

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

## Design and Analysis of Welding Fixture Based on Dynamic Load Condition

This report submitted in accordance with requirement of UniversitiTeknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

### MOHD TARMIZI BIN ANUAL

#### B051010164

880704-23-5165

FACULTY OF MANUFACTURING ENGINEERING

2014

# DESIGN AND ANALYSIS OF WELDING FIXTURE BASED ON DYNAMIC LOAD CONDITION

# MOHD TARMIZI BIN ANUAL B051010164

## UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2014

C Universiti Teknikal Malaysia Melaka



UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### **BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA**

TAJUK: Design and Analysis of Welding Fixture Based on Dynamic Load Condition

SESI PENGAJIAN: 2013/14 Semester 2

#### Saya MOHD TARMIZI BIN ANUAL

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (✓)

|                    | (Mengandungi maklumat yang berdarjah keselamatan<br>atau kepentingan Malaysia sebagaimana yang termaktub<br>dalam AKTA RAHSIA RASMI 1972)       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | (Mengandungi maklumat TERHAD yang telah ditentukan<br>oleh organisasi/badan di mana penyelidikan dijalankan)                                    |
| TIDAK T            | RHAD                                                                                                                                            |
| •                  | Disahkan oleh:                                                                                                                                  |
| Alamat Tetap:      | Cop Rasmi:                                                                                                                                      |
| No 86, Kampung Tai |                                                                                                                                                 |
| Sengkawang, Geme   | eh,                                                                                                                                             |
| 85000 Segamat, Joh | r                                                                                                                                               |
| Tarikh:            | Tarikh:                                                                                                                                         |
|                    | IT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi<br>kan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai |

## DECLARATION

I hereby, declared this report entitled "Design and Analysis of Welding Fixture Based on Dynamic Load Condition" is the results of my own research except as cited in references.

| Signature     | : |                        |
|---------------|---|------------------------|
| Author's Name | : | MOHD TARMIZI BIN ANUAL |
| Date          | : |                        |



## APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory committee is as follow:

.....





## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# DESIGN AND ANALYSIS OF FEEDER UNIT FOR OIL PALM FIBER INTAKE SECTION

This report submitted in accordance with requirement of Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

#### MOHAMAD ASYRAF BIN ZUBIR

B051010187

880215-23-5113

#### FACULTY OF MANUFACTURING ENGINEERING

2014

🔘 Universiti Teknikal Malaysia Melaka

## DECLARATION

I hereby, declared this report entitled "Design and Analysis of Feeder Unit for Oil Palm Fiber Intake Section" is the results of my own research except as cited in references.

Signature:.....Author's Name:MOHAMAD ASYRAF BIN ZUBIRDate:....



## APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory committee is as follow:

.....

(ENGR. ZULKEFLEE BIN ABDULLAH)



### ABSTRAK

Lekapan kimpalan ditakrifkan sebagai alat yang digunakan untuk memudahkan kerjakerja kimpalan dan menjimatkan masa dalam menghasilkan produk. Penggunaan lekapan kimpalan juga merupakan salah satu langkah keselamatan mengelakkan pengimpal daripada kecederaan semasa mengendali proses kimpalan. Projek ini dijalankan untuk mengkaji parameter reka bentuk lekapan kimpalan yang baru yang digunakan untuk menyambungkan bahagian pintu pagar seperti pintu pagar yang digunakan di rumah. Di samping itu, tiga idea konsep telah dibincangkan. Tambahan pula, konsep yang terbaik telah digunakan dalam analisis ini berdasarkan 3 bahan calon yang berbeza. Bahan yang paling sesuai untuk lekapan kimpalan telah diperolehi melalui simulasi. Model lekapan kimpalan 3D dilukis dengan menggunakan perisian Solidwork 2013. Analisis terma sementara dan analisis struktur statik pada lekapan kimpalan dijalankan dengan menggunakan perisian ANSYS 14.0. Hasil daripada analisis struktur statik telah diinterpretasikan dalam lima aspek: tegasan setara, pengubahan bentuk, faktor keselamatan (F.O.S), hayat lesu dan kerosakan keletihan. Walau bagaimanapun, hasil daripada analisis terma sementara telah diinterpretasikan dalam dua aspek: suhu dan jumlah agihan fluks haba. Oleh itu, ia telah dicadangkan bahawa keluli tahan karat adalah yang sesuai untuk lekapan kimpalan.

### ABSTRACT

Welding fixtures defined as a tool used to facilitate the work of welding and saving time to produce a product. The use of welding fixture is also one of a safety measure prevent the welder from injury while handling welding process. This project was undertaken to study the design parameters of the new welding fixtures used for joining the gate parts such as the gate used at home. In addition, three concept ideas were discussed. Furthermore, the best concept has been used in this analysis based on 3 candidate materials. The most suitable material for welding fixtures was obtained through simulation. 3D model welding fixture was created by using Solidwork 2013 software. Transient thermal analysis and static structural analysis were performed on welding fixture by using ANSYS 14.0 software. Result of static structural analysis was interpreted in five aspects: Equivalent stress, total deformation, factors of safety (F.O.S), fatigue life and fatigue damage. However, the result of a transient thermal analysis was interpreted in two aspects: temperature and total heat flux distribution. Therefore, it was proposed that stainless steel is the suitable for welding fixtures.

## DEDICATION

To my beloved parent, siblings, friend, my respectful supervisor and examiner for their love and support

### ACKNOWLEDGEMENT

First and foremost, gratefully wishes to the Almighty, ALLAH S.W.T for all His blessing. I would like to express my sincere gratitude to my supervisor, Dr Taufik, for his guidance in conducting and writing this report. I am grateful for his professionalism and his tolerance of my naive mistakes.

I acknowledge my sincere indebtedness and gratitude to my parents and family for their love, supported, and advices motivation.

Lastly, I would like to thank to every single individuals and groups who kindly provide assistance and spiritual support to me hesitations.

## TABLE OF CONTENTS

| Abstrak                                         | i    |
|-------------------------------------------------|------|
| Abstract                                        | ii   |
| Dedication                                      | iii  |
| Acknowledgement                                 | iv   |
| Table of Contents                               | v    |
| List of Tables                                  | iix  |
| List of Figures                                 | Х    |
| List of Abbreviations, Symbols And Nomenclature | xiii |
|                                                 |      |

## CHAPTER 1 : INTRODUCTION

| 1.1 | Background        | 1 |
|-----|-------------------|---|
| 1.2 | Problem Statement | 2 |
| 1.3 | Objective         | 3 |
| 1.4 | Scope of project  | 3 |

1

#### **CHAPTER 2 : LITERATURE REVIEW** 5 2.1 Jigs and Fixtures 5 Material Used in Jigs and Fixtures 7 2.2 Welding 2.3 13 Type of welding method 2.3.1 14 Classification of welding 2.3.2 15 Welding Parameter Used In Welding Fixture 2.4 19 Application of Welding In Manufacturing 2.5 19

v

| 2.6  | Load      |                                          | 23 |
|------|-----------|------------------------------------------|----|
| 2.7  | Theoret   | ical of weight                           | 24 |
| 2.8  | Factor of | of safety (F.O.S)                        | 25 |
| 2.9  | Fatigue   | Life                                     | 25 |
| 2.10 | Heat Tr   | ansfer                                   | 26 |
|      | 2.10.1    | Heat conduction                          | 27 |
|      | 2.10.2    | Heat convection                          | 28 |
|      | 2.10.3    | Radiation                                | 28 |
|      | 2.10.4    | Heat flux                                | 29 |
|      | 2.10.5    | Steady-state and transient heat transfer | 30 |
| 2.11 | Finite E  | lement Analysis (FEA)                    | 31 |

### **CHAPTER 3 : METHODOLOGY**

32

| 3.1 | Project 1 | Methodol  | ogy        |                   | 3 | 2 |
|-----|-----------|-----------|------------|-------------------|---|---|
|     | 3.1.1     | Flow ch   | art        |                   | 3 | 3 |
| 3.2 | Phase 1   |           |            |                   | 3 | 4 |
|     | 3.2.1     | Start     |            |                   | 3 | 4 |
|     | 3.2.2     | Problem   | Statement  |                   | 3 | 4 |
|     | 3.2.3     | Design l  | Planning   |                   | 3 | 5 |
|     |           | 3.2.3.1   | Workpiece  |                   | 3 | 6 |
|     |           |           | 3.2.3.1.1  | Part A: 40x60x4mm | 3 | 9 |
|     |           |           | 3.2.3.1.2  | Part B: 30x50x4mm | 4 | 2 |
|     |           | 3.2.3.2   | Design con | cept              | 4 | 5 |
|     |           |           | 3.2.3.2.1  | Concept 1         | 4 | 6 |
|     |           |           | 3.2.3.2.2  | Concept 2         | 4 | 8 |
|     |           |           | 3.2.3.2.3  | Concept 3         | 5 | 0 |
| 3.2 | .4 Co     | ncept Sco | oring      |                   | 5 | 2 |
|     |           | 3.2.4.1   | Concept sc | oring table       | 5 | 3 |
| 3.2 | .5 De     | sign Sele | ction      |                   | 5 | 4 |

|     |         | 3.2.5.1 | 3D model of concept 3      | 54 |
|-----|---------|---------|----------------------------|----|
|     |         | 3.2.5.2 | Material selection         | 56 |
|     |         | 3.2.5.3 | Heat transfer calculation  | 57 |
| 3.3 | Phase 2 |         |                            | 60 |
|     | 3.3.1   | Simulat | ion in ANSYS               | 60 |
|     |         | 3.3.1.1 | Pre-processing             | 62 |
|     |         | 3.3.1.2 | Solution                   | 62 |
|     |         | 3.3.1.3 | Post-processing            | 62 |
| 3.4 | Phase 3 |         |                            | 63 |
|     | 3.4.1   | Expecte | ed Result                  | 63 |
|     |         | 3.4.1.1 | Structural Static analysis | 63 |
|     |         | 3.4.1.2 | Transient Thermal Analysis | 64 |
| 3.5 | Phase 4 |         |                            | 64 |

#### CHAPTER 4 : RESULTS AND DISCUSSION

65

| 4.1 | Fixturing device A and B |                            |             | 65                          |    |
|-----|--------------------------|----------------------------|-------------|-----------------------------|----|
|     | 4.1.1                    | Transient Thermal Analysis |             | 67                          |    |
|     |                          | 4.1.1.1                    | Transient ' | Thermal Analysis result     | 74 |
|     |                          |                            | 4.1.1.1.1   | Global Temperature graph    | 74 |
|     |                          |                            | 4.1.1.1.2   | Temperature distribution    | 77 |
|     |                          |                            | 4.1.1.1.3   | Total Heat Flux             | 80 |
|     | 4.1.2                    | Static Structural Analysis |             | 83                          |    |
|     |                          | 4.1.2.1                    | Static Stru | ctural Analysis result      | 87 |
|     |                          |                            | 4.1.2.1.1   | Equavalent von mises stress | 87 |
|     |                          |                            | 4.1.2.1.2   | Total deformation           | 90 |
|     |                          |                            | 4.1.2.1.3   | Fatigue Life                | 93 |
|     |                          |                            | 4.1.2.1.4   | Fatigue damage              | 94 |
|     |                          |                            | 4.1.2.1.5   | Factor of safety (F.O.S)    | 95 |
| 4.2 | Fixturi                  | ng device                  | С           |                             | 98 |

|      | 4.2.1  | Static    | Structural Analysis for Fixturing device C | 99  |
|------|--------|-----------|--------------------------------------------|-----|
|      | 4      | .2.1.1    | Equavalent von mises stress                | 99  |
|      | 4      | .2.1.2    | Total deformation                          | 102 |
|      | 4      | .2.1.3    | Fatigue life                               | 105 |
|      | 4      | .2.1.4    | Fatigue damage                             | 106 |
|      | 4      | .2.1.5    | Factor of safety (F.O.S)                   | 107 |
| 4.3  | Discus | ssion     |                                            | 110 |
|      | 4.3.1  | Mater     | ial selection for Fixturing device A and B | 110 |
|      | 4.3.2  | Mater     | ial selection for Fixturing device C       | 114 |
|      |        |           |                                            |     |
|      |        |           |                                            |     |
| СНА  | PTER 5 | : CONC    | LUSION AND RECOMMENDATION                  | 117 |
| 5.1  | Conclu | usion     |                                            | 117 |
| 5.2  | Recon  | nmendati  | on                                         | 119 |
|      |        |           |                                            |     |
| REF  | ERENCE | S         |                                            | 120 |
|      |        |           |                                            |     |
|      |        |           |                                            |     |
|      |        |           |                                            |     |
| APPI | ENDICE | 8         |                                            | 123 |
| А    |        | Gantt cha | art PSM 1 and PSM 2                        |     |
| В    |        | Workpie   | ces material                               |     |
| С    |        | Detail dr | awing of Concept 3                         |     |
| D    |        | Force an  | nd direction                               |     |
| E    |        | Tabular o | data for temperature and total heat flux   |     |

## LIST OF TABLES

| 2.1: Material properties of Cast iron (ductile)                              | 10  |
|------------------------------------------------------------------------------|-----|
| 2.2: Material properties of low carbon steel                                 | 11  |
| 2.3: Material properties of stainless steel                                  | 12  |
| 2.4: Electrodes and Typical Applications                                     | 21  |
| 2.5: Recommended Electrode Sizes                                             | 22  |
| 2.6: Recommended Current Range                                               | 22  |
| 2.7: Run Length per Electrode                                                | 23  |
|                                                                              |     |
| 3.1: Total assembly part for concept 1                                       | 47  |
| 3.2: Total assembly part for concept 2                                       | 49  |
| 3.3: Total assembly part for concept 3                                       | 51  |
| 3.4: Rating for relative performance                                         | 52  |
| 3.5: The concept scoring matrix table                                        | 53  |
| 3.6: Material Properties                                                     | 56  |
| 4.1: Comparison maximum equivalent stress and elastic limit (yield strength) | 110 |

|      | 1 1                                         |                         | 0 /        |
|------|---------------------------------------------|-------------------------|------------|
| 4.2: | Comparison between total deformation and fa | ctor of safety          | 111        |
| 4.3: | Comparison maximum equivalent stress and e  | astic limit (yield stre | ength) 115 |
| 4.4: | Comparison between total deformation and fa | ctor of safety          | 115        |

## LIST OF FIGURES

| 2.1: The shielded-metal arc (SMAW) process                      | 20 |
|-----------------------------------------------------------------|----|
| 2.2: An S-N diagram plotted from material UNS G41300 steel      | 26 |
| 3.1: Flow chart for PSM 1 and PSM 2                             | 33 |
| 3.2: Design planning flowchart                                  | 35 |
| 3.3: Workpiece                                                  | 36 |
| 3.4: Mass properties for workpiece                              | 37 |
| 3.5: Part A of workpiece with dimension 40x60x4mm               | 39 |
| 3.6: Mass properties for Part A                                 | 40 |
| 3.7: Part B of workpiece with dimension 30x50x4mm               | 42 |
| 3.8: Mass properties for Part B                                 | 43 |
| 3.9: Concept 1                                                  | 46 |
| 3.10: Concept 2                                                 | 48 |
| 3.11: Concept 3                                                 | 50 |
| 3.12: 3D model of concept 3 when workpiece load on the fixture. | 54 |
| 3.13: 3D model of concept 3                                     | 55 |
| 3.14: Heat conduction                                           | 57 |
| 3.11: FEA stage                                                 | 61 |
| 4.1: Surface area for fixturing device A and B                  | 66 |
| 4.2: Surface area for fixturing device A and B                  | 67 |
| 4.3: ANSYS 14.0 toolbox.                                        | 68 |
| 4.4: Step in Transient Thermal Analysis                         | 69 |
| 4.5: Material selection in an engineering data source           | 70 |
| 4.6: Import 3D model from Geometry section                      | 71 |
| 4.7: Several steps in 'setup' section                           | 72 |

| 4.9 : Data to enter                                                                 | 73      |
|-------------------------------------------------------------------------------------|---------|
| 4.10: Comparison of temperature in global maximum and minimum for low can steel     | rbon 74 |
| 4.11: Comparison between global maximum and minimum temperature for stainless steel | 75      |
| 4.12: global maximum temperature graph for cast iron (ductile)                      | 76      |
| 4.13: Temperature distribution for low carbon steel                                 | 77      |
| 4.14: Temperature distribution for stainless steel                                  | 78      |
| 4.15: Temperature distribution for cast iron (ductile)                              | 79      |
| 4.16: Total heat flux for low carbon steel                                          | 80      |
| 4.17: Total heat flux for stainless steel                                           | 81      |
| 4.18: Total heat flux for cast iron (ductile)                                       | 82      |
| 4.19: Section or step in Static Structural Analysis                                 | 83      |
| 4.20: Editing material properties for Static structural analysis                    | 84      |
| 4.21: Setup section for Static structural analysis                                  | 85      |
| 4.22: Modification of Force for Static structural analysis                          | 85      |
| 4.23: Fixed support for Static structural analysis                                  | 86      |
| 4.24: Equavalent von mises stress for low carbon steel                              | 87      |
| 4.25: Equavalent von mises stress for stainless steel                               | 88      |
| 4.26: Equavalent von mises stress for cast iron (ductile)                           | 89      |
| 4.27: Total deformation for low carbon steel                                        | 90      |
| 4.28: Total deformation for stainless steel                                         | 91      |
| 4.29: Total deformation for cast iron (ductile)                                     | 92      |
| 4.30: Fatigue life for low carbon steel                                             | 93      |
| 4.31: Fatigue damage for low carbon steel                                           | 94      |
| 4.32: Factor of safety for low carbon steel                                         | 95      |
| 4.33: Factor of safety for stainless steel                                          | 96      |
| 4.34: Factor of safety for cast iron (ductile)                                      | 97      |
| 4.35: Surface area for fixturing device C                                           | 98      |
| 4.36: Modification of Force for fixturing device C                                  | 98      |
| 4.37: Equavalent von mises stress for low carbon steel                              | 99      |

| 4.38: Equavalent von mises stress for stainless steel                         | 100 |
|-------------------------------------------------------------------------------|-----|
| 4.39: Equavalent von mises stress for cast iron (ductile)                     | 101 |
| 4.40: Total deformation for low carbon steel                                  | 102 |
| 4.41: Total deformation for stainless steel                                   | 103 |
| 4.42: Total deformation for cast iron (ductile)                               | 104 |
| 4.43: Fatigue life for low carbon steel                                       | 105 |
| 4.44: Fatigue damage for low carbon steel                                     | 106 |
| 4.45: Factor of safety for low carbon steel                                   | 107 |
| 4.46: Factor of safety for stainless steel                                    | 108 |
| 4.47: Factor of safety for cast iron (ductile)                                | 109 |
| 4.48: Comparison graph between candidate material in global minimum and       | 112 |
| global maximum                                                                |     |
| 4.49: Comparison graph of total heat flux for candidate material in 10 second | 113 |

# LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ASTM American Society for Testing and Materials -EBW **Electron-Beam Welding** -FEA \_ Finite Element Analysis FCAW Flux Cored Arc Weldments -FOS Factor of Safety -GMAW Gas Metal Arc Welding -GTAW Gas Tungsten Arc Welding -HSS -High Speed Steel IGES Initial Graphics Exchange Specification -MMAW Manual Metal Arc Welding -MMA Manual Metal Arc -OHNS Oil Hardening non Shrinking -PAW Plasma Arc Welding -PSM 1 Projek Sarjana Muda 1 -PSM 2 Projek Sarjana Muda 2 -SAW Submerged Arc Welding -SMAW Shielded Metal Arc Welding -

## **CHAPTER 1**

#### **INTRODUCTION**

This chapter describes the key of general terms that implemented for this project. It covers the background of the problem, objectives, scope, and significant and research methodology.

#### 1.1 Background

Nowadays, fixture is an important thing in manufacturing field. In Malaysia, a lot of factory used the fixture to increase the productivity for their product. In manufacturing process, fixture is defined as a tool or the base for holding the workpieces (Zhang et al., 2009). The fixture is designed and created depend on the process involve on the workpieces. Usually, the fixture is used for inspecting the workpiece, assemble the part, machining process, and welding process.

A general tool such as clamps and locator used in welding fixtures is to coordinate and maintain various pieces for welding. Almost all welding equipment is designed and built to meet a specific need of a single assembly. Normally, the cost to build and designing the welding equipment is very expensive. Therefore, it takes a long time to produce a new design and installation of welding equipment at the plant (Zhang et al., 2009).

Welding fixtures can be produced in two different forms of process either manually or automatically. Usually, welding fixture is widely used in the automotive field for an automotive body welding assembly line. In manufacturing system cost, the cost of producing fixtures is about to 10-20% (Zhang et al., 2009). Therefore, a fixture system is designed and built for producing as many workpieces as possible to reduce manufacturing cost. In large production, the fixture size is large and must suitable follow the workpieces size. In low-to-medium production, the flexible fixture system is the one of improvement in order to reduce the unit cost of product (Hoffman, 2004).

#### **1.2 Problem Statement**

Gate is important for safety and protection. In order to join the gate part, welding is the best process used for joining the metal part. The quantity of gate part to assemble is a one of the problem to get less time produce and accuracy of welder. One of solving for this problem is built the welding fixture for joining the gate structure. The welding fixture was designed to hold the gate part during assembly processed. However, there is a lack of study in designing of fixture. In this research, the new design of welding fixture and the best material selection based on research were discussed. In addition, some analysis will be conducted to ensure the fixture material can withstand standard welding temperature and long term use based on dynamic load condition.

#### 1.3 Objective

The objectives of this project are:

- To investigate the design parameter for welding fixture by using Solidwork 2013 software.
- 2. To analyze the welding fixture by using ANSYS 14.0 software.
- 3. To determine the factor of safety for welding fixture.

#### **1.4 Scope of project**

Fixtures scope is not limited because it has many elements such as locators, clamps, essential features of fixture and others. However, this research only covers about the holding workpieces on welding fixture. The workpieces material is ASTM A500 grade A also known as 1027 plain carbon steel. The type of welding process involve in this research is Shielded metal arc welding (SMAW). In this welding process, the base metals are heated to fusion or melting temperature by an electric arc. The shielding gas is created as the flux covering on the electrode melts. When the flux solidifies, it forms a protective slag over the weld bead. The melting electrode wire furnishes filler metal to the weld welding process with initial temperature,  $T_1 = 1,540$  °C for ASTM A500 grade A material. Besides that, the temperature ,  $T_2 = 924$  °C is the assumed heat flow to the surface fixture during welding process. In this research, the temperature,  $T_2 =$ 924 °C is base on the reduction of the heat as much as 40% from the welding temperature,  $T_1 = 1,540$  °C. Besides, there are no specific experiments performed to study the actual temperature of the heat flow to the fixtures surface in this analysis. Furthermore, the ambient temperature,  $T_{\infty} = 30^{\circ}$ C is assumed as surrounding temperature in welding room.