

FAKULTI KEJURUTERAAN ELEKTRIK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LAPORAN PROJEK

SARJANA MUDA

CRAWLER TYPE ROBOT

Chia Wen Yung

Bachelor of Mechatronics Engineering

June 2014

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read through this report entitle "Crawler Type Robot" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Mechatronics Engineering"

Signature	:	
Supervisor's Name	:	
_		
Date	:	

CRAWLER TYPE ROBOT

CHIA WEN YUNG

This Report Is Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

"I declare that this report entitle "Crawler Type Robot" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Nama		
Inallie	•	
Date	:	

To my beloved mother and father

iv

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

In preparing this report, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my main project supervisor, Engr. Anuar bin Mohamed Kassim, for encouragement, guidance critics and friendship. I am also very thankful to my project panels, Dr. Muhammad Fahmi bin Miskon and Nur Maisarah binti Mohd. Sorban for their guidance, advices and motivation as well. This project would not have been same as presented here if without their continued support and interest.

Besides that, I would like to thank to all the technicians in Faculty of Electrical Engineering for providing the facilities and equipment to me. Librarians also deserve special thanks for their assistance in supplying the related information regarding to my final year project.

My fellow course mates should also be recognized for their support. My sincere appreciation also extends to all my lecturers for providing me the valuable knowledge during my 4 years of study. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

Nowadays, the crawler type robots are widely used in rescuing and inspection missions. Therefore, crawler type mechanism is kept improving so it can be applied on various type of terrains with better performance. However, most of the existing crawler type robots available now are not moving consistently in one direction. In other words, it cannot move according to our desired direction properly. This project is undertaken with the aim to design and develop a crawler type robot which can pass through several types of terrain as well as to analyze and evaluate the performance of developed crawler type robot in term of its accuracy and repeatability. The scope of this project is focused on the performance test of robot's accuracy and repeatability with respect to its speed on regular and irregular terrains. Moreover, the terrains involved in this project are focus only on flat surface, rough surface and stairs as well. This project presents the analysis of the developed crawler type robot's performance by collecting the data during the experiment. The experiment conducted here consists of two research methodologies: lab test and field test. Lab test is conducted on flat surface and stairs while field test is conducted on rough surface. Both of the experiments measure the performance (accuracy and repeatability). Besides that, the robot was also been tested on its capability of climbing the stairs. However the study was limited only to the flat surface, rough surface and stairs. For recommendation, it should cover the study of suspension system on more irregular terrains with extreme conditions such as underwater, sand and mud. Moreover, it should also include different types of controller such as PI, PD and PID controller.

ABSTRAK

Sejak kebelakangan ini, robot jenis merangkak telah digunakan secara meluas dalam misi menyelamat dan pemeriksaan. Oleh itu, mekanisme tersebut terus diperbaiki supaya ia dapat digunakan di atas pelbagai bentuk permukaan bumi dengan prestasi yang lebih baik. Walau bagaimanapun, kebanyakan robot yang sedia ada pada masa kini tidak dapat bergerak pada satu arah secara konsisten. Projek ini dijalankan dengan tujuan untuk mereka bentuk dan menghasilkan robot yang berupaya untuk bergerak di atas pelbagai jenis bentuk permukaan bumi. Selain itu, objektif tersebut juga merangkumi penilaian robot semasa ia beroperasi dari segi ketepatan dan kebolehulangan. Skop untuk projek ini hanya fokus terhadap ujian prestasi robot di atas permukaan rata, kasar dan tangga sahaja. Projek tersebut menunjukkan analisis prestasi robot dengan mengumpul data semasa eksperimen dijalankan. Terdapat two jenis penyelidikan metodologi dalam project ini, iaitu ujian makmal dan ujian lapangan. Ujian makmal dijalankan pada permukaan rata manakala ujian lapangan dijalankan di atas permukaan kasar. Kedua-dua eksperimen menilai prestasi robot (ketepatan dan kebolehulangan). Selain itu, ujian kebolehan robot untuk menaiki tangga turut dijalankan. Walau bagaimanapun, kajian tersebut adalah terhad kepada permukaan rata, kasar dan tangga sahaja. Sebaliknya, kajian ini harus merangkumi sistem penggantungan di atas pelbagai jenis bentuk permukaan yang lain seperti dalam air, padang pasir, dan lumpur. Selain itu, pelbagai jenis pengawal seperti PI, PD dan PID juga harus dikaji.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	X
	LIST OF FIGURES	xii
	LIST OF APPENDICES	XV
1	INTRODUCTION	1
	1.1. Motivation	1
	1.2. Problem Statement	10
	1.3. Objectives	11
	1.4. Scope	11
2	LITERATURE REVIEW	12
	2.1 Crawler Type Robots	12
	2.2. Features and Mechanism	12
	2.3 Wireless Technology	22
	2.4. Conclusion	22

24

2
J

METHODOLOGY

3.1. Project Methodology	
3.1.1. Project Initialization	25
3.1.2. Project Development	28
3.1.3. Project Evaluation	31
3.1.4. Project Milestone	32
3.1.5. K-Chart	32
3.2. Research Methodology	34
3.2.1. Lab Test	34
3.2.2. Field Test	46
3.3. Conclusion	48

RESULT AND DISCUSSION	49
4.1. Lab Test	49
4.2. Field Test	73
4.3. Analysis of Information	75
4.4. Synthesis of Information	77
4.5. Evaluation of Information	78
4.6. SWOT Analysis	79

5	CONCLUSION AND RECOMMENDATIONS		

REFERENCES	81
APPENDICES	84

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE

TITLE

2.1	Review of each crawler type robot	16
2.2	Advantages and disadvantages of each feature or mechanism	21
2.3	Wireless technology comparison	22
2.4	Crawler type robot comparison	23
3.1	Material selection	27
3.2	BOM list	30
3.3	Project milestone	32
4.1	Experimental result on accuracy test for 25% of full speed	50
4.2	Interval error changes for 25% of full speed	51
4.3	Experimental result on accuracy test for 50% of full speed	54
4.4	Interval error changes for 50% of full speed	55
4.5	Experimental result on accuracy test for 75% of full speed	58
4.6	Interval error changes for 75% of full speed	59
4.7	Experimental result on accuracy test for 100% of full speed	62
4.8	Interval error changes for 100% of full speed	63

PAGE

4.9	Experimental result on accuracy test for different level of	
	robot's full speed	66
4.10	Interval error changes for different level of robot's full speed	67
4.11	Experimental result on accuracy test for 100% of full speed	
	with P-controller	70
4.12	Climbing stairs capability test result	72
4.13	Field test result	74
4.14	Advantages and disadvantages of method	78
4.15	SWOT analysis of fabricated robot	79

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Quince robots	2
1.2	Natural disasters from year 1980 to 2010	2
1.3	Natural disaster occurrence reported	3
1.4	Average disasters per year	4
1.5	Top 10 natural disasters reported	5
1.6	Statistics per event	6
1.7	Percentage of reported people killed by disaster type	7
1.8	Percentage of reported people affected by disaster type	8
1.9	Estimated economic damage reported by disaster type	9
2.1	Leg-type crawler robot	12
2.2	Crawler vehicle	13
2.3	Cylindrical crawler robot	14
2.4	Sequence of passing over steps	14
2.5	Sequence of raising front end	14
2.6	Process of moving over the step for single rotatory crawler unit	15
2.7	Front and rear suspension system	17

2.8	Flexible climbing robot	18
2.9	Crawler type robot with improved flexible shaft	19
2.10	Crawler	19
3.1	Project initialization flowchart	25
3.2	Conceptual design	26
3.3	Project development flowchart	28
3.4	Finalized development of crawler type robot	29
3.5	Project evaluation flowchart	31
3.6	K-Chart	33
3.6	Cartesian graph	24
3.7	Yellow line track	35
3.8	Measurement along the yellow line track at the beginning	35
3.9	Measurement along the yellow line track at the end	36
3.10	Position of crawler type robot at the beginning	37
3.11	Right hand side of crawler belt in line with yellow line	38
3.12	Block diagram of P-controller	39
3.13	Negative error	40
3.14	Positive error	40
3.15	Dummy stairs using polyfoam	41
3.16	Arrangement of dummy stairs	42
3.17	Separation of dummy stairs	42
3.18	Distance between robot and floor	43
3.19	Robot climb over the dummy stairs	44

3.20	Limitation of robot's body structure	44
3.21	Initial position of the robot	45
3.22	Irregular terrain	46
3.23	Initial and final point	47
3.24	Initial position of crawler type robot	48
4.1	Graph of error versus displacement for 25% of full speed	52
4.2	Graph of error changes versus displacement for 25% of full speed	53
4.3	Graph of error versus displacement for 50% of full speed	56
4.4	Graph of error changes versus displacement for 50% of full speed	57
4.5	Graph of error versus displacement for 75% of full speed	60
4.6	Graph of error changes versus displacement for 75% of full speed	61
4.7	Graph of error versus displacement for 100% of full speed	64
4.8	Graph of error changes versus displacement for 100% of full speed	65
4.9	Graph of error versus displacement for different level of robot's full speed	68
4.10	Graph of error changes versus displacement for different level of robot's full speed	69
4.11	Graph of error versus Kp value for 100% of robot's full speed with P-controller	71
4.12	Chart of number of trials versus height of stairs	73
4.13	Graph of error versus trials	74

LIST OF APPENDICES

APPENDIX TITLE

PAGE

A	Detail drawing of proposed crawler type robot	84
В	Algorithm of uncompensated system	85
С	Algorithm of P-controller system	86

CHAPTER 1

INTRODUCTION

1.1. Motivation

Japan was recognized as one of the advanced countries nowadays due to its rapid development of technologies. But unfortunately, an unwanted incident occurred on March 11, 2011. The earthquake with Richter magnitude scale of 9.0 causes a tsunami which hit the Tohoku area in Japan. As a result, several nuclear plants were damaged and the radioactive materials were spread out widely nearby those areas. [22]

The extreme situation makes the rescue and inspection missions more difficult to be performed at that time due to high radiation environment. Therefore, they decided to use mobile robots to perform the tasks instead of human beings because human cannot be exposed to highly radioactive materials for long period of time. [22]

Figure 1.1 shows the rescue mobile robots, named Quince robots which designed for searching and rescuing mission purposes. Quince robot consists of 4 crawler legs which are flexible to move over any type of terrains. Besides that, the mechanism of this robot also makes it to able to climb over the stairs. However, the movement of climbing the stairs might be slow if compared its movement the ground. to on

Figure 1.1 Quince robots [22]

Figure 1.2 shows the statistics of human and economic losses in Japan due to the disasters that happened since year 1980 to 2010. It shows that 157 of events were occurred within this 31 years and 8 568 people were killed. Average people killed per year are about 276 people. However, the economic damage is about 208 billion US dollars over 31 years of natural disasters. There were nearly 6.7 million US dollars of economic damage per year in Japan due to the disasters. [18]

Natural Disasters from 1980 - 2010	
Overview	
No of events:	157
No of people killed:	8,568
Average killed per year:	276
No of people affected:	3,361,979
Average affected per year:	108,451
Economic Damage (US\$ X 1,000):	208,230,800
Economic Damage per year (US\$ X 1,000):	6,717,123

Figure 1.2 Natural disasters from year 1980 to 2010 [18]

C Universiti Teknikal Malaysia Melaka

Figure 1.3 Natural disaster occurrence reported [18]

Figure 1.3 shows the statistics of natural disaster occurrence reported in year 1980 to 2010. The highest occurrence was the storm (77 occurrences) and earthquake was in second place (31 occurrences) after storm. Then follow by the flood which contributes to 22 occurrences. Figure 1.4 shows the average disaster per year based on the data in Figure 3.1.

Average Disaster Per Year	
Drought:	
Earthquake*:	1.00
Epidemic:	0.03
Extreme temp:	0.10
Flood:	0.71
Insect infestation:	
Mass mov. dry:	
Mass mov. wet:	0.45
Volcano:	0.26
Storm:	2.48
Wildfire:	0.03

Figure 1.4 Average disasters per year [18]

Figure 1.5 shows the data of top 10 natural disasters reported based on 3 categories: affected people, killed people and economic damages. The highest number of people affected and killed due to natural disasters was the earthquake. Earthquake contributes also the most severe economic damage to Japan. Figure 1.6 shows the statistics per event based on data in Figure 1.5.

Top 10 Natural Disasters Reported

Affected People

Disaster	Date	Affected	(no. of people)
Earthquake*	1995	541,636	
Flood	2000	360,110	
Storm	2005	270,140	
Storm	2004	180,050	
Storm	2000	180,041	
Flood	1986	162,000	
Storm	1982	140,000	
Storm	2002	100,018	
Storm	1991	91,128	
Storm	1990	87,778	

Killed People

Disaster	Date	Killed	(no. of people)
Earthquake*	1995	5,297	
Flood	1982	345	
Earthquake*	1993	239	
Storm	1983	131	8
Mass mov. wet	1983	117	
Earthquake*	1983	102	
Storm	1982	100	
Storm	2005	100	
Storm	2004	89	
Storm	2004	88	

Economic Damages

Disaster	Date	Cost	(US\$ X 1,000)
Earthquake*	1995	100,000,000	
Earthquake*	2004	28,000,000	
Earthquake*	2007	12,500,000	
Storm	1991	10,000,000	
Storm	2004	9,000,000	
Flood	2000	7,440,000	
Storm	1999	5,000,000	
Storm	1990	4,000,000	
Storm	1998	3,000,000	
Storm	2006	2,500,000	8

Figure 1.5 Top 10 natural disasters reported [18]

5

Statistics Per Event

Killed People

Drought:	
Earthquake*:	185.58
Epidemic:	
Extreme temp:	46.00
Flood:	29.18
Insect infestation:	
Mass mov. dry:	
Mass mov. wet:	32.43
Volcano:	5.50
Storm:	19.96
Wildfire:	

Affected People

Drought:	
Earthquake*:	24,989.84
Epidemic:	460.00
Extreme temp:	6,100.00
Flood:	32,522.77
Insect infestation:	
Mass mov. dry:	
Mass mov. wet:	1,836.14
Volcano:	11,243.75
Storm:	22,560.45
Wildfire:	222.00

Economic Damages

-

Earthquake*: 4,699,077.42 Epidemic: Extreme temp: Flood: 514,104.55 Insect infestation: Mass mov. dry: Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Drought:	
Epidemic: Extreme temp: Flood: 514,104.55 Insect infestation: Mass mov. dry: Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Earthquake*:	4,699,077.42
Extreme temp: Flood: 514,104.55 Insect infestation: Mass mov. dry: Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Epidemic:	
Flood: 514,104.55 Insect infestation: Mass mov. dry: Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Extreme temp:	
Insect infestation: Mass mov. dry: Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Flood:	514,104.55
Mass mov. dry: Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Insect infestation:	
Mass mov. wet: 15,000.00 Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Mass mov. dry:	
Volcano: 1,250.00 Storm: 662,715.58 Wildfire:	Mass mov. wet:	15,000.00
Storm: 662,715.58 Wildfire:	Volcano:	1,250.00
Wildfire:	Storm:	662,715.58
	Wildfire:	

Figure 1.6 Statistics per event [18]

Figure 1.7 Percentage of reported people killed by disaster type [18]

Figure 1.7 shows the statistics of reported people killed by disaster type in term of pie chart. Earthquake contributes the highest portion of this pie chart which constitutes of 67.1% of the pie chart. However, storm constitutes of 17.9% of the pie chart, follow by the flood (7.5%), mass movement wet (5.3%) and extreme temperature contributes the least portion of the pie chart, which is only 1.6% of the pie chart.

Figure 1.8 Percentage of reported people affected by disaster type [18]

Figure 1.8 shows the statistics reported people affected by disaster type in term of pie chart. Storm contributes the highest portion of this pie chart which constitutes of 51.7% of the pie chart. However, earth quake constitutes of 23% of the pie chart, follow by the flood (21.3%) and volcano contributes the least portion of the pie chart, which is only 2.7% of the pie chart.