	PP0995	КОИВЬЧ	THY623
FOEB30UNIVE	RSITI TEKNIK TIS533	DDR423	A MELAKA POE466	LOP998
PEP3U2	KPY780	KUT765	LIA755	VRW954
LYK853	CRW431	CRT321	NUY665	LTE964
BYW917	OBBZAL	BPPIOM	POUBB9	BTEOOO
M02597	RR3561	ВИҮЬЬ4	BNYLL4	MUE412
WEE922	NIT553	00075Ь	MIY643	HHH634
BSPATT	LPR589	VYR532	PRG754	NUI476
VCC555	BIT532	MNBO98	M00874	PRE479

APPENDIX A2

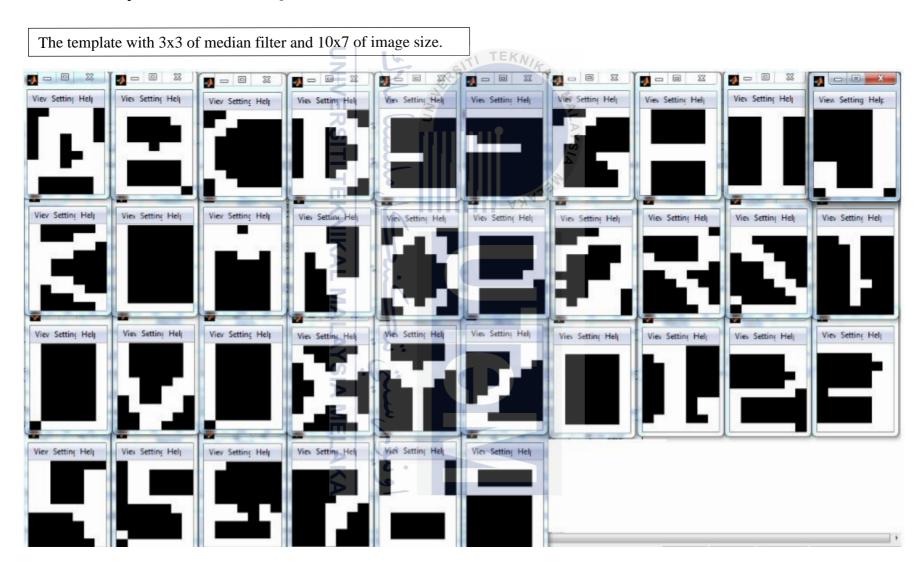
100 not good(NG) testing sample.

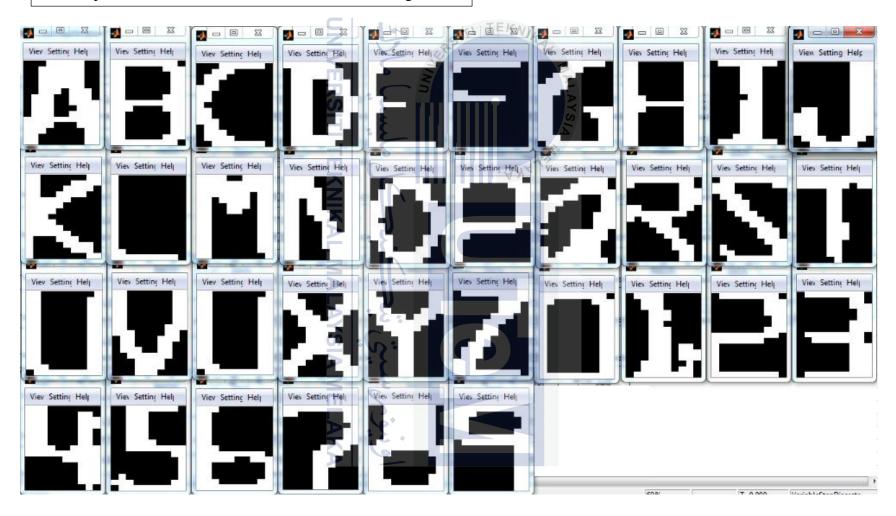
100 not good(NG) testing sample.					
₽ ₽€3E3	SEKAER	naVEn7	240363	CA0523	
DF∈π≘P	300364	C22725	ADTB26	Savada	
3477AR	VV(1758	07E 0 5E	400378	DM0453	
NKTE#E	00145P	FREES?	252523	wMV급단	
M(17475	24 <u>4</u> 735	E03074	VV(1430	∆~+3E3	
4012375	NJ1175E	e./ <u>#</u> 3#¥	CSEETT	_3/753	
37/1574	PUPPET	w=+1365	944327	5/2236	
אבם פון: אברבון:	MDvEnJ	SCEDES	네트라인보투	SH0435	
KENVED #	₹353±5	w\\\573	_10JEP	NupfigE	
AMAERO E	Tp329n	207253	5(10.272	200530	
3)	1/Nn		V78550 .	1110-4	
711263	المستاتم	: Edir	ويورسن نيد	78.450B	
473343 VCC355		21.33.		-	
۷٬ <u>۶</u> ۶٬۶۶ UNI\	ERSITI TEK	(NIRWE MAI	LAYSIA MELAK	: 000004	
eBงภูมิโ	หน่สระบ	ccôdd?	KOUREH	78JU54	
สงสลิสเก	715535	998473	E05455	1,750E4	
705034	[₹] E \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	KurnER	5.7 <i>K</i> 1.05	หรอบบบ	
1,74,855	ረዳብዛንፓ	የሐምዓመ	MUREES	W05475	
R v Tüß.n	anseen	₩¢1 <u>UU</u> E	-0144 <u>-</u>	HHHH-34	
₩\$\5 <u>U</u> ?	145.5EV	807554	RW1FF4	พบ์ปริงภิ	
Meedaa	M12253	000795	WF4F49	EK5430	


APPENDIX B1
The original template with white color light.

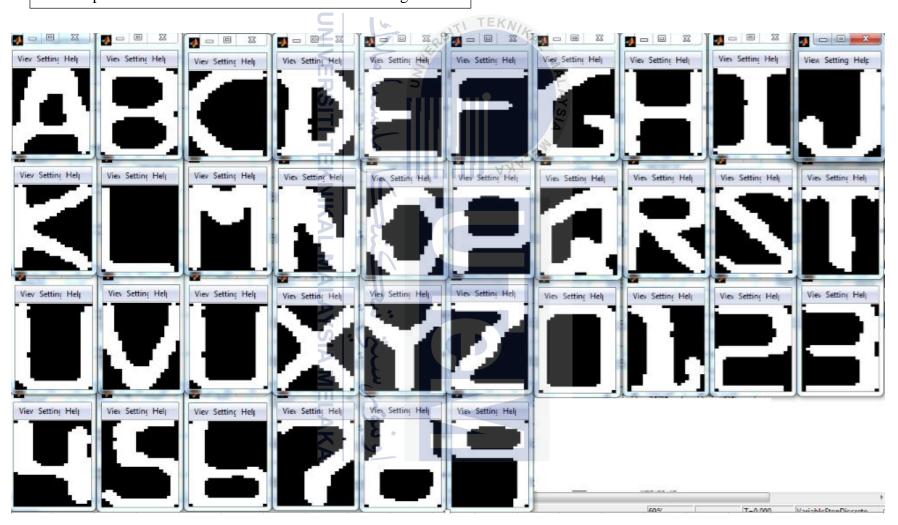
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

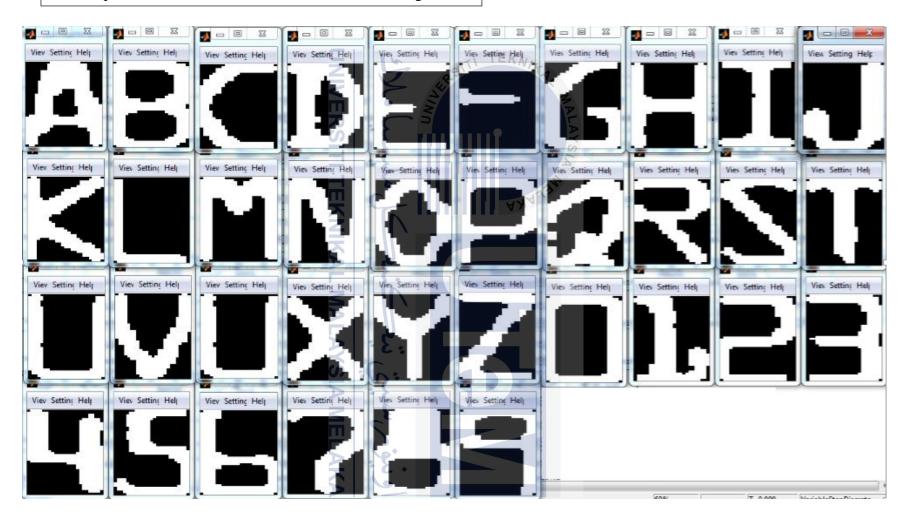
APPENDIX B2
The original template with yellow color light.

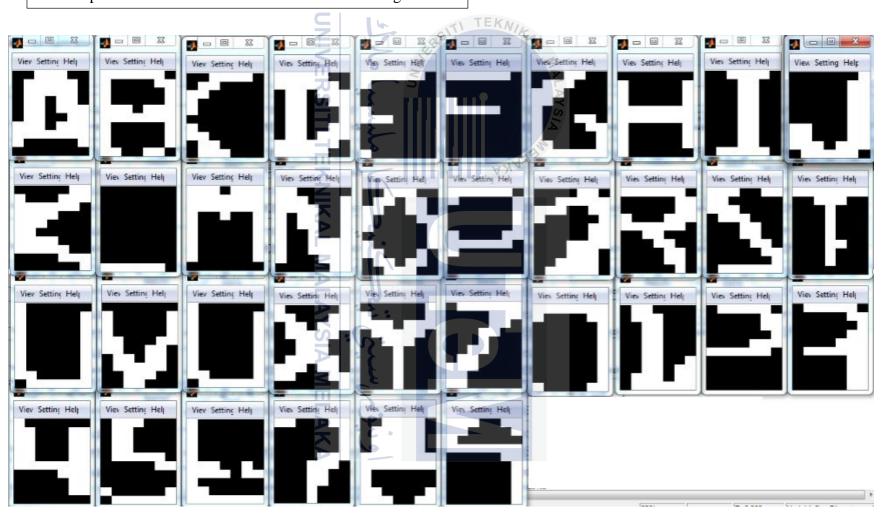


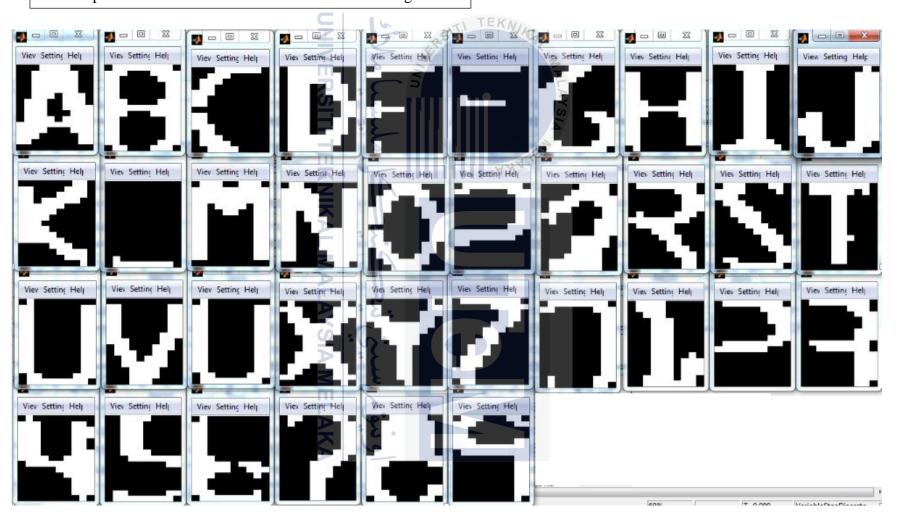

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

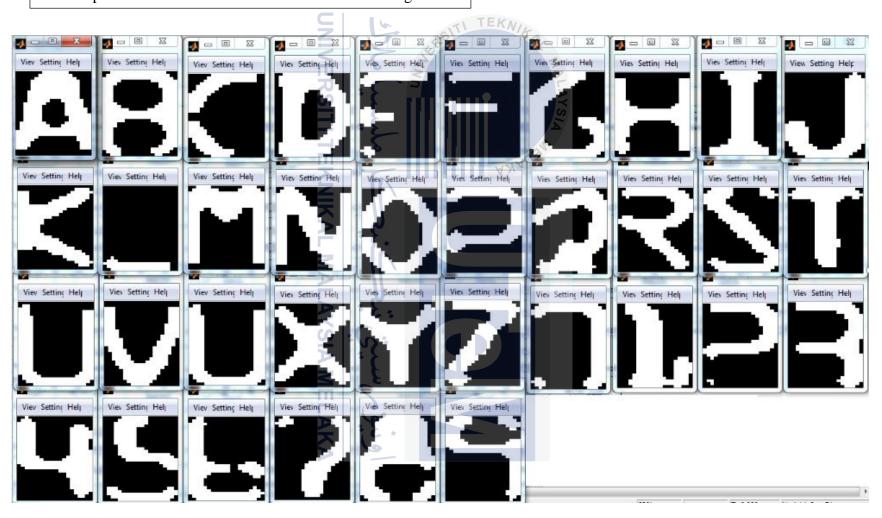
APPENDIX B3

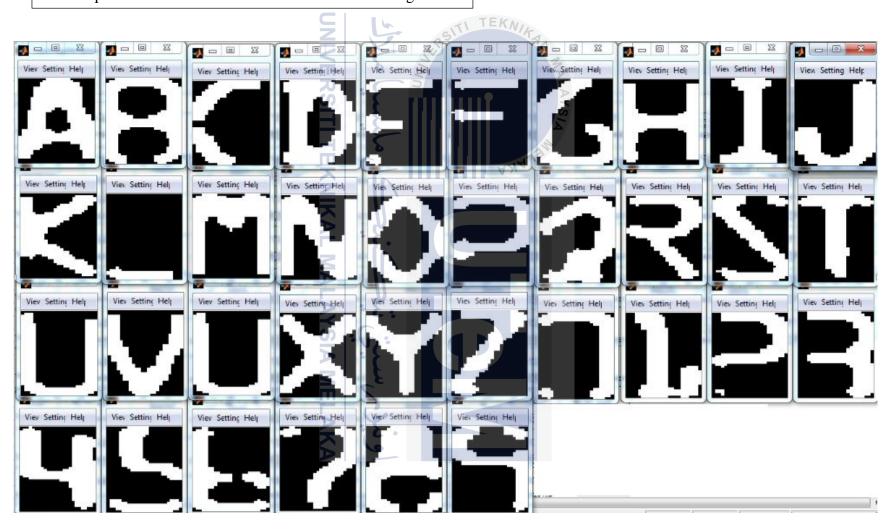

The template with different image size and median filter with white color light stored in database of the vision system.

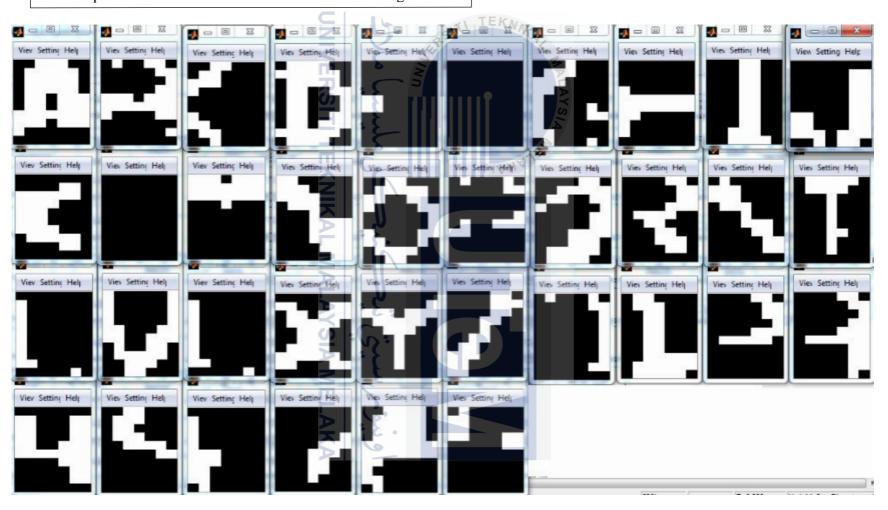

The template with 3x3 of median filter and 15x10 of image size.

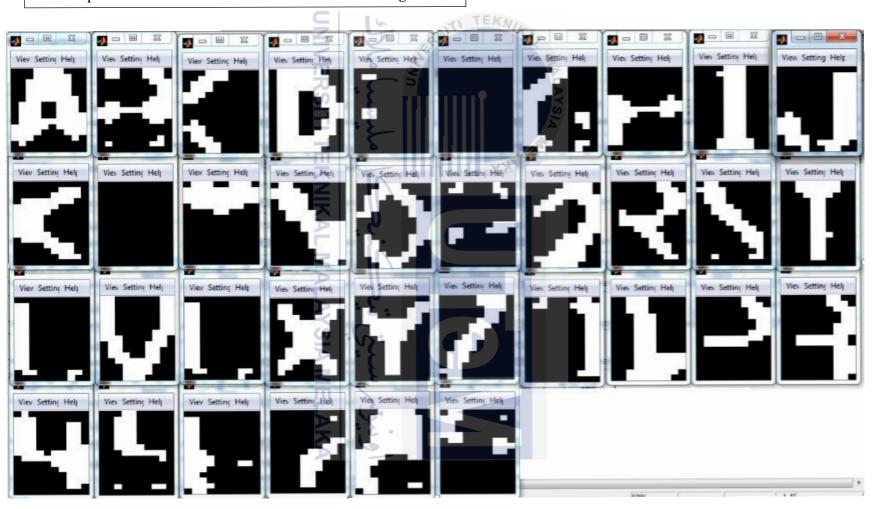

The template with 3x3 of median filter and 30x20of image size.

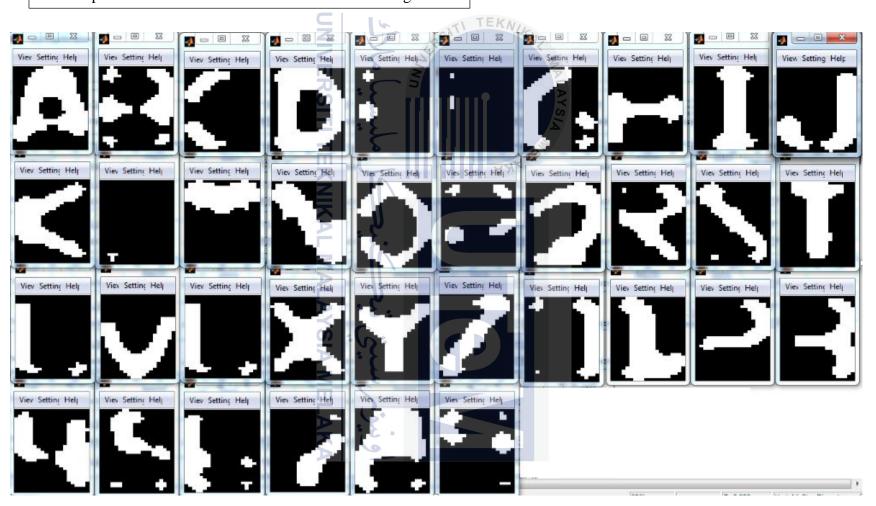

The template with 3x3 of median filter and 40x25 of image size.

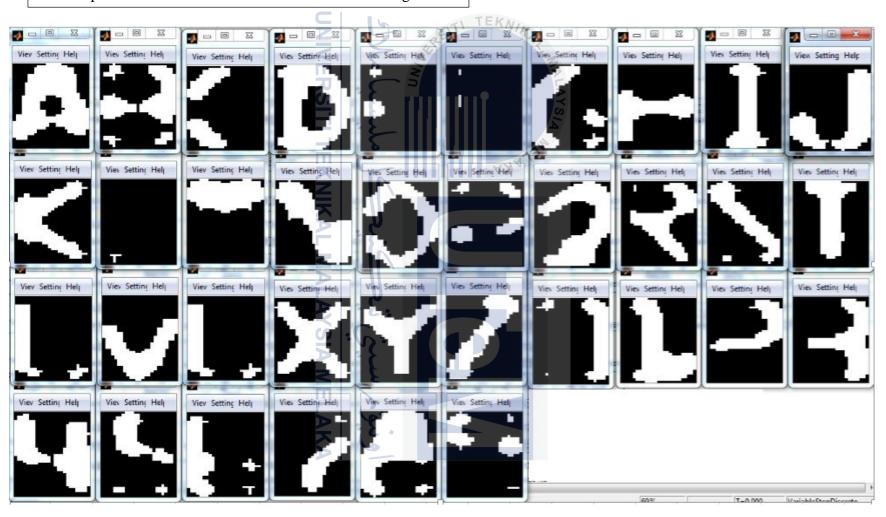

The template with 5x5 of median filter and 10x7 of image size.

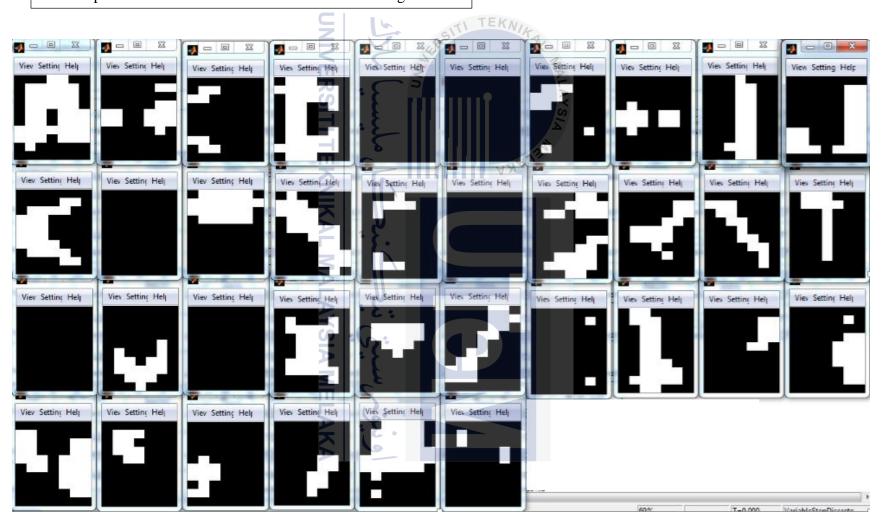

The template with 5x5 of median filter and 15x10 of image size.

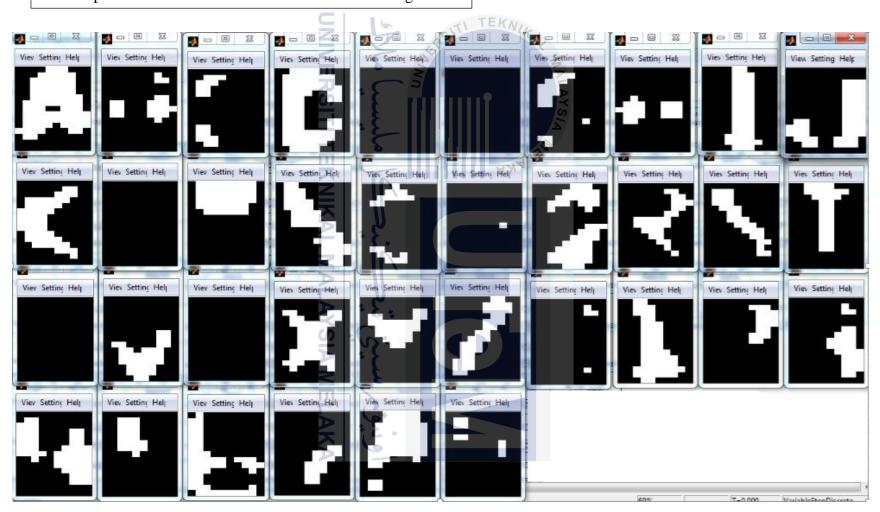

The template with 5x5 of median filter and 30x20 of image size.


The template with 5x5 of median filter and 40x25 of image size.

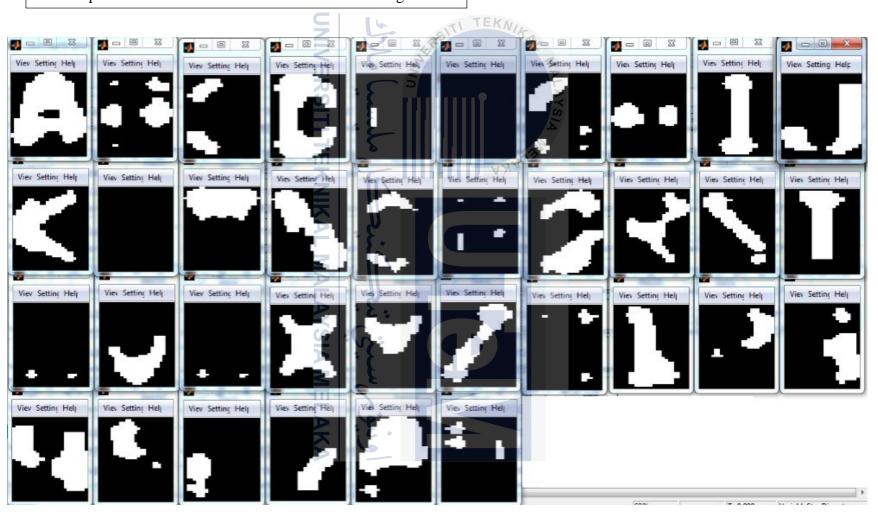

The template with 7x7 of median filter and 10x7 of image size.


The template with 7x7 of median filter and 15x10 of image size.

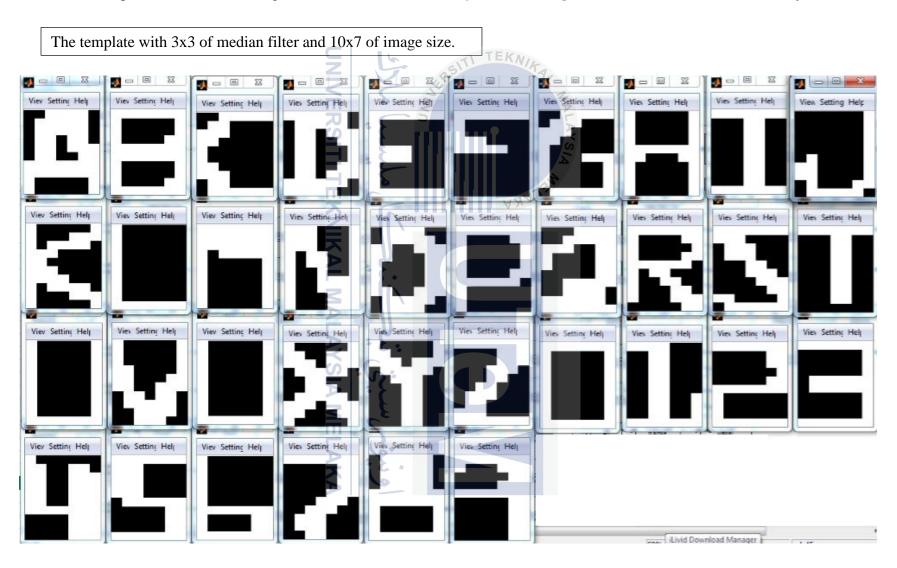

The template with 7x7 of median filter and 30x20 of image size.


The template with 7x7 of median filter and 40x25 of image size.

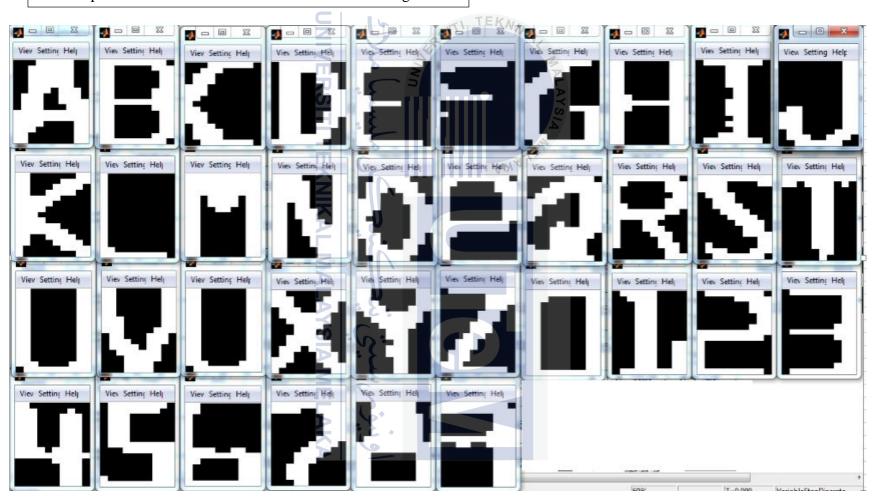

The template with 9x9 of median filter and 10x7 of image size.


The template with 9x9 of median filter and 15x10 of image size.

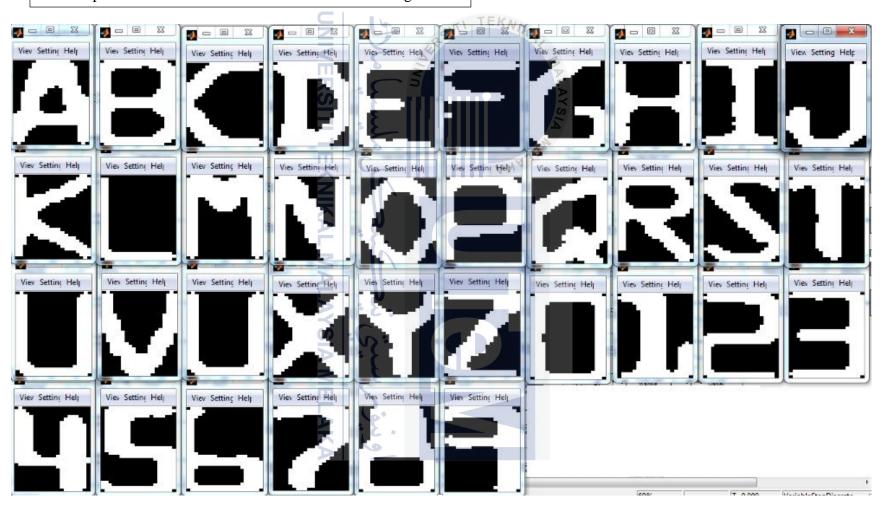
The template with 9x9 of median filter and 30x20 of image size.

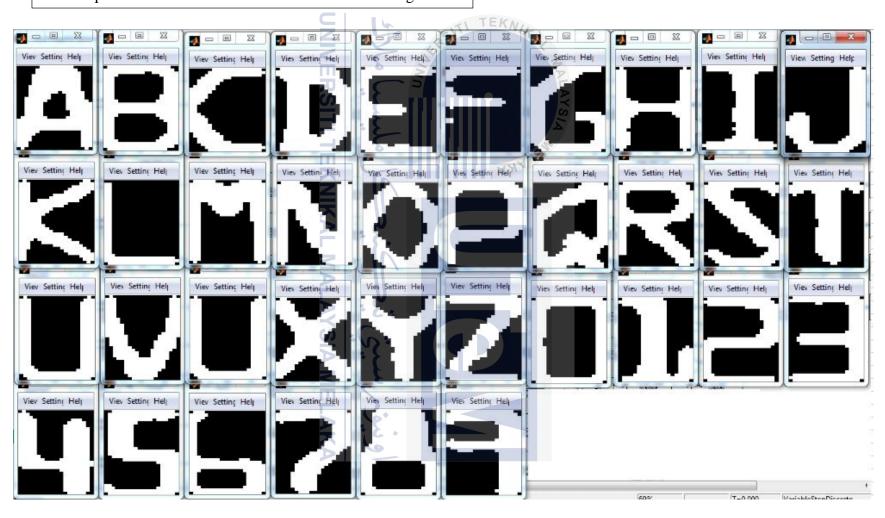


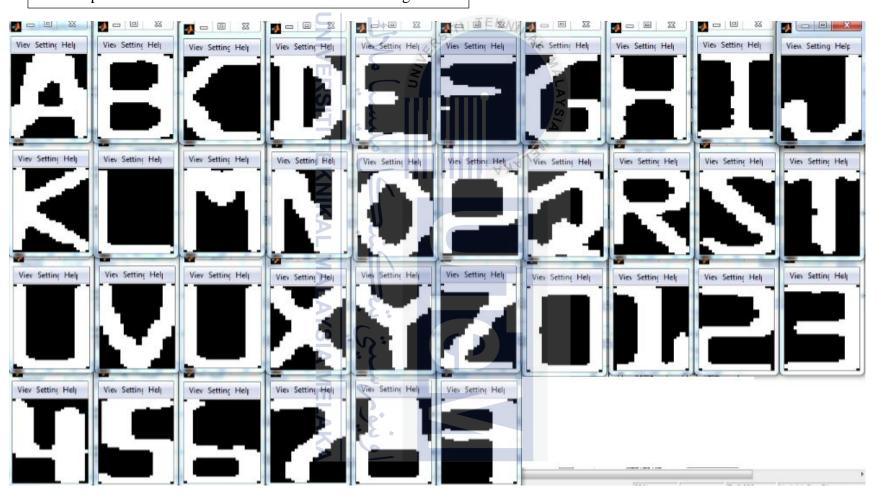
The template with 9x9 of median filter and 40x25of image size.

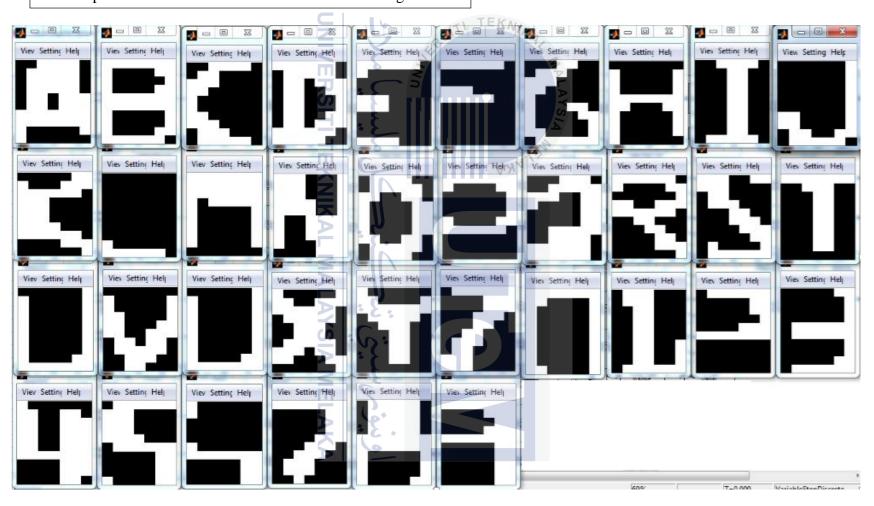


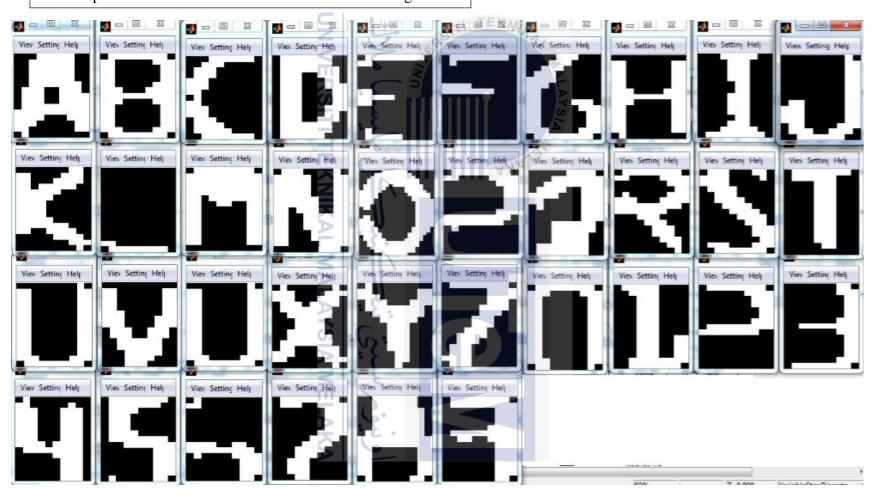
APPENDIX B4

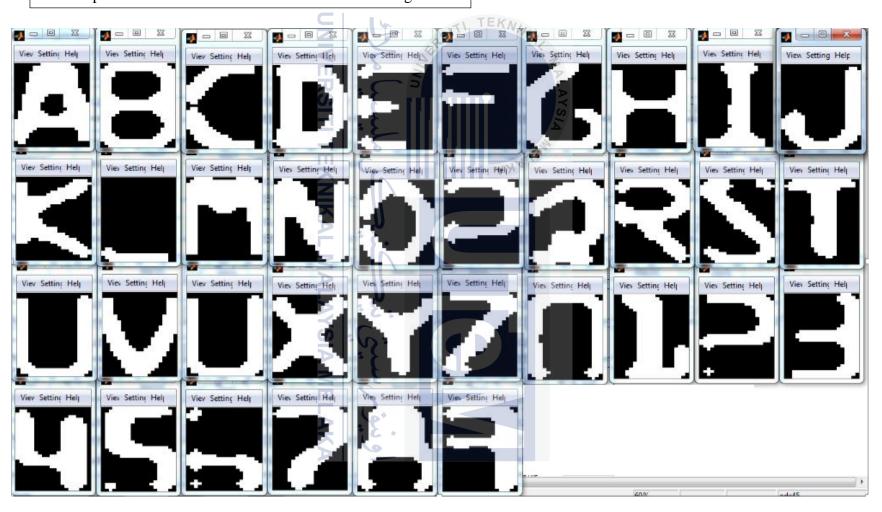

The template with different image size and median filter with **yellow color light** stored in database of the vision system.

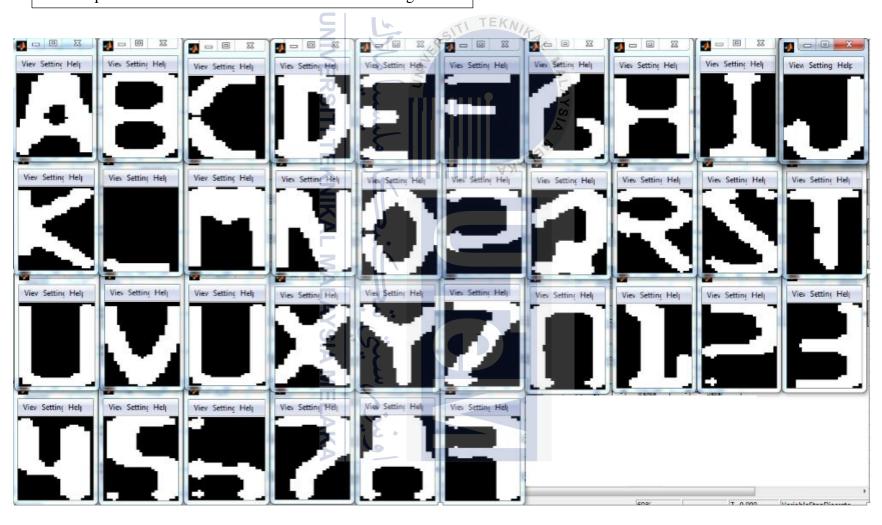

The template with 3x3 of median filter and 15x10 of image size.

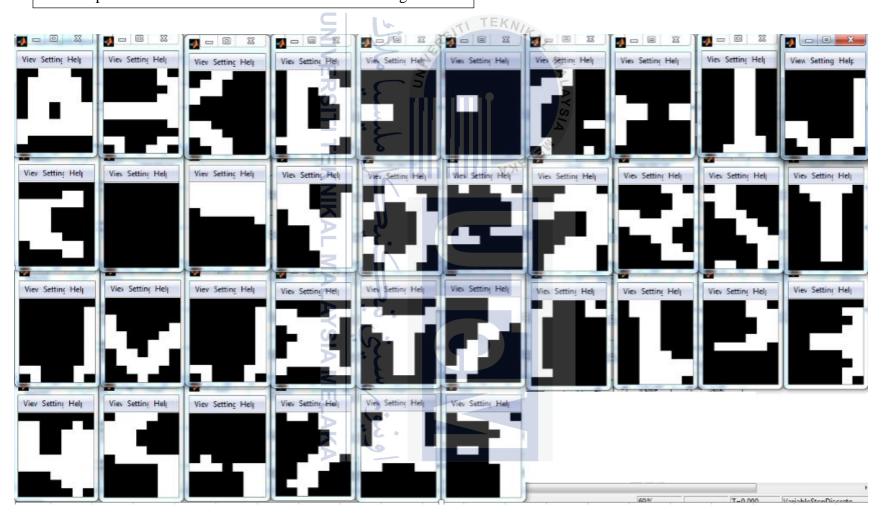

The template with 3x3 of median filter and 15x10 of image size.

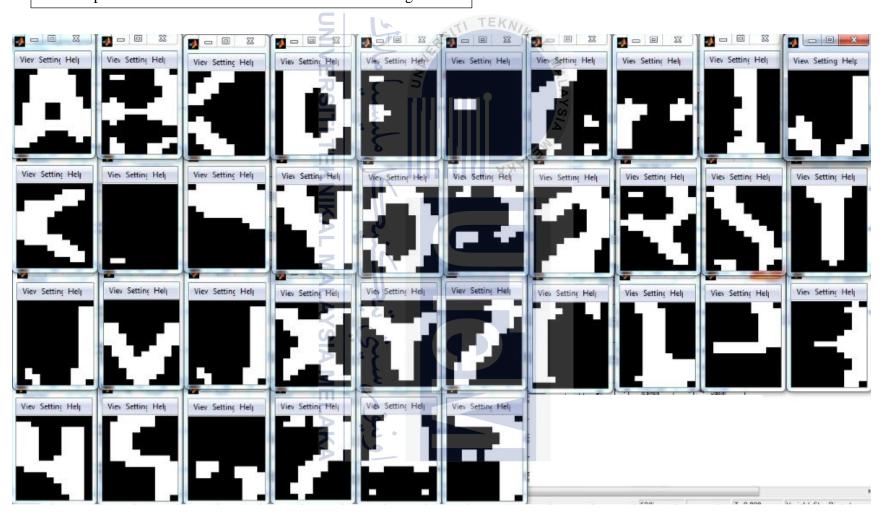

The template with 3x3 of median filter and 30x20 of image size.

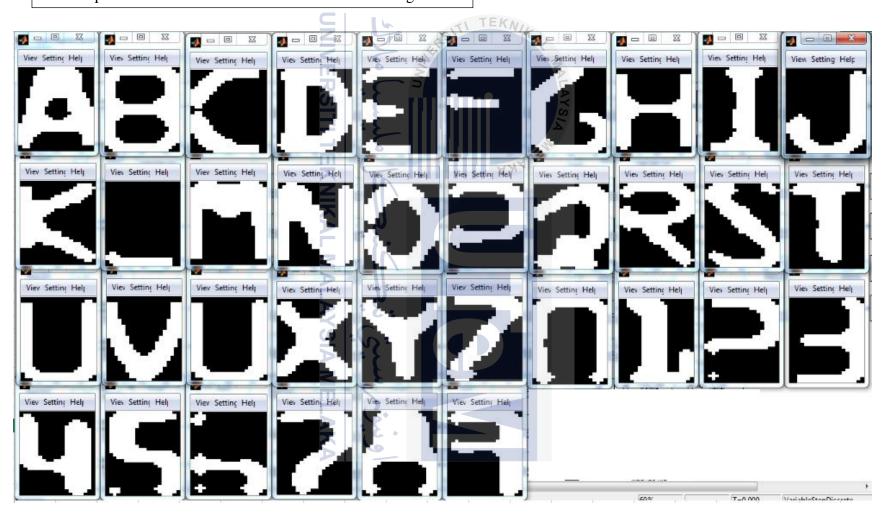

The template with 3x3 of median filter and 40x25 of image size.

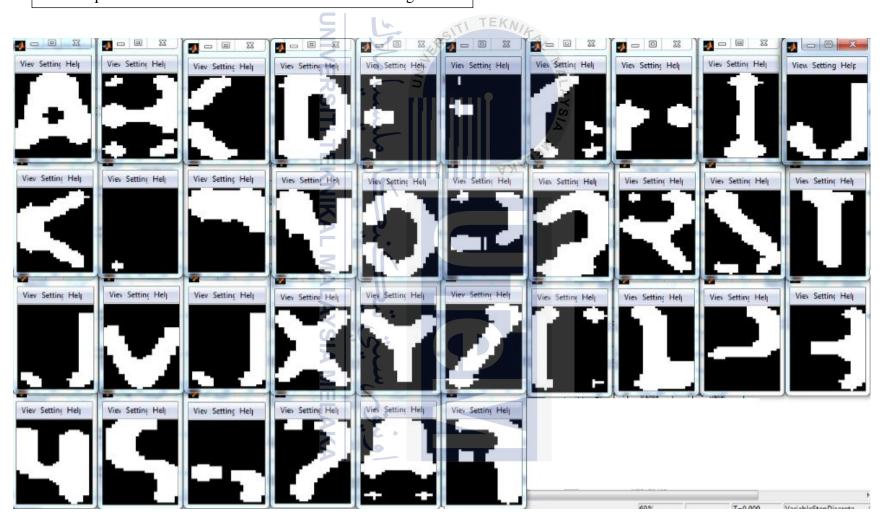

The template with 5x5 of median filter and 10x7 of image size.

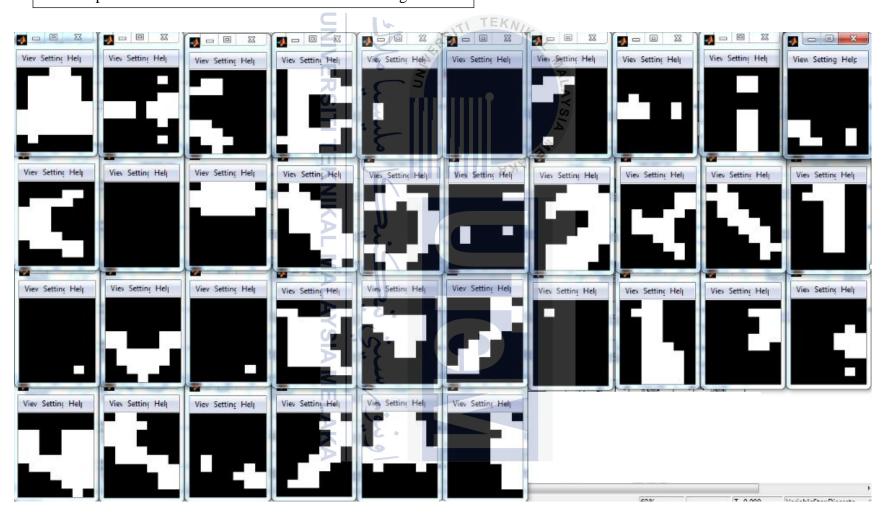

The template with 5x5 of median filter and 15x10 of image size.

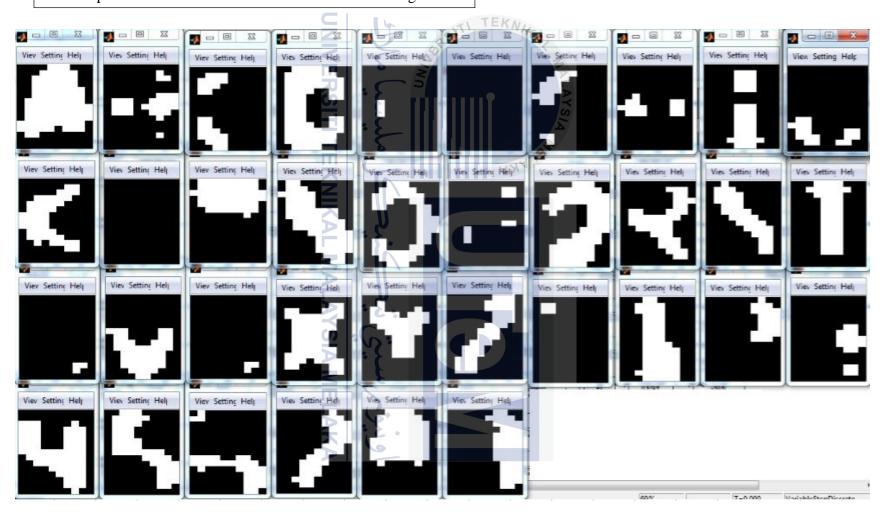

The template with 5x5 of median filter and 30x20 of image size.

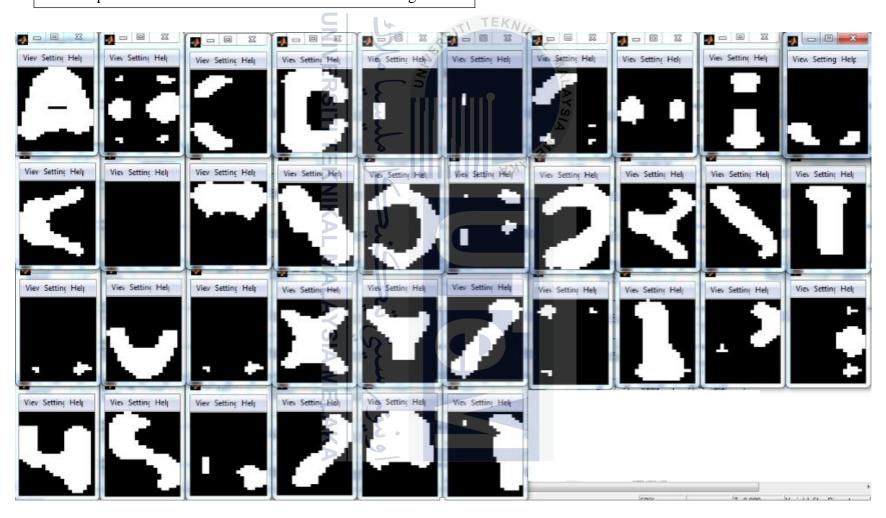

The template with 5x5 of median filter and 40x25 of image size.

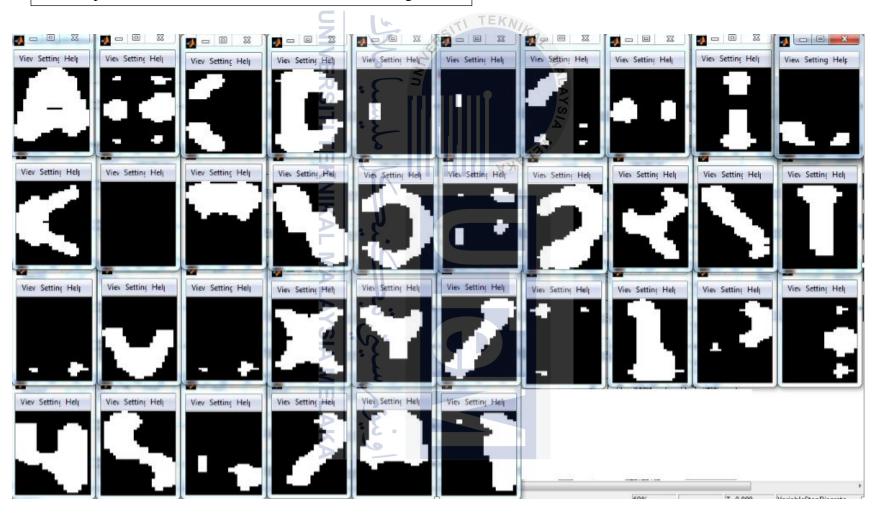

The template with 7x7 of median filter and 10x7 of image size.


The template with 7x7 of median filter and 15x10 of image size.


The template with 7x7 of median filter and 30x20 of image size.


The template with 7x7 of median filter and 40x25 of image size.


The template with 9x9 of median filter and 10x7 of image size.


The template with 9x9 of median filter and 15x10 of image size.

The template with 9x9 of median filter and 30x20 of image size.

The template with 9x9 of median filter and 40x25 of image size.

APPENDIX CWhite pixel value left after match for all the character and alphabet.

6	341	221	260	357	246	138	255	258	304	273	303	249	185	247	287	200	338	216	215	285	183	268	263	314	264	296	172	328	251	223	211	236	268	229	298	82
00	194	236 2	319 2	276	309	343	252 2	202	313	312 2	348	346 2	232	290 2	362	371 2	321	325 2	286 2	342 2	304	177 2	348 2	339	373 2	273 2	281 1	297	232 2	250 2	342 2	169	359 2	406 2	72 2	309
7	381	265	292	357	232	220	333	293	196	269	319	241	355	359	343	214	278	246	275	165	307	212	243	340	204	274	256	296	197	229	301	314	318	70	410	244
9	340	196	199	310	173	253	164	274	311	212	264	172	292	264	276	185	315	313	272	374	116	247	188	329	339	299	229	303	284	286	202	313	55	342	305	297
2	277	237	218	277	208	246	210	207	242	265	379	233	301	295	285	342	316	332	169	281	275	372	307	338	294	268	262	226	247	231	345	69	302	305	158	246
4	361	165	178	331	314	296	295	286	432	255	301	301	275	245	267	228	330	244	299	407	217	218	279	292	306	396	210	398	273	207	58	346	212	293	312	
3	305	153	316	283	232	292	257	180	272	195	387	259	303	313	287	248	316	238	205	313	241	292	277	360	246	238	124	274	107	61	215	206	250	509	238	178 198
2	334	146	271	302	171	243	260	218	249	218	330	198	282	326	294	185	291	209	252	282	234	307	262	371	313	195	149	339	48	114	286	237	271	182	231	243
-	322	354	291	306	277	307	314	201	193	322	336	280	374	318	340	399	331	343	236	206	370	335	302	291	281	267	251	54	342	296	376	213	293	304	305	347 243
0	335	119	246	307	176	224	183	397	294	179	309	187	179	247	243	153	232	212	225	333	123	280	191	382	356	260	74	316	139	141	233	242	174	239	258	
2	311	285	256	299	216	240	291	174	198	265	315	227	305	383	329	262	366	276	233	217	309	386	329	224	294	55	272	260	201	251	395	248	294	279	272	300 112
_	401	359	326	383	296	228	363	340	228	323	279	253	345	319	373	324	338	256	249	179	329	288	247	188	36	262	366	278	311	345	319	312	340	213	354	
×	299	377	354	355	358	300	355	306	342	313	299	309	319	263	385	322	392	258	215	283	335	366	323	32	182	208	256	302	359	341	279	320	302	335	332	320 282
*	431	165	288	375	252	314	247	162	266	243	299	235	263	183	301	226	224	258	293	309	123	240	80	330	268	324	218	272	273	287	287	334	174	259	344	262
>	375	267	260	273	266	282	335	228	344	233	257	257	351	331	253	230	266	308	257	339	229	70	235	366	284	368	276	388	279	295	235	416	270	213	458	276
n	371	135	202	311	186	252	175	124	342	165	277	177	207	205	225	190	256	294	281	397	82	218	115	356	326	322	156	350	235	249	217	302	132	311	308	208
_	356	268	313	396	269	213	330	371	130	370	280	282	300	326	392	285	329	255	244	42	408	339	318	293	195	233	363	173	294	330	416	249	363	152	351	301
S	361	247	236	329	220	234	219	312	232	273	363	245	311	249	331	302	356	278	79	241	269	340	283	242	210	244	258	238	279	235	311	168	242	273	262	244
~	354	272	323	352	247	199	336	291	259	316	292	282	326	290	338	251	329	8	246	226	334	321	308	247	237	229	249	307	210	206	258	299	327	204	315	171
o	317	301	300	265	306	350	263	332	278	251	301	283	289	313	227	286	84	312	351	315	285	240	243	398	344	346	234	324	279	291	321	338	330	251	348	308
۵	321	207	256	325	210	190	245	202	302	229	257	221	219	277	281	74	282	192	283	271	213	236	253	348	318	272	154	388	181	247	215	332	200	173	364	278 190
0	293	273	156	161	268	286	235	296	342	199	337	263	269	315	83	262	218	338	245	383	229	2 <u>6</u> 0	291	396	362	328	228	368	273	287	271	320	286	329	284	278
z	365	225	336	361	332	320	271	182	352	301	301	325	183	81	323	234	272	222	249	319	205	306	165	254	260	394	240	292	323	307	243	286	234	331	302	236
Σ	282	236	297	322	303	257	230	191	339	300	258	298	57	168	282	195	277	291	308	294	190	349	252	323	329	335	207	341	286	312	266	279	267	338	249	209
_	385	219	158	361	230	150	179	212	224	177	217	9	293	309	261	224	268	274	257	307	143	254	193	338	270	252	192	294	203	277	299	274	128	279	314	280
~	291	341	298	355	290	256	301	272	340	317	47	271	257	281	345	268	296	264	353	305	269	260	295	238	296	340	326	350	349	397	275	374	254	351	350	292 197 346 242 326
_	395	209	252	259	272	312	249	232	360	73	319	235	301	317	191	258	252	336	315	411	171	248	231	340	360	290	156	364	229	191	255	312	230	295	310 324	242
_	379	343	276	267	222	248	297	402	1 81	337	319	239	355	351	365	344	284	292	243	125	375	256	5 267	328	228	206	346	162	5 275	297	449	244	320	211		346
=	320	108	301	356	243	265	3 246	6/ t	391	1 226	282	236	214	192	312	181	333	247	310	380	114	247	156	323	325	341	199	393	206	230	3 204	210 281	199	361 292	204 275	197
9	265	215	148	283	194	260	1 38	254	288	221	301	213	249	271	199	1 246	244	346	239	361	3 165	334	251	400	388	328	3 222	302	5 281	267	283		164	361	3 204	1 292
ш.	340	272	3 207	336	143	55	234	263	3 203	270	248	162	276	340	296	201	373	183	216	192	3 278	3 287	332	323	239	217	243	301	216	250	310	3 225	3 273	192	303	3 141
ш	3 361	5 165	6 178	331	6 44	8 150	3 173	5 200	4 208	7 249	9 243	5 117	1 267	5 313	5 289	4 172	4 318	2 202	7 213	5 253	9 193	4 288	7 243	2 364	6 312	310 198	310 162	326 302	5 115	314 287 199	344 299 319	265 246 235 300 218	241 342 178	292 357 247	187 206 285 262 248	327 172 285 332 248 141
٥	2 213	4 315	3 276	0 63	9 316	3 368	8 313	7 376	7 354	6 267	6 359	2 355	6 321	2 355	0 155	5 324	5 264	5 402	8 327	0 385	0 319	5 254	6 377	9 362	5 376			7 32	240 315	4 28	4 29	5 30	1 34	2 35	5 26	5 33.
၁	1 342	7 264	6 53	3 270	6 169	2 193	3 138	0 297	0 247	3 226	7 286	1 172	9 276	5 332	9 160	2 225	4 275	4 305	3 248	9 300	9 210	0 305	1 286	2 369	6 335	4 241	1 253	2 327	9 24		9 34	6 23	2 24	5 29.	6 28	2 28
	<mark>55</mark> 321	88 67	347 286	224 293	379 206	31 292	272 213	120	37 350	316 223	290 337	374 261	270 219	246 245	278 279	11 172	319 294	71 214	346 253	376 369	368 149	363 290	436 191	309 392	399 376	349 284	327 141	339 362	342 119	306 121	282 229	55 24	349 202	378 265	37 20	71 17.
A		B 358		D 22		F 351	G 27	H 325	387	31	29	37	M 27	N 24	0 27	P 341	Q 31	R 371		37	N 36	V 36	W 43	X 30	Y 39	34	0 32	1 33	34	30			6 34	7 37	8 18	9 32
	A	-33	J	_	ш	_	9	-	_		-	_		-	-	-	_	-	S					^	-	17	J	-	C	σī	4	41	w)	1~	w	UI

APPENDIX D

The result for the comparison between the percentages of recognition after matching to the template with difference image size when the 3x3 median filter and 86% of matching percentage is fixed and in white light condition.

				_													2011										
			10X							15x							30X2							40X2			
	C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6
ABC123							ABC123							ABC123							ABC123						
DEF456							DEF456							DEF456							DEF456						
GHI789						NA	GHI789							GHI789						NA	GHI789						
JKL245							JKL245							JKL245							JKL245						
YUI876							YUI876		NA	NA				YUI876		NA					YUI876		NA				
HUI976		NA		NA			HUI976		NA	NA				HUI976		NA		NA			HUI976	NA	NA		NA		
GYU678			NA				GYU678							GYU678							GYU678						
UIP945	NA			NA	N	A	UIP945	1						UIP945	NA			NA			UIP945	NA			NA		
KIY890				NA			KIY890		4					KIY890							KIY890					NA	NA
YRT543			4	V			YRT543			4				YRT543							YRT543						
SER421				7			SER421		Y	Z				SER421							SER421						
JUO964		NΑ	NΑ				JUO964		NA	7	NA			JUO964		NA	NA	NA			JUO964	1	NA	NA	NA		
TYU765			NA				TYU765							TYU765							TYU765						
OPJ876	NA		H				OPJ876							OPJ876							OPJ8 76						
GTR432							GTR432							GTR432							GTR432						
NJU765	NA		NA				NJU765							NJU765	NA		NA			7	NJU765	NA		NA			
LOP654		NΑ	1	2,5			LOP654							LOP654							LOP654						
NBV543				1	9/1		NBV543			NΑ				NBV543							NBV543						
CDS345					1	N	CDS345							CDS345							CDS345						
LP1754							LP1754	,						LP1754							LPI754						
HYR541			6		1		HYR541							HYR541							HYR541	9					
CGR475						0	CGR475	J	0					CGR475		2	٧			11	CGR475	3 (0 1				
BYI865							BY1865	0		J				BY1865			, (40		BY1865	, –	<u> </u>				
FRE567							FRE567							FRE567				••			FRE567						
MIO965		NA	NA				MIO965				NA			MIO965			NA	NA			MIO965						
SCE327				VI	V		SCE327			- K				SCE327	Δ		Y	S	Δ	W	SCE327	K	Δ				
MXY543							MXY543					-		MXY543	- \						MXY543						
PAC698							PAC698							PAC698							PAC698						
ZYO963			NΔ	NA			ZYO963							ZYO963							ZYO963						
TDW370			110	110			TDW370							TDW370							TDW370						
HUO975		NΙΛ	NA	NΙΛ			HUO975							HUO975							HUO975		NA		NA		
SDR541		INA	INA	IVA			SDR541							SDR541							SDR541		IVA		INA		
TYU890			NA				TYU890			NA		NA		TYU890							TYU890			NA		NA	NA
CSE579			INA				CSE579			IVA		IVA		CSE579							CSE579			IVA		NA	NA
VYT371							VYT371	NA						VYT371							VYT371						
NIO047	NA		NA				NIO047	NA						NIO047							NIO047						
	NA		INA				ZWQ356														ZWQ356						
ZWQ356		NI A							NI A	NI A				ZWQ356									NI A	NI A			
BUO746		NA		\vdash			BUO746		NA	NΑ				BUO746							BUO746		NA	NA			
CTQ479			NA	_			CTQ479							CTQ479			NA			NA	CTQ479						
BYA490					NA		BYA490							BYA490							BYA490					NA	NA
BYO853							BYO853							BYO853							BYO853						
MNA960							MNA960							MNA960							MNA960						
ATO521			NA				ATO521			NA				ATO521							ATO521						
LIX763							LIX763							LIX763							LIX763						
PXT496							PXT496							PXT496							PXT496						
SUO836		NA					SUO836							SUO836							SUO836		NA	NA			
XOP042							XOP042							XOP042							XOP042						
ZUO490		NA	NA			NA	ZUO490							ZUO490		NA	NA				ZUO490		NA	NA		NA	

AOP692							AOP692							AOP692							AOP692						
HTS381							HTS381							HTS381							HTS381						
QYE375	NA						QYE375	NA						QYE375	NA						QYE375						
PDY720							PDY720							PDY720							PDY720						
FOE830							FOE830							FOE830							FOE830		NA				
SUE934		NA		NA			SUE934		NA		NA			SUE934							SUE934						
LYK853							LYK853							LYK853							LYK853						
BYW917							BYW917							BYW917				NA			BYW917						
MOS579		NA					MOS579		NA				NA	MOS579							MOS579						
WEE922							WEE922							WEE922							WEE922						
TTA428							TTA428							TTA428							TTA428						
VCC555							VCC555	NA						VCC555							VCC555						
QQQ456	NA	NA	NΑ				QQQ456	NA	NA	NA				QQQ456	NA	NA	NA				QQQ456	NA	NA	NA			
GUR560		NA					GUR560		NA					GUR560							GUR560						
TIS533							TIS533							TIS533							TIS533						
KPY780							KPY780							KPY780							KPY780						
CRW431							CRW431							CRW431							CRW431						
JAS880							JAS880							JAS880							JAS880						
RR3561							RR3561							RR3561							RR3561						
NIT553							NIT553		NA					NIT553							NIT553						
LPR589							LPR589							LPR589							LPR589						NA
BIT532					n/	A	BIT532 /	1						BIT532							BIT532						
HHH666							HHH666		4					HHH666							HHH666						
PPO995			NA	NA	NA		PPO995			NA	NA	NA		PPO995							PPO995			NA	NA	NA	
DDR423			1	7			DDR423		1	7				DDR423							DDR423						
KUT765		NA	3				KUT765			T				KUT765							KUT765						
CRT321			m				CRT321			D				CRT321							CRT321						
MOI998			-				MO1998		NA		NA	NA		MOI998		NA	7				MOI998	1			NA	NA	
BUY664		NA					BUY664							BUY664							BUY664						
000756	NA	NA	ΝÁ				000756	NA	NA	NA				000756	NA	NA	NA				000756						
VYR532			1	37			VYR532	NA						VYR532							VYR532						
MNB098				8			MNB098							MNB098							MNB098		NA			NA	NA
FFF456					41	//	FFF456							FFF456							FFF456						
KOU864		NA	NA				KOU864		NA	NA				KOU864		NA	NA				KOU864						
POE466			6		1		POE466	1	NA			7		POE466			••				POE466	4					
LIA122			_				LIA122	J	۵					LIA122		2	٥			11	LIA122	۱ د	0 1				
NUY665							NUY665			J				NUY665	NA	NA	. (5			NUY665		/				
POU889		NA	NΑ				POU889	~	NA	NA			NA	POU889					9-		POU889		NA	NA			NA
BNY664							BNY664							BNY664							BNY664						
MIY643				M,	V		MIY643		F	K	N			MIY643	Δ		Y	SI	Δ	M	MIY643	K	Δ				
PRG754							PRG754							PRG754			4				PRG754						
MOO874		NA	NΔ				MOO874		NA	NA				MOO874		NA	NA				MOO874		NA	NA			
111064							111064							111064							111064						
THY623							THY623							THY623							THY623						
LOP998		NA					LOP998		NA		NA	NA		LOP998		NA		NA	NA		LOP998						
VRW954							VRW954	NA						VRW954							VRW954						
LTE964							LTE964	IVA						LTE964							LTE964						
BTE000							BTE000							BTE000							BTE000				NA	NA	NA
MUE412		NA					MUE412		NA					MUE412							MUE412				INA	NA	INA
		INA					HHH634		IVA					HHH634													
HHH634		NIA						NIA							NIA	NIA					HHH634	NIA	NIA				
NUI476		NA				NIA	NUI476	NA	\vdash				NI A	NUI476	NA	NA					NUI476	NA	IVA				
PRE479						NA	PRE479						NA	PRE479			0/				PRE479						
		63%	0						729	0						81	70						78	70			
	<u> </u>		_	<u></u>		<u> </u>		<u> </u>			<u> </u>								<u> </u>	<u> </u>		<u> </u>					
After anal	ysis	U,9,	٥,١,	1,1,0,	Q		After anal	ysis	U,I,	9,Q,\	V,O			After anal	ysis	N,U,	0,Q,	9			After anal	ysis	N,U,	0,0,9	9,Q		

APPENDIX E

The result for the comparison between the percentages of recognition after matching with 100 good(G) sample to the template with difference matrix of median filter when the 30x20 of image size and 86% of matching percentage is fixed and in white light condition.

			3X3	}						5X5							7X7						9X9				
	C1	C2	_	C4	C5	C6		C1	C2	_	_	C5	C6		C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6
ABC123	CI	C2	CJ	-	<u>~</u>	-	ABC123	01	C2	00	-	C.0	-	ABC123	CI	02	CS	C-7	NA	CU	ABC123	01	NA	NA	NA	NA	-
DEF456							DEF456					NA		DEF456		L,E	E,F		110		DEF456	NA	NA	E,9,F	NA	\vdash	NA
GHI789						NA	GHI789		NA	NA			NA	GHI789		-,-	-,.	NA	NA	NA	GHI789	IVA	NA	2,3,1	NA	-	NA
JKL245							JKL245	NA					NA	JKL245			F,U,L			NA	JKL245			L,E,F,9	NA	-	NA
YUI876							YUI876	140	NA	NA		NΑ		YUI876			1,0,2	NA	NA	140	YUI876	NA	J,3,U	-,-,-,-	NA	-	NA
HUI976		NA		NA			HUI976	NΔ	NA	NA	NΔ			HUI976				NA	NA		HUI976	NA	J,3,U		NA	\vdash	NA
GYU678							GYU678							GYU678					NA	NΑ	GYU678		NA	J,3,U	NA	NA	NA
UIP945							UIP945	NA	ΝΔ		NA		NA	UIP945			NA	NA			UIP945	J,U		NA	NA		NA
KIY890							KIY890		NA					KIY890				NA	NA		KIY890	NA		NA	NA	NA	NA
YRT543							YRT543				NA			YRT543		NA		NA			YRT543	NA	NA		NA		NA
SER421							SER421	NA						SER421	NA	L,E					SER421	NA	NA	NA		NA	NA
JUO964		NΔ	NA	NΑ			JUO964	NA						JUO964		-,-	NA	NA			JUO964		J.3.U	NA	NA	NA	
TYU765			147	147			TYU765	14/		NA	NΔ		NA	TYU765			144	NA		NA	TYU765		NA	J,3,U			NA
OPJ876							OPJ876/		NA	NA		NA		OPJ876	NA	NA		NA	NA		OPJ876	NA	NA	3,0,0	NA	NA	NA
GTR432						M	GTR432	14	140			146		GTR432	13/6	140		146	146		GTR432	146	13/3	NA	130	110	NA
NJU765							NJU765	NΔ	NA	NA	ΝΔ			NJU765	NA			NA		NA	NJU765	NA		J,3,U	NA	NA	NA
LOP654		NA	4	LP			LOP654	1474	. 474	NA		NA		LOP654	F,U,L	NA	NA	144	NA	1474	LOP654	L,E,F,6,9	NA	NA	NA	NA	
NBV543		I VA	-				NBV543			TVA.	NA	IVA		NBV543	NA			NA	IVA		NBV543	NA	NA	NA	NA		\vdash
CDS345			5				CDS345			NA			NA	CDS345			NA			NA	CDS345	NA	NA	NA		\vdash	NA
LPI754			ì				LPI754			NA	NA		110	LPI754	F,L	NA	IVA	NA	NA	IVA	LPI754	L,E,F,6,9	NA	IVA	NA	NA	IVA
HYR541			-				HYR541	NA		INA	NA			HYR541	1,1	IVA		NA	INA		HYR541	NA	NA	NA	NA	-	NA
CGR475							CGR475	INA			NA	NA	NΙΛ					INA	NA	NA	CGR475	NA	IVA	NA	INA	-	NA
BYI865			1				BYI865			NA		IVA	IVA	BYI865				NA	INA	NA	BYI865	NA	NA	NA	NA		NA
FRE567				9			FRE567			INA				FRE567			L,E	NA		NA	FRE567	E,9,F	NA	NA	NA	-	NA
MIO965			NIA	NIA			MIO965		NIA	NA	NIA			MIO965	NA		NA	NA		NA		NA	IVA	NA	NA	\vdash	NA
SCE327			NA	NA		1//	SCE327		INA	INA	INA			SCE327	NA		L,E,F	INA		NA	MIO965 SCE327	NA	NA	NA	INA	\vdash	
											NIA				NA .		L, E, F	NA		NA			IVA	NA	NA	NA	NA
MXY543 PAC698				1	A		MXY543 PAC698				NA			MXY543 PAC698 •	NA		40	INA	NA	NI A	MXY543 PAC698	NA NA	1	NA	NA		NI A
					W	0	ZYO963			9	+				IVA		23	NA	INA	INA	ZYO963	INA	NA	NA	NA	\vdash	NA
ZYO963												NI A		ZYO963			**	NA	NA			7,, -			NA	NA	NI A
TDW370 HUO975		NI A	NA	NI A			TDW870 HUO975	NI A	NA	NA	NIA	NA		TDW370 HUO975			94	NA		NA	TDW370 HUO975	NA	NA J,3,U	NA NA	NA	-	NA NA
SDR541		INA	NA	INA			SDR541	INA	NA	INA	INA			SDR541	NIA				NA	NA	SDR541		NA		NA	NA	NA
TYU890		Н	Н	N		/ =	TYU890	П	-	NA		NA		TYU890	NA		AV	NA NA	NA	\Box	TYU890	NA	NA	NA	NA	NIA	NA
										NA	-	IVA	-		171	NIA	L,E	NA		NIA		NIA	_	J,3,U		NA	-
CSE579 VYT371							CSE579 VYT371							CSE579 VYT371		NA	L,E		NA NA	NA	CSE579 VYT371	NA NA	NA NA	NA	NA	-	NA NA
									NIA	NIA					NIA				INA	NIA				NIA	NIA	INA	
NIO047 ZWQ356							NIO047 ZWQ356		NA	INA				NIO047 ZWQ356	NA		NA		NA	NA	NIO047 ZWQ356	NA	NA NA	NA NA	NA	NA	NA NA
BUO746							BUO746							BUO746			NA	NA	INA		BUO746	NA	J,3,U	NA	NA	INA	NA
CTQ479			NA			NA	CTQ479			NA		NIA	NI A	CTQ479			NA	INA	NA	NIA	CTQ479	NA NA	∪,5,∪		INA	NA	NA
BYA490			INA			NA	BYA490			INA		NA	INA	BYA490			NA		_	INA			NA	NA		\vdash	NA
																	NIA	NI A	NA		BYA490	NA		NI A	NI A	-	INA
BYO853							BYO853				210			BYO853	NI A	NI A	NA	NA	NA		BYO853	NA	NA	NA	NA NA	NA	210
MNA960							MNA960				NA			MNA960	NA	NA		NA			MNA960	NA	NA			-	NA
ATO521							ATO521							ATO521			NA	NA			ATO521		NA	NA	NA	\vdash	NA
LIX763							LIX763		NA					LIX763	F,U,L			NA			LIX763	L,E,F,6,9	NA		NA	NA	NI O
PXT496							PXT496	N/ A	B1.5					PXT496	NA		NI C	NI A	NA		PXT496	NA	1.0.11	NI A	NA	NA	NA
SUO836							SUO836	NA	NA					SUO836	NA		NA	NA			SUO836	NA	J,3,U	NA	NA	\vdash	NA
XOP042							XOP042							XOP042		NA	NA				XOP042	NA	NA	NA	NA	-	NA
ZUO490							ZUO490		NA			NA		ZUO490		NA	NA		NA		ZUO490		J,3,U	NA		\vdash	NA
AOP692							AOP692							AOP692		NA	NA		NA		AOP692		NA	NA	NA	NA	NA
HTS381							HTS381	NA						HTS381			NA		NA		HTS381	NA		NA		NA	NA
QYE375	NΑ						QYE375	NΑ				NA		QYE375	NA		L,E		NA	NA	QYE375	NA	NA	NA		NA	NA

PDY720							PDY720							PDY720	NA			NA			PDY720	NA	NA	NA	NΙΛ	NA	NΙΔ
FOE830							FOE830							FOE830	E,U	NA	L,E	NA			FOE830	E.9.F	NA	NA	NA	IVA	NA
SUE934		NA		NA			SUE934	NΔ	NA		NA			SUE934	NA	NA	L,E,F	NA			SUE934	NA	J,U	NA	NA	\vdash	110
LYK853				140			LYK853	100	147		147			LYK853	L,F,U	110	-,-,-	_	NA		LYK853	L,E,F,6,9		110	NA	NA	NA
BYW917				NA			BYW917				NA			BYW917	-,.,-			NA		NA	BYW917	NA	NA	NA	NA	NA	NA
MOS579							MOS579							MOS579		NA	NA	NA	NA	NA	MOS579	NA	NA	NA	NA	NA	NA
WEE922							WEE922				NA			WEE922		L,E	L,E	NA			WEE922	NA	NA	NA	NA	NA	NA
TTA428							TTA428							TTA428						NA	TTA428	NA	NA			NA	NA
VCC555							VCC555							VCC555				NA	NA	NA	VCC555	NA	NA	NA	NA	NA	NA
QQQ456	NA	NA	NA				QQQ456	NA	NA	NA		NA		QQQ456	NA	NA	NA		NA		QQQ456	NA	NA	NA		NA	NA
GUR560							GUR560							GUR560				NA			GUR560		J,3,U	NA	NA	NΑ	NA
TIS533							TIS533		NΑ	NΑ				TIS533			NA	NA			TIS533		NA	NA	NA		
KPY780							KPY780		NA		NΑ			KPY780		NA		NA	NA		KPY780		NA	NA	NA	NA	NA
CRW431							CRW431							CRW431							CRW431	NA	NA	NA			NA
JAS880							JAS880	NA						JAS880			NA	NA	NA		JAS880	NA		NA	NA	NA	NA
RR3561							RR3561							RR3561				NA			RR3561	NA	NA		NA	NA	NA
NIT553	NΑ						NIT553		NA		NΑ			NIT553	NA			NA	NA		NIT553	NA	NA		NA	NA	
LPR589							LPR589							LPR589	L,F,U			NA	NA	NA	LPR589	L,E,F,6,9	NA	NA	NA	NA	NA
BIT532							BIT532		NA					BIT532				NA			BIT532	NA	NA		NA	Ш	NA
HHH666							ННН666	NA	NA	NA				ннн666							ННН666	NA	NA	NA	NA	NA	NA
PPO995			NA	NA	NA		PPO995							PPO995	NA	NA	NA	NA	NA	NA	PPO995	NA	NA	NA	NA	NA	NA
DDR423							DDR423							DDR423							DDR423	NA	NA	NA	NA	NA	\perp
KUT765							KUT765		NA		NA			KUT765				NA		NA	KUT765		J,3,U	NA	NA	NA	NA
CRT321							CRT321							CRT321							CRT321	NA	NA		NA	NA	NA
MOI998		NA		NA	NA	. 10	MOI998		NA	NA	NA			MOI998		NA		NA	NA	NA	MOI998	NA	NA		NA	NA	NA
BUY664				- 4		M	BUY664	*	NA		_			BUY664		NA					BUY664	NA	3,U	NA	NA	NA	
000756				. 8			000756	NA	NA	NA	210		Н	000756				NA	NA		000756	NA	NA	NA	NA	NA	NA
VYR532			-	7			VYR532				NA		Н	VYR532				NA	210	210	VYR532	NA	NA	NA	NA		NA
MNB098 FFF456			1	7			MNB098 FFF456				7	NA NA		MNB098 FFF456	r r u	NA			NA NA	NA	MNB098 FFF456	NA F O F	NA F O F	NA	NA	NA	NA
KOU864			\ <u>\</u>				KOU864		NA	NA	7	IVA		KOU864	F,E,U	NA	NA	NA	IVA		KOU864	E,9,F	E,9,F NA	E,9,F J,3,U	NA	NA NA	NA
POE466			H				POE466		NA	INA			Н	POE466	NA	NA	E,L	NA			POE466	NA	NA	3,3,0	INA	-	NA
LIA122							LIA122		IVA					LIA122	L,F,U	IVA	L,L				LIA122	L,E,F,6,9	NA	NA	NA	NA	NA
NUY665	NA	NΔ	F	A			NUY665						Н	NUY665	2,1,0	NA				NA	NUY665	NA	J,3,U	NA	NA	NA	NA
POU889		-	NA	S		NA	POU889						Н	POU889		NA	NA	NA	NA		POU889	NA	NA	J,3,U	NA	NA	NA
BNY664				4	3		BNY664						П	BNY664		NA					BNY664	NA	NA	NA	NA	NA	
MIY643					~	7//	MIY643		NA					MIY643							MIY643	NA	NA	NA	NA		
PRG754							PRG754							PRG754				NA	NA		PRG754	NA	NA	NA	NA	NA	\sqcap
MOO874			,	1	A		MOO874				1			MOO874		NA	NA 🌣	NA	NΑ		MOO874	NA ®	NA	NA	NA	-	NA
111064			2		V	م	111064	NA	NA	٥		6		111064			2				111064	سه	9		NA	NA	NA
THY623							THY623	,	NA					THY623					5		THY623	NÁ	NA	NA	NA	NA	\Box
LOP998							LOP998	-						LOP998	L,F,U	NA	NA	NA	NA	NA	LOP998	L,E,F,6	NA	NA	NA	NA	NA
VRW954							VRW954				NA	NA		VRW954				NA	NA		VRW954	NA	NA	NA	NA	NA	
LTE964				N		/F	LTE964	Т		ΓF			U	LTE964	L,F\/	ΔΙ	E,L	NA		Δ	LTE964	L,E,F,6,9	Δ	NA	NA	NA	
BTE000				-			BTE000					~ "	4	BTE000		/ 11	-/-				BTE000	NA		NA	NA	NA	NA
MUE412							MUE412		NA					MUE412		NA					MUE412	NA	U,J	NA		NA	NA
HHH634							HHH634							HHH634								NA	NA	NA	NA	$\overline{}$	Ш
NUI476	NΑ	NΑ					NUI476		NΑ	NΑ				NUI476	NA	NA			NA		NUI476	NA	U,J,3	NA	NA	NA	-
PRE479							PRE479	NΑ	L		L	NA	NA	PRE479			E,L		NA	NA	PRE479	NA	NA	NA		NA	NA
		83%							41%	6							11%								0%		
													L				<u> </u>										Щ
After anal	ysis	N,U	1,0,	Q,9			After anal	ysis	HIJ	PQS	UW	057	9	After anal	ysis		wEU,L				After ana	ysis		HMNC	PQR	SUV	
																BHMN	IOPQS	UV						256789			
																							FWES	,LwEF6	9,Uv	vJ2	

APPENDIX F1

The result for the comparison between the percentages of recognition after matching with $100 \mod(G)$ sample to the template with difference matching percentage when the 30x20 of image size and 3x3 of median filter is fixed and in white light condition.

			80%							85%							90%	,		
	C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6		C1	C2	СЗ	C4	C5	C6
ABC123							ABC123							ABC123	NA	NA			NA	NA
DEF456		E,L	F,E,L				DEF456							DEF456	NA	147		NA	NA	NA
GHI789		H.B	I,T				GHI789							GHI789	IVA			NA	NA	NA
JKL245		11,0	L,E				JKL245							JKL245				NA	NA	NA
YUI876			I,T				YUI876							YUI876				NA	NA	NA
HUI976	ЦΒ		I,T				HUI976											NA	NA	
	н,в		1,1											HUI976				NA	NA	NA
GYU678							GYU678							GYU678				_		NA
UIP945						0.0	UIP945							UIP945				NA	NA	NA
KIY890		I,T				0,8,0	KIY890							KIY890				NA	NA	NA
YRT543			I,T				YRT543							YRT543			NA	NA	NA	NA
SER421		E,L					SER421							SER421	NA		NA	NA	NA	-
JUO964							JUO964							JUO964			NA	NA	NA	NA
TYU765	I,T		10	LA	YSI		TYU765							TYU765	NA			NA	NA	NA
OPJ876			M			1	OPJ876							OPJ876	NA			NA	NA	NA
GTR432		I,T					GTR432							GTR432		NA		NA	NA	NA
NJU765		3					NJU765							NJU765				NA	NA	NA
LOP654	L,E	2					LOP654							LOP654		NA		NA	NA	NA
NBV543		X					NBV543							NBV543	NA	NA	NA	NA	NA	NA
CDS345		F					CDS345							CDS345		NA	NA	NA	NA	NA
LPI754	L,E		I,T				LP1754							LPI754				NA	NA	NA
HYR541	н,в						HYR541							HYR541	\ Y		NA	NA	NA	
CGR475		0					CGR475							CGR475			NA	NA	NA	NA
BYI865			I,T				BYI865							BYI865	NA			NA	NA	NA
FRE567	F,E		E,L	Vn			FRE567							FRE567		NA		NA	NA	NA
MIO965		I,T,		1			MIO965							MIO965			NA	NA	NA	NA
SCE327		4	Ē,L				SCE327					0.0		SCE327	NA.	-		NA	NA	NA
MXY543			10	L	w	مار	MXY543					U		MXY543	~ A	J 6		NA	NA	NA
PAC698				40			PAC698		40			40	5	PAC698	7		1	NA	NA	NA
ZYO963							ZYO963						40	ZYO963	NA		NA	NA	NA	NA
TDW370	I,T					0,B,U	TDW370							TDW370	NA /	NA	NA	NA	NA	NA
HUO975	H,B	JN	IV E	R	SIT	0,6,0	HUO975	K		M/	AL	AY	S	HUO975	IVA	INA.	NA	NA	NA	NA
SDR541	11,0						SDR541							SDR541	NIA	_	NA	NA		INA
	1.7					0.0.11									NA	NA	INA		NA	NI A
TYU890	I,T					0,8,0	TYU890							TYU890	NA			NA	NA	NA
CSE579			E,L				CSE579							CSE579		NA		NA	NA	NA
VYT371			I,T	-			VYT371							VYT371	NA	<u> </u>	NA	NA	NA	
NIO047		I,T					NIO047							NIO047	NA		NA	NA	NA	NA
ZWQ356							ZWQ356							ZWQ356	NA	NA	NA	NA	NA	NA
BUO746							BUO746							BUO746	NA	<u> </u>	NA	NA	NA	NA
CTQ479		I,T					CTQ479							CTQ479		NA	NA	NA	NA	NA
BYA490						0,B,U	BYA490							BYA490	NA			NA	NA	NA
BYO853							BYO853							BYO853	NA		NA	NA	NA	NA
MNA960						0,B,U	MNA960							MNA960		NA		NA	NA	NA
ATO521		I,T					ATO521							ATO521		NA	NA	NA	NA	<u> </u>
LIX763	L,E	I,T					LIX763							LIX763				NA	NA	NA
PXT496			I,T				PXT496							PXT496			NA	NA	NA	NA
SUO836							SUO836							SUO836	NA		NA	NA	NA	NA
XOP042							XOP042							XOP042		NA		NA	NA	NA
ZUO490						0,B,U	ZUO490							ZUO490	NA		NA	NA	NA	NA
AOP692							AOP692							AOP692		NA		NA	NA	NA
HTS381	н,в	I,T					HTS381							HTS381		NA	NA	NA	NA	
QYE375		1	E,L				QYE375							QYE375	NA			NA	NA	NA

PDY720		1				lo B II	PDY720							PDY720		NA	I	NA	NA	NA
FOE830	F,E		E,L				FOE830							FOE830		NA		NA	NA	NA
SUE934	F,E		E,L,F			0,6,0	SUE934							SUE934	NA	IVA		NA	NA	NA
LYK853	L,E		Е, L, Г				LYK853							LYK853	INA			NA	NA	NA
BYW917	L,E						BYW917							BYW917	NA		NA	NA	INA	NA
MOS579							MOS579							MOS579	INA	NA	NA	NA	NA	NA
WEE922		EI	E I				WEE922							WEE922	NA	INA	INA	NA	NA	NA
	1.7	E,L	E,L													NI A		+		_
TTA428	I,T	I,T					TTA428							TTA428	NA	NA		NA	NA	NA
VCC555							VCC555							VCC555	NA	N1 A	NI A	NA	NA	NA
QQQ456						0.0	QQQ456							QQQ456	NA	NA	NA	NA	NA	NA
GUR560						0,B,U	GUR560							GUR560			NA	NA	NA	NA
TIS533	I,T	I,T				0.0	TIS533							TIS533	NA		NA	NA	NA	NA
KPY780						0,8,0	KPY780							KPY780				NA	NA	NA
CRW431							CRW431							CRW431		NA	NA	NA	NA	
JAS880						0,8,0	JAS880							JAS880			NA	NA	NA	NA
RR3561							RR3561							RR3561	NA	NA		NA	NA	
NIT553		I,T	I,T				NIT553							NIT553	NA		NA	NA	NA	NA
LPR589	L,E	1			-	-	LPR589							LPR589			NA	NA	NA	NA
BIT532		I,T	I,T			-	BIT532							BIT532	NA		NA	NA	NA	NA
HHH666	H,B	H,B	H,B				HHH666							HHH666			ļ.,	NA	NA	NA
PPO995							PPO995							PPO995			NA	NA	NA	NA
DDR423				LA	YSI		DDR423	_						DDR423	NA	NA	NA	NA	NA	NA
KUT765			I,TN			1	KUT765							KUT765			NA	NA	NA	NA
CRT321		P	1,T				CRT321							CRT321		NA	NA	NA	NA	1
MOI998		3	I,T				MO1998							MOI998		NA	1	NA	NA	NA
BUY664		3					BUY664							BUY664	NA			NA	NA	NA
000756							000756							000756	NA	NA	NA	NA	NA	NA
VYR532		F					VYR532							VYR532	NA		NA	NA	NA	NA
MNB098							MNB098							MNB098	V	NA	NA	NA	NA	NA
FFF456	F,E	F,E	F,E				FFF456							FFF456				NA	NA	NA
KOU864		00					KOU864							KOU864		NA		NA	NA	NA
POE466			E,L/	V0			POE466							POE466		NA		NA	NA	NA
LIA122	L,E	I,T		7 1 1			LIA122							LIA122					NA	NA
NUY665		1	1			1	NUY665							NUY665	NA			NA	NA	NA
POU889			مالا		44	مل	POU889		1			LA		POU889	•	NA	<u> </u>	NA	NA	NA
BNY664							BNY664						5	BNY664	NA	NA	1	NA	NA	NA
MIY643		I,T					MIY643						••	MIY643				NA	NA	NA
PRG754							PRG754							PRG754		NA		NA	NA	NA
MOO874		UN	VE	K			MOO874	KA	\L	W	AL	AY	31	MOO874	LA	NA	NA	NA	NA	NA
111064	I,T	I,T	I,T				111064							111064				NA	NA	NA
THY623	I,T	н,в					THY623							THY623	NA			NA	NA	NA
LOP998	L,E						LOP998							LOP998		NA		NA	NA	NA
VRW954							VRW954							VRW954	NA	NA	NA	NA	NA	NA
LTE964	L,E	I,T	E,L				LTE964							LTE964		NA		NA	NA	NA
BTE000		I,T	E,L	0,B,U	0,B,U	0,B,U	BTE000							BTE000	NA	NA		NA	NA	NA
MUE412			E,L				MUE412							MUE412				NA		NA
HHH634	н,в	Н,В	н,в				HHH634							HHH634				NA	NA	NA
NUI476			I,T				NUI476							NUI476	NA			NA	NA	NA
PRE479			E,L				PRE479							PRE479		NA		NA	NA	NA
			38%						10	0%							0%	_		
After anal	vsis	Ewl. F	wE,Hv	vB.IwT	LWF		After anal	vsis	NA					After anal	vsis	ABDI	NOOR	STVW	Z0234	5679
and	,	Twl,0		_,,,,,,	, ,		and	,							,					
		,0	.,,,,,																	

APPENDIX F2

The result for the comparison between the percentages of recognition after matching with 100 not good(NG) sample to the template with difference matching percentage when the 30x20 of image size and 3x3 of median filter is fixed and in white light condition.

			80%							85%							90%			
	C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6		C1	C2	C3	C4	C5	C6
ABC123	NA	NA	NA		2,E	3,C	ABC123			С			3	ABC123						
DEF456		NA	NA	NA	NA	NA	DEF456			F				DEF456			F			
GHI789			I,E	7,Z		NA	GHI789							GHI789						
JKL245			NA	2,E	NA	NA	JKL245							JKL245						
YUI876			I,E		7,Z	NA	YUI876							YUI876						
HUI976			I,E	NA	7,Z	NA	HUI976							HUI976						
GYU678				NA	7,Z		GYU678							GYU678						
UIP945		I,E		NA	NA	NA	UIP945							UIP945						
KIY890					NA		KIY890							KIY890						
YRT543				NA	NA	3,C	YRT543						3	YRT543						
SER421		NA		NA	2,E		SER421							SER421						
JUO964				NA	NA		JUO964							JUO964						
TYU765			10	7,Z	NA	NA	TYU765							TYU765						
OPJ876			MAL		7,Z	NA	OPJ876							OPJ876						
GTR432				NA		2,E	GTR432							GTR432						
NJU765		4		7,Z	NA	NA	NJU765							NJU765						
LOP654	NA	8		NA	NA	NA	LOP654							LOP654						
NBV543		NA		NA	NA	3,C	NBV543						3	NBV543		7				
CDS345	NA	H		3,C	NA	NA	CDS345	С				7		CDS345		1				
LP1754	NA		I,E	7,Z	NA	NA	LPI754							LPI754	V					
HYR541		E			NA		HYR541							HYR541	\ \ \	7				
CGR475	NA	S.		NA	7,Z	NA	CGR475	С						CGR475						
BYI865	NA	63	I,E		NA	NA	BYI865							BYI865						
FRE567	NA		NAV n	NA	NA	7,Z	FRE567	F						FRE567	F					
MIO965		I,E	4	NA	NA	NA	MIO965							MIO965						
SCE327		4 6 1	NA	3,C	2,E	7,Z	SCE327				•	0		SCE327		-	1			
MXY543			ا م	NA (NA	3,C	MXY543	_			2		3	MXY543		u	91			
PAC698		NA	NA	NA	NA		PAC698 ••			С	00		5	PAC698			-			
ZYO963	Z,E			NA	NA	3,C	ZYO963						3	ZYO963		-				
TDW370				3,C	7,Z	5,0	TDW370							TDW370			_			
HUO975	t	JNII	ER	NA	7,Z	NA	HUO975		VI.	AL	A	YE	51	HUO975		AK	A			
SDR541				NA	NA		SDR541							SDR541						
TYU890				147	NA		TYU890							TYU890						
CSE579	NA		NA	NA	7,Z	NA	CSE579	С						CSE579						
VYT371	1471			3,C	7,Z		VYT371	_						VYT371						
NIO047		I,E		3,0	NA	7,Z	NIO047							NIO047						
ZWQ356	Z,E	1,7		3,C	NA	NA	ZWQ356							ZWQ356						
BUO746	NA		 	7,Z	NA	NA	BUO746							BUO746						
CTQ479	NA			NA	7,Z	NA	CTQ479	С						CTQ479						
BYA490	NA	1	NA	NA	NA		BYA490							BYA490						
BYO853	NA				NA	3,C	BYO853						2	BYO853						
MNA960	IVA		NA	NA	NA	3,0	MNA960						3	MNA960						
ATO521	NA		130	NA	2,E		ATO521							ATO521						
LIX763	NA	I,E		7,Z	NA	3,C	LIX763						2	LIX763						
PXT496	IVA	1,2		NA	NA	NA	PXT496						3	PXT496						
SUO836				IVA	3,C	NA	SUO836							SUO836						
XOP042					NA	2,E	XOP042							XOP042						
		1	-	NIA		Z,E	ZUO490													
ZUO490	NIA	1	-	NA	NA	2.5	AOP692							ZUO490						
AOP692	NA		-	NA 2.C	NA	2,E								AOP692						
HTS381		1		3,C			HTS381							HTS381						4

E,L,6 NA	N. E,L,6 E, N.	NA ,L,6 NA IA NA	3,C 3,C 5,G 7,F NA 5,G 5,G	NA NA 7,F NA NA	FOE830 SUE934 LYK853 BYW917 MOS579 WEE922 TTA428	F				3		FOE830 SUE934	F					
NA I,T	E,L,6 E, N.	,L,6 NA IA NA IA 5,G	5,G 7,F NA 5,G	NA 7,F NA NA	LYK853 BYW917 MOS579 WEE922						_	30LJ34						
NA I,T	NA N	,L,6 NA IA NA IA 5,G	7,F NA 5,G	7,F NA NA	BYW917 MOS579 WEE922						3	LYK853						
NA I,T	NA N	,L,6 NA IA NA IA 5,G	NA 5,G	NA NA	MOS579 WEE922		-					BYW917						
NA I,T	NA N	IA NA IA 5,G NA	NA 5,G	NA	WEE922							MOS579						
NA I,T	NA N	IA NA IA 5,G NA	5,G									WEE922						
I,T	NA N	IA 5,G NA		5,G								TTA428						
	,т	NA			VCC555		С	С				VCC555						
	,Т	5,G			QQQ456							QQQ456						
	,Т		NA		GUR560							GUR560						
NA		1	NA	NA	TIS533					3	3	TIS533						
NA		7,F			KPY780							KPY780						
NA		NA	NA		CRW431	С				3		CRW431						
	NΑ				JAS880							JAS880						
	N.	IA 5,G	NA		RR3561			3				RR3561						
I,T	,Т	5,G	5,G	NA	NIT553						3	NIT553						
		5,G		NA	LPR589							LPR589						
		5,G	NA	NA	BIT532					3		BIT532						
		NA	NA	NA	HHH666							HHH666						
		NA	NA		PPO995							PPO995						
D,0	0,0	NA	NA	NA	DDR423						3	DDR423						
		ALA7FS	NA	5,G	KUT765							KUT765						
	M	NA	NA		CRT321	С			3			CRT321						
\P_\		NA	NA		MOI998							MOI998						
3	7	NA	NA	NA	BUY664							BUY664						
V		7,F	5,G	NA	000756		L					000756						
		5,G	NA	NA	VYR532					3		VYR532						
В,0	3,0		NA		MNB098							MNB098		/				
NA	NA N	IA NA	5,G	NA	FFF456	F	F	F				FFF456	F	F	F			
	-0		NA	NA	KOU864							KOU864						
000		,L,6 NA	NA	NA	POE466							POE466						
I,T		MO	NA	NA	LIA122							LIA122						
		NA	NA		NUY665							NUY665						
1	10.1		-11	NA	POU889				-00			POU889		0	1			
		NA	NA	NA	BNY664	6			J			BNY664	*	3 0	1			
		NA	NA	NA	MIY643					(3	MIY643	7.		1			
		7,F	5,G	NA	PRG754					<u></u>		PRG754						
de LIN			7,F	NA	MOO874				-			MOO874	-	1.00				
I,T	, 1	ERSI	NA	NA	111064	- 1	A A			5		111064	_A	K/				
		NA	NA	NA	THY623						3	THY623						
		NA	NA 5.0	210	LOP998							LOP998						
	-	NA NA	5,G	NA	VRW954							VRW954						
		,L,6 NA		NA	LTE964							LTE964 BTE000						
-		,L,6	+	NIA	BTE000													
	E,	,L,6 NA	NIA.	NA	MUE412							MUE412						
		NA T NA	NA 7.E	NA	HHH634							HHH634						
				+														
			7,5	INA	PRE4/9			0/				PRE4/9				004		
		10076					Z6	/0								476		
		0.0.0	7.555	0.55	0.51		0.5	2				0.51		_				
-	<mark>4,C,B,</mark> I	Bw	I,T NA E,L,6 NA 100% Bw0,2,2wE,7wZ	I,T NA 7,F E,L,6 NA 7,F 100% Bw0,2,2wE,7wZ,7wF,D,Dv	I,T NA 7,F NA E,L,6 NA 7,F NA 100% BW0,2,2WE,7WZ,7WF,D,DW0, F,6,L,	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100% BW0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After anal	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100%	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100% 28 BW0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100% 28% Bw0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100% 28% BW0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100% 28% Bw0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3	I,T NA 7,F NA NUI476 E,L,6 NA 7,F NA PRE479 100% 28% Bw0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3	I,T NA 7,F NA NUI476 NUI476 E,L,6 NA 7,F NA PRE479 PRE479 100% 28% BW0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3 After analysis C,F,3	I,T NA 7,F NA NUI476 NUI476 E,L,6 NA 7,F NA PRE479 PRE479 100% 28% Bw0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3 After analysis	I,T NA 7,F NA NUI476 NUI476 E,L,6 NA 7,F NA PRE479 PRE479 100% 28% BW0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3 After analysis F	I,T NA 7,F NA NUI476 NUI476 NUI476 PRE479 PRE479 PRE479 100% 28% BW0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3 After analysis F	I,T NA 7,F NA NUI476 NUI476 NUI476 NUI476 NUI476 NUI476 NA 7,F NA PRE479 PRE479 4% BWO,2,2wE,7wZ,7wF,D,DwO, F,6,L, After analysis C,F,3 After analysis F	I,T NA 7,F NA NUI476 NUI476 E,L,6 NA 7,F NA PRE479 PRE479 100% 28% 4% Bw0,2,2wE,7wZ,7wF,D,Dw0, F,6,L, After analysis C,F,3 After analysis F

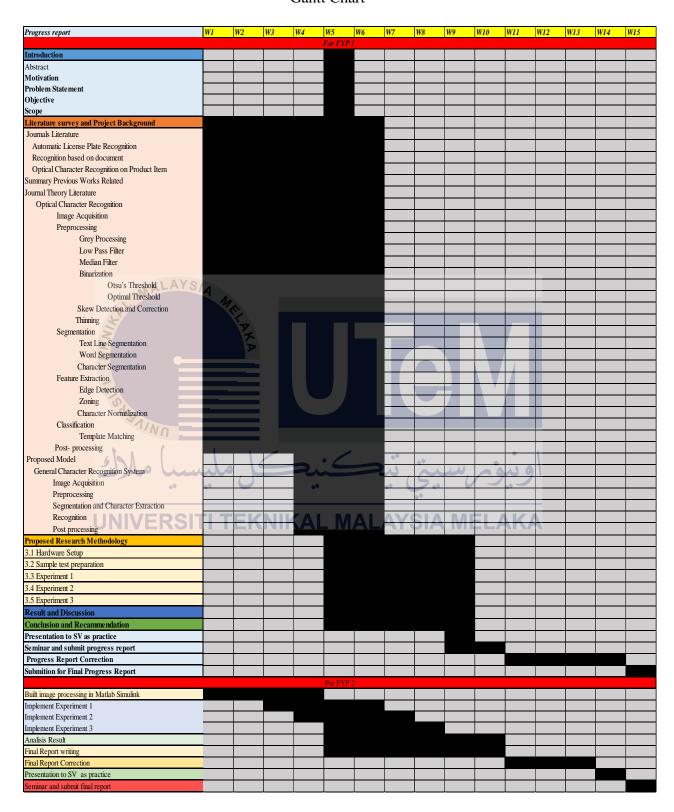
APPENDIX G1

The comparison between the percentages of recognition after adjustment of white pixel value left at character C, F, and 3 in **white light condition** with the three best parameter for 100 good(G) and 100 not good(NG) testing sample.

(Good s	ample	with v	vhite li	ight				Not Go	od sam	ple wit	h white	light	
	C1	C2	C3	C4	C5	C6			C1	C2	C3	C4	C5	C6
ABC123								ABC123	NA	NA	NA	NA	NA	NA
DEF456								DEF456	NA	NA	NA	NA	NA	NA
GHI789								GHI789	NA	NA	NA	NA	NA	NA
JKL245								JKL245	NA	NA	NA	NA	NA	NA
YUI876								YUI876	NA	NA	NA	NA	NA	NA
HUI976								HUI976	NA	NA	NA	NA	NA	NA
GYU678								GYU678	NA	NA	NA	NA	NA	NA
UIP945								UIP945	NA	NA	NA	NA	NA	NA
									NA	NA	NA		NA	NA
KIY890								KIY890				NA		
YRT543								YRT543	NA	NA	NA	NA	NA	NA
SER421								SER421	NA	NA	NA	NA	NA	NA
JUO964			. 1 . 0 .	V 0				JUO964	NA	NA	NA	NA	NA	NA
TYU765		N	ALA	YSIA				TYU765	NA	NA	NA	NA	NA	NA
OPJ876					1/2			OPJ876	NA	NA	NA	NA	NA	NA
GTR432	4	1						GTR432	NA	NA	NA	NA	NA	NA
NJU765	2				Y			NJU765	NA	NA	NA	NA	NA	NA
LOP654	Z				1			LOP654	NA	NA	NA	NA	NA	NA
NBV543	Ш							NBV543	NA	NA	NA	NA	NA	NA
CDS345					_	_		CDS345	NA	NA	NA	NA	NA	NA
LPI754	-							LPI754	NA	NA	NA	NA	NA	NA
HYR541	1	6			-			HYR541	NA	NA	NA	NA	NA	NA
CGR475		47						CGR475	NA	NA	NA	NA	NA	NA
BYI865		31	NO					BYI865	NA	NA	NA	NA	NA	NA
FRE567			- 11					FRE567	NA	NA	NA	NA	NA	NA
MIO965								M1O965	ŅA	NA	NA	NA	NA	NA
SCE327				u	۵			SCE327	NA	NA	NA.	NA 🔝	NA	NA
MXY543			- 40				*	MXY543	NA S	NA	NA	NA	NA	NA
PAC698								PAC698	NA 💀	NA	NA	NA	NA	NA
ZYO963								ZYO963	NA	NA	NA	NA	NA	NA
TDW370	UI	$\mathbf{M}\mathbf{M}$	R			Z	KALI	TDW370	NA.	NA	NA	NA 🛆	NA	NA
HUO975								HUO975	NA	NA	NA	NA	NA	NA
SDR541								SDR541	NA	NA	NA	NA	NA	NA
TYU890								TYU890	NA	NA	NA	NA	NA	NA
CSE579								CSE579	NA	NA	NA	NA	NA	NA
VYT371								VYT371	NA	NA	NA	NA	NA	NA
NIO047								NIO047	NA	NA	NA	NA	NA	NA
ZWQ356								ZWQ356	NA	NA	NA	NA	NA	NA
BUO746								BUO746	NA	NA	NA	NA	NA	NA
CTQ479								CTQ479	NA	NA	NA	NA	NA	NA
BYA490								BYA490	NA	NA	NA	NA	NA	NA
BYO853								BYO853	NA	NA	NA	NA	NA	NA
MNA960								MNA960	NA	NA	NA	NA	NA	NA
ATO521								ATO521	NA	NA	NA	NA	NA	NA
LIX763								LIX763	NA	NA	NA	NA	NA	NA
PXT496								PXT496	NA	NA	NA	NA	NA	NA
SUO836								SUO836	NA	NA	NA	NA	NA	NA
XOP042								XOP042	NA	NA	NA	NA	NA	NA
ZUO490								ZUO490	NA	NA	NA	NA	NA	NA
AOP692								AOP692	NA	NA	NA	NA	NA	NA
HTS381								HTS381	NA	NA	NA	NA	NA	NA
H12281								H12381	IVA	INA	IVA	IVA	INA	IVA

OVESTE						1		OVESTE	21.0	N1.0	212	NI A	NI A	L
QYE375								QYE375	NA	NA	NA	NA	NA	N
PDY720								PDY720	NA	NA	NA	NA	NA	N
FOE830								FOE830	NA	NA	NA	NA	NA	N.
SUE934								SUE934	NA	NA	NA	NA	NA	N.
LYK853								LYK853	NA	NA	NA	NA	NA	N.
BYW917								BYW917	NA	NA	NA	NA	NA	N,
MOS579								MOS579	NA	NA	NA	NA	NA	N,
WEE922								WEE922	NA	NA	NA	NA	NA	N.
TTA428								TTA428	NA	NA	NA	NA	NA	N.
VCC555								VCC555	NA	NA	NA	NA	NA	N
QQQ456								QQQ456	NA	NA	NA	NA	NA	N
GUR560								GUR560	NA	NA	NA	NA	NA	N
TIS533								TIS533	NA	NA	NA	NA	NA	N
KPY780								KPY780	NA	NA	NA	NA	NA	N
CRW431								CRW431	NA	NA	NA	NA	NA	N/
JAS880								JAS880	NA	NA	NA	NA	NA	N/
RR3561								RR3561	NA	NA	NA	NA	NA	N/
NIT553								NIT553	NA	NA	NA	NA	NA	N/
LPR589								LPR589	NA	NA	NA	NA	NA	N/
			1.4	10					NA	NA		NA		N/
BIT532		M	ALA	SIA				BIT532			NA		NA	_
HHH666					1/2			HHH666	NA	NA	NA	NA	NA	N/
PPO995	4							PPO995	NA	NA	NA	NA	NA	N/
DDR423	3				Y			DDR423	NA	NA	NA	NA	NA	N/
KUT765	X							KUT765	NA	NA	NA	NA	NA	N/
CRT321	Ш							CRT321	NA	NA	NA	NA	NA	N/
MOI998	H							MOI998	NA /	NA	NA	NA	NA	N/
BUY664								BUY664	NA _	NA	NA	NA	NA	N/
000756					-			000756	NA	NA	NA	NA	NA	N
VYR532		4						VYR532	NA	NA	NA	NA	NA	N
MNB098		11	No					MNB098	NA	NA	NA	NA	NA	N
FFF456			411					FFF456	NA	NA	NA	NA	NA	N/
KOU864	, 1							KOU864	NΑ	NA	NA	NA	NA	N/
POE466	9	V.		444	۵			POE466	NA	NA	NA	NA o	NA	N/
LIA122								LIA122	NA	NA	NA -	NA	NA	N/
NUY665				-				NUY665	NA	NA	NA	NA	NA	N/
POU889								POU889	NA	NA	NA	NA	NA	N/
BNY664	UN	IIV	ERS		TF	KN	KAL	BNY664	NA S	NA	NA	NA	NA	N/
MIY643								MIY643	NA	NA	NA	NA	NA	N/
PRG754								PRG754	NA	NA	NA	NA	NA	N/
MOO874								MOO874	NA	NA	NA	NA	NA	N/
III064								111064	NA	NA	NA	NA	NA	N/
														-
THY623									NA	NA	NA	NA	NA	N/
LOP998								LOP998	NA	NA	NA	NA	NA	N/
VRW954								VRW954		NA	NA	NA	NA	N/
LTE964								LTE964	NA	NA	NA	NA	NA	N/
BTE000								BTE000	NA	NA	NA	NA	NA	N/
MUE412								MUE412	NA	NA	NA	NA	NA	N/
HHH634								HHH634	NA	NA	NA	NA	NA	N/
NUI476								NUI476	NA	NA	NA	NA	NA	N/
PRE479								PRE479	NA	NA	NA	NA	NA	N/
			100%								0%			
After anal	vsis	NA						After ana	dysis	NA				
	, _, _							THE CHAIN	,					

APPENDIX G2


The comparison between the percentages of recognition after adjustment of white pixel value left at character C, F, and 3 in **yellow light condition** with the three best parameter for 100 good(G) and 100 not good(NG) testing sample.

G	ood s	ample	with v	ellow	light				Not Go	od sami	ple wit	h yellov	v light	
	C1	C2	C3	C4	C5	C6			C1	C2	СЗ	C4	C5	C6
ABC123	-	- CL	-	٠.	-	-		ABC123	NA	NA	NA	NA.	NA	NA
DEF456								DEF456	NA	NA	NA	NA	NA	NA
GHI789								GHI789	NA	NA	NA	NA	NA	NA
										NA	NA		NA	
JKL245								JKL245	NA	-	-	NA		NA
YUI876								YUI876	NA	NA	NA	NA	NA	NA
HUI976								HUI976	NA	NA	NA	NA	NA	NA
GYU678								GYU678	NA	NA	NA	NA	NA	NA
UIP945								UIP945	NA	NA	NA	NA	NA	NA
KIY890								KIY890	NA	NA	NA	NA	NA	NA
YRT543								YRT543	NA	NA	NA	NA	NA	NA
SER421								SER421	NA	NA	NA	NA	NA	NA
JUO964				3.7				JUO964	NA	NA	NA	NA	NA	NA
TYU765		N.	ALA	YSIA				TYU765	NA	NA	NA	NA	NA	NA
OPJ876					4			OPJ876	NA	NA	NA	NA	NA	NA
GTR432		P			10			GTR432	NA	NA	NA	NA	NA	NA
NJU765					7	7		NJU765	NA	NA	NA	NA	NA	NA
LOP654	5					5		LOP654	NA	NA	NA	NA	NA	NA
NBV543	Ш							NBV543	NA	NA	NA	NA	NA	NA
CDS345	F							CDS345	NA	NA	NA	NA	NA	NA
LP1754	_							LP1754	NA _	NA	NA	NA	NA	NA
HYR541	1	.0						HYR541	NA	NA	NA	NA	NA	NA
CGR475		G.						CGR475	NA	NA	NA	NA	NA	NA
BYI865		31	INO					BYI865	NA	NA	NA	NA	NA	NA
FRE567			.411					FRE567	NA	NA	NA	NA	NA	NA
MIO965		1- 1			1	1		MIO965	NA	NA	NA	NA	NA	NA
SCE327	- 5		م ا م		\ a			SCE327	NA	NA	NA	NA	NA	NA
MXY543					(MXY543	NA (NA	NA _	NA	NA	NA
PAC698			•	-			•	PAC698	NA	NA	NA	NA	NA	NA
ZYO963								ZYO963	NA	NA	NA	NA	NA	NA
TDW370		MV	ER!	SIT	TE	KN	IKAL	TDW370	NA S	NA	NA	NA	NA	NA
HUO975								HUO975	NA	NA	NA	NA	NA	NA
SDR541								SDR541	NA	NA	NA	NA	NA	NA
TYU890								TYU890	NA	NA	NA	NA	NA	NA
CSE579								CSE579	NA	NA	NA	NA	NA	NA
VYT371								VYT371	NA	NA	NA	NA	NA	NA
NIO047								NIO047	NA	NA	NA	NA	NA	NA
ZWQ356								ZWQ356	NA	NA	NA	NA	NA	NA
BUO746								BUO746	NA	NA	NA	NA	NA	NA
CTQ479								CTQ479	NA	NA	NA	NA	NA	NA
BYA490								BYA490	NA	NA	NA	NA	NA	NA
BYO853								BYO853	NA	NA	NA	NA	NA	NA
MNA960								MNA960	NA	NA	NA	NA	NA	NA
ATO521								ATO521	NA	NA	NA	NA	NA	NA
LIX763								LIX763	NA	NA	NA	NA	NA	NA
PXT496								PXT496	NA	NA	NA	NA	NA	NA
SUO836								SUO836	NA	NA	NA	NA	NA	NA
XOP042								XOP042	NA NA	NA	NA	NA	NA NA	NA
ZUO490								ZUO490	NA NA	NA	NA NA	NA	NA NA	NA
AOP692								AOP692	NA	NA	NA	NA	NA	NA
HTS381								HTS381	NA	NA	NA	NA	NA	NA

QYE375							QYE375	NA	NA	NA	NA	NA	NA
PDY720							PDY720	NA	NA	NA	NA	NA	NA
FOE830							FOE830	NA	NA	NA	NA	NA	NA
SUE934							SUE934	NA	NA	NA	NA	NA	NA
LYK853							LYK853	NA	NA	NA	NA	NA	NA
BYW917							BYW917	NA	NA	NA	NA	NA	NA
MOS579							MOS579	NA	NA	NA	NA	NA	NA
WEE922							WEE922	NA	NA	NA	NA	NA	NA
TTA428							TTA428	NA	NA	NA	NA	NA	NA
VCC555							VCC555	NA	NA	NA	NA	NA	NA
QQQ456							QQQ456	NA	NA	NA	NA	NA	NA
GUR560							GUR560	NA	NA	NA	NA	NA	NA
							TIS533	NA	NA	NA	NA	NA	NA
TIS533 KPY780							KPY780	NA	NA	NA	NA	NA	NA
									NA		 	 	NA
CRW431							CRW431	NA	-	NA	NA	NA	+
JAS880							JAS880	NA NA	NA NA	NA	NA NA	NA	NA NA
RR3561							RR3561	NA NA		NA		NA	
NIT553							NIT553	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
LPR589		AL/	YSI				LPR589			NA			_
BIT532		W. W.	517	Na			BIT532 HHH666	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
HHH666		1											_
PPO995 DDR423				No.	Y		PPO995	NA NA	NA	NA	NA NA	NA NA	NA
	3				7		DDR423		NA	NA			NA
KUT765	Ш				12		KUT765 CRT321	NA	NA	NA	NA NA	NA	NA NA
CRT321	-							NA	NA NA	NA NA	NA	NA NA	_
MOI998	11						MOI998	NA NA			NA		NA NA
BUY664	0.0		-				BUY664		NA	NA	-	NA	+
000756	0,3						000756	NA	NA	NA	NA	NA	NA NA
VYR532 MNB098		1/Nn					VYR532 MNB098	NA NA	NA NA	NA NA	NA NA	NA NA	NA
FFF456		1					FFF456	NA	NA	NA	NA .	NA	NA
KOU864	48	+ (+	1		KOU864	NA.	NA	NA	NA .	NA	NA
POE466	- 1))	√0 \	Luc.	\			POE466	NA /	NA	NA	NA	NA	NA
LIA122				•		40	LIA122	NA	NA	NA	NA	NA	NA
NUY665							NUY665	NA	NA	NA	NA	NA	NA
POU889	111/11/	/ED	CIT	170			POU889	NA	NA	NA -	NA K	NA	NA
	-UNI	ER	DII			IIKAL		\sim					
BNY664 MIY643							BNY664 MIY643	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PRG754							PRG754	NA	NA	NA	NA	NA	NA
							MOO874	NA	NA	NA	NA	NA	NA
MOO874 III064							111064	NA	NA	NA	NA	NA	NA
							THY623	NA	NA	NA	NA	NA	NA
THY623 LOP998							LOP998	NA	NA	NA	NA	NA	NA
VRW954							VRW954	NA	NA	NA	NA	NA	NA
LTE964							LTE964	NA	NA	NA	NA	NA	NA
BTE000							BTE000	NA	NA	NA	NA	NA	NA
MUE412							MUE412	NA	NA	NA	NA	NA	NA
							HHH634	NA	NA		NA	NA	NA
HHH634									NA	NA	NA		NA
NUI476							NUI476	NA NA		NA		NA	
PRE479		10000					PRE479	NA	NA	NA	NA	NA	NA
		100%								0%			
After analy	ysis NA						After ana	llysis	NA				

APPENDIX H

Gantt Chart

APPENDIX IPhoto visiting Silterra Company

UNIVERSITI TEKNIKAL MALAYSIA MELAKA