

Faculty of Electrical Engineering

SIMULATION OF SHE-PWM FOR MULTILEVEL INVERTER

Joycelyn Goh May Yuen

Bachelor Degree of Electrical Engineering (Power Electronics and Drives)

2014

SIMULATION OF SHE-PWM FOR MULTILEVEL INVERTER

JOYCELYN GOH MAY YUEN

A report submitted in partial fulfillment of the requirement for the curriculum in bachelor degree of Electrical Engineering

FACULTY OF ELECTRICAL ENGINEERING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2014

DECLARATION

I declare that this thesis entitled "Simulation of SHEPWM for Multilevel Inverter" is the result
of my own research except as cited in the references. The thesis has not been accepted for any
degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	JOYCELYN GOH MAY YUEN
Date	:	

APPROVAL

I hereby declare that I have read this report of scope and quality as a partial fulfilm	• •		•
(Power Electronics and Drives).	ent of Bucheror I	DUGI	ee of Electrical Engineering
	a.		
	Signature	:	
	Supervisor Name	:	
	Date	:	

ACKNOWLEDGEMENT

I extend grateful to Faculty of Electrical Engineering for giving me the opportunity to execute this research which is a part of curriculum in bachelor degree programme at University Teknikal Malaysia Melaka.

I would like to express my special gratitude to Encik Musa Yusup Lada for my research guide and constant supervision as well as for providing valuable inputs at various stages of this research execution. I appreciate very much for his support in completing the research.

I am thankful to the staff of Faculty Electrical Engineering for guidance and cooperating with me during the course of my research.

I am extremely thank you to my parents and family members for their constant encouragement and always supported me morally as well as economically.

Last but not least, I also take this opportunity to express my gratitude to my friends who directly or indirectly helped me to fulfil the research.

ABSTRACT

Multilevel inverters have been receiving increasing attention in power system nowadays. The major problem for inverter is the harmonic distortion that will affect the performance and contribute in power losses. Thus, there are a variety of control techniques for inverters are introduced but less of the techniques can used to reduce the harmonic at low frequency. The harmonic at low frequency must be reduced due to some equipments are sensitive to the low frequency harmonic. Selective harmonic elimination pulse-width modulation (SHE-PWM) is a technique that can be used to eliminate the harmonic at low frequency which difficult to reduce by using passive filter. SHE-PWM is a low switching frequency strategy that uses Fourier Series and Newton-Raphson analysis to calculate the switching angles for elimination of harmonic. In this research, the main objective is to study the control technique for multilevel inverter and simulate the SHE-PWM for multilevel inverter. The performance of output waveform and total harmonic distortion (THD) for multilevel inverter are analysed and discussed. MATLAB program is important in this research. It is use to calculate the angle of PWM and simulate the SHE-PWM for multilevel inverter. The result shows that the percentage of harmonic at low harmonic order for SHE-PWM had been eliminated compare with other methods. In conclusion, the SHE-PWM technique can eliminate the selected harmonic at lower harmonic order.

ABSTRAK

Penyongsang berperingkat semakin mendapat perhatian dalam bidang sistem kuasa pada masa kini. Masalah utama bagi penyongsang adalah herotan harmonik yang memberi kesan kepada prestasi peralatan dan menyumbang kepada kehilangan kuasa. Oleh itu, pelbagai teknik kawalan penyonsang wujud akan tetapi teknik-teknik yang boleh digunakan untuk mengurangkan harmonik pada frekuensi yang rendah amat kurang. Harmonik pada frekuensi rendah perlu di kurangkan kerana beberapa peralatan akan sensitive terhadap harmonic di peringkat rendah. Penghapusan Harmonik Terpilih Pemodulatan Denyut Lebar (HT-PDL) merupakan satu teknik yang boleh dgunakan untuk menghapuskan harmonic pada frekuensi rendah yang mana sukar untuk dikurangkan dengan menggunakan penapis pasif. HT-PDL adalah satu strategi penukaran frekuensi rendah yang menggunakan analisis Siri Fourier dan Newton-Rapson untuk mengira sudut beralih untuk penghapusan harmonik. Dalam kajian ini, objektif utama adalah untuk mengkaji teknik kawalan penyongsang berperingkat dan simulasi untuk HT-PDL untuk penyongsang berperingkat. Prestasi gelombang keluaran dan jumlah herotan harmonik (JHH) untuk penyongsang berperingkat dianalisa dan dibincangkan. MATLAB amat penting dalam kajian ini. MATLAB digunakan untuk mengira sudut PDL dan mensimulasi penyongsang berperingkat menggunakan HT-PDL. Hasilan kajian ini menunjukkan bahawa peratusan harmonic pada susunan harmonic yang rendah. Kesimpulanya, SHE-PWM boleh menghapuskan harmonik yang terpilih pada peringkat harmonik yang rendah.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	ABSTRAK	iii
	TABLE OF CONTENTS	iv
	LIST OF FIGURES	x
	LIST OF TABLES	xv
	NOMECLATURE	xvi
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Research Motivation	2
	1.3 Objective	3
	1.4 Scope	3
	1.5 Project Outline	3
2	LITERATURE REVIEW	5
	2.1 Introduction	5

2.2 Multilevel Inverter	5
2.2.1 Multilevel Inverter Topologies	6
2.2.1.1 Diode Clamped	6
2.2.1.2 Flying Capacitor	7
2.2.1.3 Cascade H-Bridge Inverter	9
2.2.2 Trinary Multilevel Inverter Topology	10
2.2.3 Application of Multilevel Inverter	11
2.3 Modulation	11
2.3.1 Pulse-Width Modulation for Two Level Multilevel Inverter	12
2.3.2 Pulse-Width Modulation for Multilevel Inverter	13
2.3.2.1 Phase Shifted Carrier Pulse-Width Modulation	13
2.3.2.2 Phase Disposition Pulse-Width Modulation	14
2.4 Multilevel Inverter Control Schemes	15
2.4.1 Space Vector Modulation	16
2.4.2 Sinusoidal Pulse-Width Modulation	17
2.4.2.1 Sinusoidal Pulse-Width Modulation with Bipolar Switching	18
2.4.2.2 Sinusoidal Pulse-Width Modulation with Unipolar Switching	20
2.4.3 Selective Harmonic Elimination Pulse-Width Modulation	22
2.4.3.1Fourier Series of Selective Harmonic Elimination Pu	lse-
Width Modulation	23

	2.4.3.2 Newton's Method for Pulse-Width Modulation Pu	lse-
	Width Modulation Switching Angle	23
	2.4.3.3 Advantages and Disadvantages of Selective Harm	onic
	Elimination	25
	2.4.4 Quasi-Square Wave	26
	2.5 Harmonic Distortion	27
	2.5.1 Calculation of Total Harmonic Distortion	27
	2.5.2 Type of Harmonic	28
	2.5.3 Effects of Harmonic	28
	2.5.4 Indicators for Measurement Principles	29
3	METHODOLOGY	31
	3.1 Introduction	31
	3.2 Research Methodology	31
	3.2.1 Flowchart	32
	3.2.2 Milestone Research	33
	3.2.3 Gantt Chart	34
	3.3 Selective Harmonic Elimination Pulse-Width Modulation for Th	ıree
	Phase Multilevel Inverter	35
	3.4 Primarily Simulation	36
	3.4.1 Square Wave Inverter	37
	3.4.2 Unipolar Inverter	38
	3.4.3 Bipolar Inverter	39

	3.4.4 Selective Harmonic Elimination Pulse-Width Modulation	
	Inverter	40
	3.5 Three Phase Simulation	41
	3.5.1 Three Phase Selective Harmonic Elimination-Pulse Width	
	Modultaion of Seven-Level Inverter	42
	3.5.2 Three Phase Trinary of Seven-Level Inverter	44
	3.6 Calculation of Selective Harmonic Elimination Pulse-Width	
	Modulation	45
4	RESULTS AND DISCUSSION	47
	4.1 Introduction	47
	4.2 Single Phase Simulation Results	47
	4.2.1 Single Phase Square Wave Inverter	48
	4.2.1.1 Single Phase Square Wave Inverter for R Load	48
	4.2.1.2 Single Phase Square Wave Inverter for RL Load	49
	4.2.1.3 Single Phase Square Wave Inverter for RC Load	51
	4.2.2 Single Phase Unipolar Inverter	53
	4.2.2.1 Single Phase Unipolar Inverter for R Load	53
	4.2.2.2 Single Phase Unipolar Inverter for RL Load	55
	4.2.2.3 Single Phase Unipolar Inverter for RC Load	56
	4.2.3 Single Phase Bipolar Inverter	58
	4.2.3.1 Single Phase Bipolar Inverter for R Load	58
	4.2.3.2 Single Phase Bipolar Inverter for RL Load	59
	4.2.3.3 Single Phase Ripolar Inverter for RC Load	61

4.2.4 Single Phase Selective Harmonic Elimination Pulse-Width	
Modulation Inverter	62
4.2.4.1 Single Phase Selective Harmonic Elimination Pulse-	
Width Modulation Inverter for R Load	63
4.2.4.2 Single Phase Selective Harmonic Elimination Pulse-	
Width Modulation Inverter for RL Load	64
4.2.4.3 Single Phase Selective Harmonic Elimination Pulse-	
Width Modulation Inverter for RC Load	66
4.3 Three Phase Simulation Results	68
4.3.1 Three Phase Selective Harmonic Elimination-Pulse Width	
Modultaion Inverter	69
4.3.1.1 Three Phase Selective Harmonic Elimination-	Pulse
Width Modultaion Inverter for R Load	70
4.3.1.2 Three Phase Selective Harmonic Elimination-	Pulse
Width Modultaion Inverter for RL Load	75
4.3.1.3 Three Phase Selective Harmonic Elimination-	Pulse
Width Modultaion Inverter for RC Load	79
4.3.2 Three Phase Seven-Level Trinary Multilevel Inverter	83
4.3.2.1 Three Phase Seven-Level Trinary Multilevel Inverte	er for
R Load	83
4.3.2.2 Three Phase Seven-Level Trinary Multilevel Inverte	er for
RL Load	86
4.3.2.3 Three Phase Seven-Level Trinary Multilevel Inverte	er for
RC Load	88

	4.4 Total Harmonic Distortion	91
	4.5 Percentage of Harmonic at Low and High Harmonic Order	93
	4.5.1 Single Phase Inverter	93
	4.5.2 Three Phase Seven-Level Inverter	95
5	CONCLUSION	97
	REFERENCES	98
	PUBLICATION	101
	APPENDICES	102

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 2.1: Single 1	phase three-level diode clamped inverter	6
Figure 2.2 : Three J	phase three-level diode clamped inverter	7
Figure 2.3 : Single	phase three-level flying capacitor inverter	8
Figure 2.4 : Three 1	phase three-level flying capacitor inverter	8
Figure 2.5: Three p	hase of cascade H-bridges multilevel inverter	9
Figure 2.6 : PWM	reference (red) and triangular carrier (green)	13
Figure 2.7 : PWM	signal (green)	13
Figure 2.8 : The ca	rrier and reference waves for five-level cascaded multilevel inverte	r 14
Figure 2.9 : The ref	ference (red) and carrier waves for five-level inverter	15
Figure 2.10 : Outpu	at voltage for five-level neutral-point clamped multilevel inverter w	ith
phase	disposition PWM	15
Figure 2.11 : Class	ification of multilevel inverter control schemes	16
Figure 2.12 : Space	e vector diagram for five-level inverter	17
Figure 2.13 : SPW	M bipolar generator	19
Figure 2.14 : Wave	form of bipolar switching SPWM for (a) reference and triangular	
wavef	form (b) output waveform	19
Figure 2.15 : SPW	M unipolar generator	21
Figure 2.16 : Unipo	olar switching SPWM (a) reference and triangular waveform and ga	iting
pulse	of S1 to S3 (b) output waveform	21
Figure 2.17: Switch	ning with angle determined for five-level inverter by SHE	22
Figure 2.18 : Quasi	-square wave waveform [17]	26
Figure 3.1 : Flowch	nart of the SHE-PWM	32

Figure 3.2 : Flowchart of SHE-PWM algorithm	36
Figure 3.3 : Simulink block for single phase square wave inverter using R load	37
Figure 3.4 : Simulink block for single phase unipolar inverter using R load	38
Figure 3.5 : Power generation of single phase unipolar inverter	39
Figure 3.6: Power generation for single phase bipolar	40
Figure 3.7 : Simulink block for single phase SHE-PWM inverter using RC load	41
Figure 3.8 : Simulink Block of three phase SHE-PWM inverter	42
Figure 3.9: Connection circuit of subsystem block	43
Figure 3.10: Connection of H-bridge in block of phase A	43
Figure 3.11: Simulink block of three phase trinary inverter	44
Figure 4.1 : Square wave current waveform for R load	48
Figure 4.2 : Square wave voltage waveform for R load	48
Figure 4.3 : Square wave current harmonic for R load	49
Figure 4.4 : Square wave voltage harmonic for R load	49
Figure 4.5 : Square wave current waveform for RL load	50
Figure 4.6 : Square wave voltage waveform for RL load	50
Figure 4.7 : Square wave current harmonic for RL load	50
Figure 4.8 : Square wave voltage harmonic for RL load	51
Figure 4.9 : Square wave current waveform for RC load	51
Figure 4.10 : Square wave voltage waveform for RC load	52
Figure 4.11 : Square wave current harmonic for RC load	52
Figure 4.12 : Square wave voltage harmonic for RC load	53
Figure 4.13: Unipolar current waveform for R load	53
Figure 4.14: Unipolar voltage waveform for R load	54
Figure 4.15: Unipolar current harmonic for R load	54
Figure 4.16: Unipolar voltage harmonic for R load	54
Figure 4.17: Unipolar current waveform for RL load	55
Figure 4.18: Unipolar voltage waveform for RL load	55
Figure 4.19: Unipolar current harmonic for RL load	56
Figure 4.20: Unipolar voltage harmonic for RL load	56
Figure 4.21: Unipolar current waveform for RC load	56

	Xii
Figure 4.22 : Unipolar voltage waveform for RC load	57
Figure 4.23: Unipolar current harmonic for RC load	57
Figure 4.24: Unipolar voltage harmonic for RC load	57
Figure 4.25: Bipolar current waveform for R load	58
Figure 4.26: Bipolar voltage waveform for R load	58
Figure 4.27: Bipolar current harmonic for R load	59
Figure 4.28: Bipolar voltage harmonic for R load	59
Figure 4.29: Bipolar current waveform for RL load	60
Figure 4.30 : Bipolar voltage waveform for RL load	60
Figure 4.31: Bipolar current harmonic for RL load	60
Figure 4.32 : Bipolar voltage harmonic for RL load	61
Figure 4.33: Bipolar current waveform for RC load	61
Figure 4.34 : Bipolar voltage waveform for RC load	61
Figure 4.35: Bipolar current harmonic for RC load	62
Figure 4.36: Bipolar voltage harmonic for RC load	62
Figure 4.37 : SHE-PWM current waveform for R load	63
Figure 4.38 : SHE-PWM voltage waveform for R load	63
Figure 4.39 : SHE-PWM current harmonic for R load	64
Figure 4.40 : SHE-PWM voltage harmonic for R load	64
Figure 4.41 : SHE-PWM current waveform for RL load	65
Figure 4.42 : SHE-PWM voltage waveform for RL load	65
Figure 4.43 : SHE-PWM current harmonic for RL load	66
Figure 4.44 : SHE-PWM voltage harmonic for RL load	66
Figure 4.45 : SHE-PWM current waveform for RC load	67
Figure 4.46 : SHE-PWM voltage waveform for RC load	67
Figure 4.47 : SHE-PWM current harmonic for RC load	68
Figure 4.48 : SHE-PWM voltage harmonic for RC load	68
Figure 4.49 : The switching waveform for angles $\alpha 1, \alpha 2, \alpha 3, \alpha 4$ and $\alpha 5$	69
Figure 4.50 : The switching waveform of angles β 1, β 2, β 3, β 4 and β 5	70
Figure 4.51: Waveform of phase A current	70
Figure 4.52 : Waveform of phase B current	71

	XIII
Figure 4.53: Waveform of phase C current	71
Figure 4.54: Waveform of phase A voltage	71
Figure 4.55: Waveform of phase B voltage	72
Figure 4.56: Waveform of phase C voltage	72
Figure 4.57: Waveform of line AB voltage	72
Figure 4.58 : Waveform of line BC voltage	73
Figure 4.59 : Waveform of line CA voltage	73
Figure 4.60: Total Harmonic Distortion of current	74
Figure 4.61 :Total Harmonic Distortion of line-voltage	74
Figure 4.62: Total Harmonic Distortion of phase voltage	74
Figure 4.63: Waveform of phase A current	75
Figure 4.64: Waveform of phase B current	75
Figure 4.65 : Waveform of phase C current	75
Figure 4.66: Waveform of phase A voltage	76
Figure 4.67: Waveform of phase B voltage	76
Figure 4.68 : Waveform of phase C voltage	76
Figure 4.69: Waveform of line AB voltage	77
Figure 4.70 : Waveform of line BC voltage	77
Figure 4.71 : Waveform of line CA voltage	77
Figure 4.72: Total Harmonic Distortion of current	78
Figure 4.73 : Total Harmonic Distortion of phase-voltage	78
Figure 4.74: Total Harmonic Distortion of line-voltage	78
Figure 4.75: Waveform of phase A current	79
Figure 4.76: Waveform of phase B current	79
Figure 4.77: Waveform of phase C current	79
Figure 4.78 : Waveform of phase A voltage	80
Figure 4.79 : Waveform of phase B voltage	80
Figure 4.80 : Waveform of phase C voltage	80
Figure 4.81 : Waveform of line AB voltage	81
Figure 4.82 : Waveform of line BC voltage	81
Figure 4.83: Waveform of line CA voltage	81

	xiv
Figure 4.84: Total harmonic distortion of current	82
Figure 4.85: Total harmonic distortion of phase-voltage	82
Figure 4.86: Total harmonic distortion of line-voltage	82
Figure 4.87: Waveform of phase A current	83
Figure 4.88: Waveform of phase B current	83
Figure 4.89: Waveform of phase C current	84
Figure 4.90 : Waveform of phase A voltage	84
Figure 4.91 : Waveform of phase B voltage	84
Figure 4.92 : Waveform of phase C voltage	85
Figure 4.93: Total harmonic distortion of current	85
Figure 4.94: Total harmonic distortion of voltage	85
Figure 4.95: Waveform of phase A current	86
Figure 4.96: Waveform of phase B current	86
Figure 4.97: Waveform of phase C current	86
Figure 4.98 : Waveform of phase A voltage	87
Figure 4.99: Waveform of phase B voltage	87
Figure 4.100 : Waveform of phase C voltage	87
Figure 4.101: Total harmonic distortion of current	88
Figure 4.102: Total harmonic distortion of voltage	88
Figure 4.103: Waveform of phase A current	89
Figure 4.104: Waveform of phase B current	89
Figure 4.105: Waveform of phase C current	89
Figure 4.106 : Waveform of phase A voltage	90
Figure 4.107 : Waveform of phase B voltage	90
Figure 4.108 : Waveform of phase C voltage	90
Figure 4.109: Total harmonic distortion of current	91
Figure 4.110: Total harmonic distortion of voltage	91

LIST OF TABLE

TABLE NO	TITLE	PAGE
Table 2.1: Switching	sequences of 7-level trinary DC source multilevel inverter	10
Table 3.1 : Timeline	for milestone	34
Table 3.2 : Parameter	of the simulation	36
Table 3.3 : Parameter	of the simulation	41
Table 4.1: THD of cu	irrent and voltage for several loads of single phase inverter	92
Table 4.2 : THD for o	current and voltage of three phase SHE-PWM inverter	92
Table 4.3 : Percentage	e of harmonic at low harmonic order	93
Table 4.4: Percentage	e of harmonic at 99 th to 105 th harmonic order	94
Table 4.5 : Percentage	e of harmonic at 199 th to 205 th harmonic order	94
Table 4.6 : Percentage	e of harmonic at low harmonic order	95
Table 4.7 : Percentage	e of harmonic at 99 th to 105 th harmonic order	95
Table 4.8 : Percentage	e of harmonic at 199 th to 205 th harmonic order	95

NOMECLATURE

AC - Alternating Current

AM - Amplitude Modulation

APOD - Alternative Position Opposition Disposition

DC - Direct Current

FFT - Fast Fourier Transform

IEEE - Institute of Electrical and Electronic Engineers

MATLAB - Matrix Laboratory

MOSFET - Metal-Oxide Semiconductor Field Effect Transistor

POD - Phase Opposition Disposition

PWM - Pulse-Width Modulation

R - Resistance

RC - Resistance-Capacitor

RL - Resistance-Inductance

SHE - Selective Harmonic Elimination

SPWM - Sinusoidal Pulse-Width Modulation

SVC - Space Vector Control

SVM Space Vector Modulation

THD **Total Harmonic Distortion**

THDi Total Harmonic Distortion of Current

THDv Total Harmonic Distortion of Voltage

CHAPTER 1

INTRODUCTION

1.1 Background

Multilevel inverters are mostly used nowadays to generate an Alternating Current (AC) voltage from Direct Current (DC) voltage. The concept of a multilevel inverter is several voltage levels are added to each other to create a smoother stepped waveform with lower harmonic distortion. Moreover, multilevel inverters synthesize an AC voltage into a staircase which approximately to a desired sinusoidal waveform by divided the main DC voltage supply into several small DC sources. The multilevel inverters can yield operating characteristics likes high voltages, high power levels and high efficiency using multiple levels. They can operate without the use of transformer. Hence, multilevel inverters are mostly used in high power system. There are three main types of multilevel inverters such as diode-clamped, capacitor-clamped and cascade H-bridges. Cascade H-bridges is chosen due to its features such as its battery management capability, redundant inverter operation and scalability. Furthermore, it has the least components for given number of levels. Harmonic minimization is important to get the smoother waveform for multilevel inverter. There are several techniques have been introduced but the most popular technique is selective harmonic elimination pulse width modulation (SHE-PWM). It is one of the effective techniques to reduce the harmonic in lower switching frequency. In theoretical, SHE-PWM technique can provide the highest quality among the PWM techniques. Typically, this method is selected due to a system may be developed which can be solved for the switching angle that eliminate

selected harmonic. The advantages of SHE-PWM technique include that it produced the desired fundamental sinusoidal voltage while at the same time certain order harmonics are eliminated.

1.2 Research Motivation

In high power applications, multilevel voltage source inverters (VSI) have been receiving increasing attention in the recent years. These inverters are suitable in high voltage and high power applications due to their ability to synthesize waveforms with better harmonic spectrum and attain higher voltages without increasing the switching frequency and decreasing the inverter output power. There are three types of multilevel inverter topologies which are cascade inverter, flying capacitor and diode clamped. The cascade multilevel inverter is chosen in this study because it requires less circuit elements from the others. The number of output voltage levels can be easily adjusted by adding or removing the full bridge cells. However, the performances of multilevel inverter in some applications will be affected by the lower harmonic frequency. A key issue in designing the effective multilevel inverter is to ensure total harmonic distortion (THD) in the voltage output is low enough. Moreover, the harmonic at lower frequency are difficult to reduce or eliminate which not same as the harmonic at higher frequency that can be easily reduced by passive filter. Several techniques are introduced to reduce the harmonic at low frequency such as active power filter. The disadvantages of active power filter are it has complex circuit, costly and difficult to control compared to SHE-PWM technique. Thus, SHE-PWM technique had been introduced for elimination of harmonic at low frequency. One of the advantages of the SHE-PWM technique is its ability to operate in low switching frequency that makes it suitable for high power applications. This SHE-PWM technique can be used to synthesize output waveform of both half-bridge and full-bridge inverter.

1.3 Objective

The objectives of this research are

- 1. To study the control technique for multilevel inverter.
- 2. To simulate the selective harmonic elimination (SHE-PWM) for multilevel inverter.
- 3. To analyse and investigate the performance of multilevel inverter using SHE-PWM using Newton-Raphson technique.

1.4 Scope

The scope of project in this research is to analyse and investigate the performance of three phase multilevel inverter using SHE-PWM. It will also focus on the three phase seven-level inverter for several loads which are resistance (R), resistance-inductance (RL) and resistance-capacitance (RC) and the simulation of SHE-PWM. Besides that, the calculation of switching angles in SHE-PWM technique is discussed and shown in this research. The switching angle will determined using Newton-Raphson method in m-file or MATLAB and the value of angle is use to turn ON or OFF switching drive in simulink or MATLAB. Lastly, it covers also the THD of current and voltage for single phase of different type techniques for R, RL and RC load. A comparison is made to show the different between these topologies such as SHE-PWM, unipolar, bipolar and square wave.

1.5 Project Outline

A brief outline of the contents of the project report is organised as following:

Chapter 1 introduces the project background and the problem statement of thus project. It also covers the objective and scope for this project.

Chapter 2 briefly review the multilevel inverter with its topologies and applications. The modulation and PWM techniques are also discussed in this chapter. Lastly, it also discuss about the definition and effects of harmonic in power system.