

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FACULTY OF ELECTRICAL ENGINEERING

BEKU 4894 (FYP 2)

TITLE: UNDERWATER VEHICLE BUOYANCY CONTROL (SURFACE)

Name	: Khairul Hafiz Bin Shafad
No Matrix	: B011010222
Course	: BEKC
Supervisor Name	: Mr Lim Wee Teck

UNDERWATER VEHICLE BUOYANCY CONTROL (SURFACE)

Khairul Hafiz Bin Shafad

Bachelor of Electrical Engineering (Control, Instrumentation and Automation)

Jun 2014

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read through this report entitle "Underwater Vehicle Buoyancy Control (Surface)" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Control, Instrumentation and Automation)".

Signature	:
Supervisor's Name	:
Date	:

UNDERWATER VEHICLE BUOYANCY CONTROL (SURFACE)

KHAIRUL HAFIZ BIN SHAFAD

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering (Control, Instrumentation and Automation)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

C Universiti Teknikal Malaysia Melaka

"I hereby declare that this report entitle "Underwater Vehicle Buoyancy Control (Surface)" is the result of my own research except as cited in the references. This report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree

Signature	:
Name	:
Date	:

Specially dedicated to my family, lecturers and friends.

Thanks for all the encouragement and support

•

ACKNOWLEDGEMENT

First and foremost, I would like to express my appreciation to my excellent supervisor, Mr Lim Wee Teck who always gives me a big support during my research study. Mr Lim Wee Teck also helps me in improving my project by giving me the opinion, the idea and guidance to make sure this project will be complete with success. I also would like to thank to Mr Tarmizi Bin Ahmad Izzuddin for giving me an idea and improvement to conduct the experimental.

Besides that, I would like to convey my outmost love and gratefulness to my family who are always there to give me moral and financial support through put the execution of the project.

Last but not least, I would like to give my deepest appreciation to all my friends and everyone who had involved in the same way another for helping me in completing this project. Every criticism either positive or negative is helps me to improve the weakness of the project.

🔘 Universiti Teknikal Malaysia Melaka

ABSTRACT

In general the Remotely Operated Vehicle (ROV) consists of two methods which are using thruster and buoyancy control. Since the thruster required high power demand, so this project will used ballast tank as buoyancy control based on the Archimedes principle. This project consists of three objectives which are to design a ballast tank, to design PID controller in order to improve the performance of the ballast tank, and to compare the algorithm system of the ballast tank between the system control level from surface and the system control level from bottom. Pressure sensor from model MPX4250GP is used in this project as control feedback system. Besides, pressure sensor also converts analog input to voltage (v) in order to compare with desired input set. In this project, mechanical design will focus on the construction of the ballast tank that can move the piston to pump water in and pump water out effectively. Next, PID controller will be implemented in the real hardware in order to improve the performance of the ballast tank. This PID controller will be design by using PID tuning method in the Matlab. Experiment results shown that the system with PID controller is able to perform better performance in term of rise time and settling time, and able to maintain disturbance up to 120g for 300rpm and 80g for 200rpm. At the end of this project, the algorithm system of the ballast tank have been compared between the system control level from surface and the system control level from bottom. It is found that future ballast tank can use both algorithms system (by switching) to control depth level based on suitable depth error.

ABSTRAK

Secara umum, "Remotely Operated Vehicles" (ROV) terdiri daripada dua kaedah iaitu dengan menggunakan pendorong dan kawalan keapungan. Oleh sebab, pendorong memerlukan kuasa yang tinggi, maka projek ini akan mengunakan tangki sebagai kawalan keapungan berdasarkan prinsip Archimedes. Projek ini terdiri daripada tiga objektif, iaitu untuk mereka bentuk tangki, untuk mereka bentuk pengawal PID untuk meningkatkan prestasi tangki, dan untuk membandingkan sistem algoritma tangki antara kawalan sistem dari permukaan dan kawalan sistem dari bawah. Sensor tekanan daripada model MPX4250GP digunakan dalam projek ini sebagai sistem kawalan maklum balas. Selain itu, sensor tekanan juga menukarkan masukan analog kepada voltan (v) untuk membandingkan dengan set masukan yang dikehendaki. Dalam projek ini, reka bentuk mekanikal akan di tumpukan kepada pembinaan tangki yang boleh menggerakkan omboh untuk mengepam air ke dalam dan mengepam air keluar dengan berkesan. Seterusnya, kawalan PID akan dilaksanakan dalam perkakasan sebenar untuk meningkatkan prestasi tangki. Kawalan PID ini akan di reka dengan menggunakan kaedah "PID tuning method" di dalam Matlab. Hasil ujikaji menunjukkan bahawa sistem dengan pengawal PID mampu melakukan pr estasi yang lebih baik dari segi masa naik dan masa penetapan, dan mampu mengekalkan gangguan sehingga 120g untuk 300rpm dan 80g untuk 200rpm. Pada akhir projek ini, algoritma sistem tangki telah dibandingkan antara tahap kawalan sistem dari permukaan dan peringkat kawalan sistem dari bawah. Ia didapati bahawa tangki masa depan boleh mengunakan kedua-dua sistem algoritma (dengan beralih) untuk mengawal tahap kedalaman yang berdasarkan kesilapan kedalaman yang sesuai.

TABLE OF CONTENT

CHAPTER	TITI	LE	PAGE
	ТАВ	BLE OF CONTENTS	iii
	LIST	Γ OF TABLES	vi
	LIST	r of figures	vii
	LIST	F OF APPENDICES	ix
1	INTI	RODUCTION	1
	1.0	Introduction	1
	1.1	Project Background	1
	1.2	Project Motivation	3
	1.3	Problem Statement	5
	1.4	Objective (s) of the Project	5
	1.5	Project Scope	6
2	LITI	ERATURE REVIEW	7
	2.0	Introduction	7
	2.1	Underwater Vehicle Classification	7
	2.2	Factor affecting ROV Buoyancy Control	8
		2.2.1 Buoyancy	9
		2.2.2 Added Mass	10
		2.2.3 Pressure	11
		2.2.4 Environmental Force	11
	2.3	Weight Estimation	12
	2.4	Types of Ballast Tank	14
	2.5	Pressure Sensor	15
	2.6	Stepper Motor	19
	2.7	Microcontroller	20

	2.8	Depth	Control Methods	21
		2.8.1	Dynamic Leveling Control of a Wireless Self-	21
			Balancing ROV Using Fuzzy Logic Controller	
		2.8.2	Depth and Trim Control of an AUV	24
		2.8.3	Development of Variable Ballast Mechanism for	25
			Depth Positioning of Spherical URV	
		2.8.4	Development, Depth Control and Stability Analysis	26
			of an Underwater Remotely Operated Vehicle (ROV)	
		2.8.5	Design and Control of Autonomous Underwater	28
			Vehicle using Variable Buoyancy System	
	2.9	Conclu	usion of Control Method	29
3	MET	HODO	LOGY	31
	3.0	Introd	uction	31
	3.1	Experi	imental Procedure	31
		3.1.1	Mechanical Design for Ballast Tank	32
		3.1.2	Weight Estimation Calculation	36
		3.1.3	Experiment 1: Buoyancy of the Ballast Tank	37
		3.1.4	Experiment 2: Characteristic of the Pressure Sensor	38
		3.1.5	Experiment 3: Manually Control Depth Level for	39
			Ballast Tank	
		3.1.6	Obtaining transfer function for the ballast tank	40
	3.2	Contro	oller Designation	41
	3.3	Perfor	mance of the Ballast Tank	42
		3.3.1	Experiment 4: Performance (Rise Time and Settling	42
			Time) of the Ballast Tank Prototype	
		3.3.2	Compare the Algorithm System of the Ballast Tank	44
	3.4	Conclu	usion	44
4	RES	ULT AN	ID ANALYSIS	45
	4.0	Introd	uction	45
	4.1	The re	sult for Buoyancy of Ballast Tank	45
	4.2	The R	esult for Characteristic of the Pressure Sensor	48
	4.3	The Re	esult for Manually Control Depth Level for Ballast	50
		Tank		

4.4	The Result for PID Tuning Method based on manually Tune	54
4.5	Output Response for the Open Loop System and Close loop	55
	system (by Simulation)	
4.6	The Result for Testing and Analysis Operation of Ballast	57
	Tank	
	4.6.1 The Result for the Performance (Rise Time and	58
	Settling Time) of the Ballast Tank Prototype	
	4.5.2 Compare the Algorithm between the System Control	63
	Level from surface with the System Control Level	
	from bottom	
CONC	CLUSION AND RECOMMENDATION	67
5.0	Introduction	67
5.1	Conclusion	67
5.2	Recommendation	69
REFE	RENCES	70
APPENDICES		71

5

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Acting forces	13
2.2	Differences between types of ballast tank	14
2.3	Type of pressure sensor and description	15
2.4	Comparison between piezoresistive strain gauge and capacitive	16
	sensor	
2.5	Offering information of MPX pressure sensor	18
2.6	Operating characteristic of MPX pressure sensor	18
3.1	Size comparison of the current ballast tank with the previous ballast	34
	tank	
3.2	Comparison in term of volume	35
3.3	Weight estimation for ballast tank	36
4.1	Buoyancy observation for ballast tank	46
4.2	Characteristic of the pressure sensor	48
4.3	PID tuning method	54
4.4	Comparison of the performance	56
4.5	Open loop system	58
4.6	Closed loop system	58
4.7	Performance of the ballast tank	59
4.8	Closed-loop system (with PID controller) with applied of disturbance	60
4.9	Comparison in tern of rise back	60
4.10	Comparison of the algorithm	63

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Prototype of UTeRG ROV	2
1.2	Comparison of thruster and ballast tank performance	3
	against depth	
1.3	Variation of depth against temperature, salinity, and	4
	pressure	
2.1	Underwater vehicles classification	8
2.2	The net force of the fluid acting on an Object is the	9
	buoyant force	
2.3	Archimedes principle	9
2.4	Positive, neutral, and negative buoyancy	10
2.5	Liter beaker of air conforming to Boyle's Law under	11
	water	
2.6	Force acting on the ROV prototype	13
2.7	Pressure Sensor pin connection	17
2.8	Circuit diagram for MPX4250GP	17
2.9	Basic elements of stepper motor	19
2.10	Arduino's UNO	20
2.11	Mini ROV physical construction	21
2.12	Component of the fuzzy logic controller	22
2.13	A mini ROV open loop response	22
2.14	Fuzzy logic control system response	23
2.15	Comparison between fuzzy logic control and PD control	23
	system	
2.16	Comparison between fuzzy logic control and PID control	24
	system	

FIGURE	TITLE	PAGE
2.17	The design model of Depth and Trim Control of an AUV	25
2.18	Shape of spherical URV and its parts	26
2.19	Step response for closed-loop feedback system	27
2.20	Step response for PID control system	27
2.21	VBS based AUV	28
2.22	Block diagram of close loop system for ballast tank	29
2.23	The position of the ballast tank based on the condition of	30
	voltage error	
3.1	Flow chart for ballast tank design	32
3.2	Ballast tank design	33
3.3	Wiring part	35
3.4	Placement of an external weight	37
3.5	Placement of pressure sensor	38
3.6	The relationship between the movements of the piston	39
	ballast tank with the water depth level	
3.7	Block diagram for open loop system	40
3.8	Block diagram for close loop system	41
3.9	Ballast tank and disturbance	43
3.10	Effect after disturbance is applied	43
4.1	Stability of the ballast tank	47
4.2	Graph of output voltage Vs depth level	49
4.3	Graph of piston movement Vs time	50
4.4	Graph of depth level Vs time	51
4.5	Limitation of the Hardware (a) Initial position; (b) First	52
	sliding; (c) Second Sliding	
4.6	Open loop output response	55
4.7	Close loop output response	56
4.8	Illustration setpoint for both systems at same depth level	64
4.9	System from surface	65
4.10	System from bottom	65
4.11	Combination of algorithm in ballast tank system	66

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	PSM Flowchart	71
В	List Parts of the Piston Ballast Tank	72
С	Assemble Process for Mechanical Ballast Tank.	75
D	Weight Estimation Calculation	76
E	Coding for Manually Control Depth Level	78
F	Manual Control Depth Level	80
G	System Identification	86
Н	PID Tuning Method (Manually Tune)	90
Ι	System Performance at Different Values of Kp, Ki, and	92
	Kd	
J	PID Controller in Arduino's Microcontroller	96
Κ	Testing and Analysis Operation of Ballast Tank	99
L	Performance (Rise Time and Settling Time) of the	104
	Ballast Tank	
М	Close Loop with Applied of Disturbance	108
Ν	System Control Level from Bottom	109

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.0 Introduction

The aim of this chapter is to describe in general about underwater vehicles. The problem statement is identified based on regarding problem and the objectives are created in order to solve this problem statement. Then, the project scope will be mentioned the limitation of this project.

1.1 Project Background

Remotely Operated Vehicles (ROV) is essentially an underwater robot that is widely used in lot of underwater exploration such as industrial, marine study or work [1]. The ROV is used for operation either in hazardous environment or at high depths pressurized where human cannot withstand. The applications of the ROV can be seen in exploring hydrothermal vents, surveying archaeological sites, and fixing underwater infrastructure such as cabling and piping, mostly construction of oil facilities and offshore gas [1]. There are two mains part in the ROV which are mechanical part and controlling part that used to protect the electronic component. Figure 1.1 shows example of ROV prototype model. A ROV differs from autonomous underwater vehicle (AUV) in a way that ROV always take command from its operator and takes no action autonomously [2].

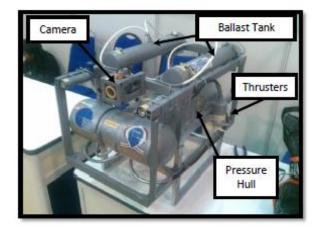


Figure 1.1 : Prototype of UTeRG ROV [3]

The main drawback in current underwater tasks performance is that, the components used such as thruster, lamp and camera consumed high power usage. Therefore, in order to solve high power consumption problems, one of the best ways is performing ROV operation without thruster [4]. Drawback of thruster also had proved by the research conducted by National Oceanic and Atmospheric Administration (NOAA) discover that the performance of the thruster become worst when reaching the saturated point at depth pressure is high[3]. Then, the ROV will no longer can be move downward at this saturated point. Since the thruster will not give good performance in underwater tasks, another alternative method to replace thruster is ballast tank. Ballast tank use the concept of the buoyancy force corresponds to displacement of water. When the ballast tank is filled with water, the ROV will add its weight, so the ROV will move downward. Other than that, by using ballast tank also can make the ROV travel deeper in the underwater application. Figure 1.2 shows the comparison of the performance.

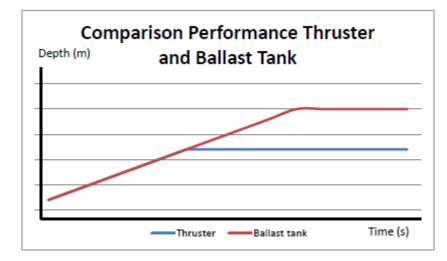


Figure 1.2 Comparison of thruster and ballast tank performance against depth[3]

Pressure sensor from model MPX4250GP is used in this project to detect the water level pressure and also used as feedback system in order to control the piston movement. Therefore, this pressure sensor can help the ballast tank to estimate and maintain at certain depth from the water surface.

1.2 Project Motivation

There a certain limitation when dealing with the underwater exploration such as risk of harsh environment and variety of problems. Figure 1.3 shows the relationship of temperature, salinity, and pressure when the depth is more increase.

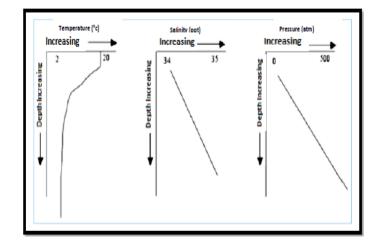


Figure 1.3: Variation of depth against temperature, salinity, and pressure [3]

Based on Figure 1.3 shows that temperature is decreasing when the depth increase. However, the salinity and pressure is increased linearly with depth increase. Human need to carry oxygen tank and suitable clothes in order to protect their body. This might possible to be not function and will cause risk to human. Hence, it is not suitable for a human to do an exploration under depth water level. Then, ROV will be used to replace the human in performing a high risk during underwater. Therefore, the main motivation of this project is to control the buoyancy of the ballast tank model.

4

1.3 Problem Statement

When performing underwater task, minimum power consumption is required to maintain at certain depth. There are two types of buoyancy control which is either using thruster or ballast tank. However, thruster required high power consumption to control buoyancy compared to ballast tank. Therefore, the ballast tank is more suitable to be used in this project to control buoyancy.

Based on the previous underwater vehicle final year project was developed by last year UTeM student, it seems that the objective to buoyant the remotely operated vehicle (ROV) in the desired depth was not achieved because the limitation design of ballast tank. The ballast tank was too small and can pump in the water only for a small quantity. Thus, the vehicle cannot achieve to maintain 5m based on the objective set. Therefore, the main goal of this project is to design the ballast tank based on the objectives set.

1.4 Objective (s) of the Project

The objectives of this project are to:

- 1. To design a ballast tank.
- 2. To design proportional integral and derivatives (PID) controller in order to improve the performance of the ballast tank system.
- 3. To compare the algorithm system of the ballast tank between the systems control level from surface and the system control level from bottom.

1.5 Project Scope

The scopes of work for this project are:

- 1. Design a new ballast tank in order to overcome last year's problem.
- 2. Using proportional integral and derivatives (PID) control system in (MATLAB) and Arduino microcontroller to improve performance of ballast tank.
- 3. The ballast tank movements only focus in one degree of freedom (up and down).
- 4. The ballast tank is tested at laboratory pool which has maximum depth of 1.2m.
- 5. The ballast tank can maintain up to 30cm for open loop system, while at 50cm at close loop system.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter will describe general concepts about the underwater vehicles and the ROV. This literature review will explain the factor that affecting the buoyancy, type of sensor uses, types of ballast tank, stepper motor, and microcontroller. Besides that, this chapter also will review on other people research regarding to underwater vehicles using buoyancy concept. This chapter also will conclude the proposed design for this project after analyze all the facts, data, information, and study on previous research.

2.1 Underwater Vehicle Classification

There are two different categories to classify the underwater vehicles. These two categories are manned underwater vehicles (MUV) and unmanned underwater vehicles (UUV). The first category MUV is divided into sub-classes that are military submarine and non-military submarines. This submarine type allow human to descend into ocean to perform military task and gather information by observation [5]. Next, the second category UUV can be separate into two branches that are Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV). AUV class is intelligence which allows it to perform task autonomously, while for ROV need remotely control by a human when

performing some task. This project is in ROV class. Figure 2.1 shows the category of underwater vehicles.

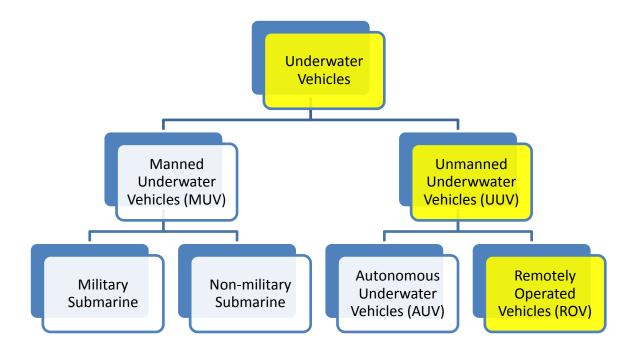


Figure 2.1: Underwater vehicles classification [5]

2.2 Factor affecting ROV Buoyancy Control

The factors such as buoyancy, stability, added mass, pressure and environmental force are needs to be considered when designing ballast tank. These factors will help to design a ballast tank that has a good performance and most important to meets requirement. Ballast tank is the practice adding, removing, or relocating weight of floatation on an underwater vehicle to correct its buoyancy and pitch and roll [6].