

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF DATABASE FOR CHECKING FIXTURES FOR AUTOMOTIVE PARTS

This report submitted in accordance with requirement of Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

SHAHRUL IMRAN BIN ZULKIFLI

B051010136

880302-26-5441

FACULTY OF MANUFACTURING ENGINEERING

2014

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of Database for Checking Fixtures for Automotive Parts

SESI PENGAJIAN: 2013/14 Semester 2

Saya SHAHRUL IMRAN BIN ZULKIFLI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAL	Disahkan oleh:
Alamat Tetap: 2934-H Taman Muhibbah	Cop Rasmi:
Jalan Sultanah Bahiyah	
05350 Alor Setar, Kedah	
Tarikh:	Tarikh:
** Jika Laporan PSM ini SULIT atau berkenaan dengan menyatakan se SULIT atau TERHAD.	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

🔘 Universiti Teknikal Malaysia Melaka

FAKULTI KEJURUTERAAN PEMBUATAN

Tel : +606 331 6019 | Faks : +606 331 6431/6411

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref) :

23 Jun 2014

Pustakawan Perpustakaan UTeM Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN (MANUFACTURING DESIGN): SHAHRUL IMRAN BIN ZULKIFLI

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk **"Development of Database for Checking Fixtures for Automotive Parts"** mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA (5) tahun dari tarikh surat ini.

2. Hal ini adalah kerana <u>IANYA MERUPAKAN PROJEK YANG DITAJA OLEH</u> <u>SYARIKAT LUAR DAN HASIL KAJIANNYA ADALAH SULIT</u>.

Sekian dimaklumkan. Terima kasih.

Yang benar,

* Potong yang tidak berkenaan

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. <u>JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD, MAKA</u> BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM.

DECLARATION

I hereby, declared this report entitled "Development of Database for Checking Fixtures for Automotive Parts" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	SHAHRUL IMRAN BIN ZULKIFLI
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory committee is as follow:

.....

(ZULKEFLEE BIN ABDULLAH)

ABSTRAK

Tujuan kajian ini adalah untuk membangunkan pangkalan data untuk Semakan Jadual untuk Bahagian Automotif. Bahagian-bahagian yang digunakan dalam proses semakan seperti "clamper", "stand" dan "toggle". Matlamat projek ini adalah untuk melaksanakan pangkalan data memeriksa lekapan bahagian. Projek bermula ialah mengenal pasti masalah semasa yang dihadapi oleh pereka bentuk di jabatan reka bentuk. Masa terbuang telah menjadi masalah utama yang telah pereka untuk dihadapi. Semua data dan maklumat yang berkaitan dengan projek ini telah dicari dan direkodkan dalam kajian literatur. Perisian Catia digunakan sebagai perisian CAD untuk membina model tiga dimensi untuk reka bentuk bahagian-bahagian semua bahagian di perpustakaan bahagian-bahagian yang. Semua bahagian-bahagian yang dianjurkan dalam tiga saiz yang berbeza yang ditentukan oleh saiz panel badan kereta. Merujuk kepada keputusan itu, perpustakaan baru terbentuk atau dibangunkan dengan menggunakan perisian Catia untuk membantu pereka dalam proses reka bentuk lekapan pemeriksaan. Pengesahan perpustakaan telah dijalankan dengan syarikat itu untuk menguji keberkesanan, kebolehgunaan dan kesesuaian. Oleh itu, dengan alat ini dan kaedah telah mempercepatkan lekapan proses reka bentuk memeriksa untuk menjadi lebih cepat dan cekap.

i

ABSTRACT

The purpose of this study is to develop database for Checking Fixtures for Automotive Parts. The parts that used in the checking fixture process such as clamper, stand and toggle. The goal of this project is to implement a database of checking fixtures parts. The project started is identify the current problem that faced by the designer at design department. Idle time has been the major problem that designer have to faced. All the data and information related to this project has been sought and recorded in the literature review. Catia software is used as CAD software to construct three-dimensional models for the design of the parts all the parts in the parts library. All the parts are organized in three different sizes which are determined by the size of car body panel. Referring to the result, new libraries are formed or develop using the Catia software to aid the designers in the checking fixture design process. The validation of the library has been conducted with the company to test the effectiveness, usability and relevancy. Therefore, with this tool and method have accelerate the checking fixtures design process to become more quickly and efficient.

DEDICATION

To my beloved family, my respectful supervisor and examiner, my fellow friends and all the parties involved, thank you so much.

ACKNOWLEDGEMNET

First and foremost, gratefully wishes to the Almighty, ALLAH S.W.T for all His blessing.

This opportunity has been taken to express sincere appreciation and gratitude to respective supervisor, Mr. Zulkeflee bin Abdullah, for constructive guidance, consistent encouragement, and fulfilling aspiration in completing this project. Also for my supervisor at Shazu Engineering Sdn.Bhd for her kindness, patients, and supporting, I wish her thanks a lot.

Also this chance has been taken to wish thank to the entire workers at the Shazu Engineering for took valuable time to teach and give a proper tutoring to understand about the checking fixtures and teach something that very useful in manufacturing design.

This opportunity absolutely taken to wish special thanks for several people especially all the family members for supporting physically and spiritually throughout in completing this project. Finally, thank wishes to all friends that give me a support and for a sharing an idea during the completion this final year report.

TABLE OF CONTENT

Abstral	k	i
Abstra	ct	ii
Dedica	tion	iii
Acknow	wledgement	iv
Table o	of Content	v
List of	Table	viii
List of	Figure	Х
List of	Abbreviations and Acronyms	xiv
CHA	PTER 1	1
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objective of the Study	4
1.4	Scope of the Research	4
1.5	Potential Benefits from the Research	5
1.5	5.1 Benefits to Industry	5
1.5	5.2 Benefits to University	5
СЦАТ	ρτερ γ	6
UNA		0
2.1	Jigs and Fixture	6
2.2	Fixture Design	9

2.2	2.1	The fixture Design	9
2.2	2.2	Part Prints	10
2.2	2.3	Fixture Drawing	11
2.2	2.4	Frame/Base	12
2.2	2.5	Locator	13
2.2	.6	Clamps	14
2.2	2.7	Bushings	19
2.2	2.8	Brackets	20
2.2	2.9	Fastener	21
2.3	Aut	comotive Body in White	22
2.4	Che	ecking Fixture	24
2.4	.1	Stationary Checking Fixtures	25
2.5	Def	inition of Design	26
2.6	Des	sign Research	27
2.7	Ind	ustrial Design	28
2.8	Dev	velopment Lead Time	29
2.9	Pro	ductivity in Automotive	31

CHAPTER 3

3.1	Plan and Activities	33
3.2	Design of Research	35
3.3	Background of the Research Location	35
3.4	Research Methodology	36
3.5	Framework of the Research	37

33

3.5.1	Problems Identification	39
3.5.2	Design Concept	42
3.5.3	Size of Checking Fixtures	45
3.5.4	Determine Standard Parts of Checking Fixtures	47
3.5.5	Design the Parts using CAD	48
3.5.6	Organize the Drawing File	49

CHAPTER 4

51

4.1	Int	roduction	51
4.2	Ch	ecking Fixtures Design Loose Panel Parts	51
4.2	2.1	Body Parts (Panel Data)	53
4.3	Ch	ecking Fixture Library	87
4.3	.1	Workflow Used of the Library Part	88
4.4	Ch	ecking Fixture Database Library Validation	97
4.4	.1	Validation Method	97
4.4	.2	Validation Result	100

CHAPTER 5

101

5.1	Conclusion	101
5.2	Recommendation for Future Work	102

REFERENCES

APPENDIX

LIST OF TABLE

Table 3.1: Interview Questions	37
Table 4.1: Size of Checking Fixture	54
Table 4.2: Type of Clamp Used	59
Table 4.3: Types of Clamps	60
Table 4.4: L-bracket Size	63
Table 4.5: Dowel Pin	67
Table 4.6: Diamond Pin	67
Table 4.7: Marking Pin	70
Table 4.8: Small Round Pin	73
Table 4.9: Medium Round Pin	74
Table 4.10: Large Round Pin	74
Table 4.11: Small Hinge Pin	75
Table 4.12: Medium Hinge Pin	75
Table 4.13: Large Hinge Pin	76
Table 4.14: Small Bush Diamond	76
Table 4.15: Medium Bush Diamond	77
Table 4.16: Large Bush Diamond	77

Table 4.17: Small Bush Round and Marking	77
Table 4.18: Medium Bush Round and Marking	78
Table 4.19: Large Bush Round and Marking	78
Table 4.20: Pin Clip and Holder Pin	79
Table 4.21: Caster Wheel Sizes	80
Table 4.22: Types of Cover Riser/Datum	81
Table 4.23: Types of Bolt	82
Table 4.24: Types of Bolt	83
Table 4.25: Types of Knob Lobed	83
Table 4.26: Types of Lifting Eye Bolt	84
Table 4.27: Types of Screw	84
Table 4.28: Type of Name Plate	86
Table 4.28: Design Process Brief (First Trial)	98
Table 4.29: Design Process Brief (Second Trial)	99

LIST OF FIGURES

Figure 2.1: Fixture Design	9
Figure 2.2: Fixture Drawing	11
Figure 2.3: Base of CF	12
Figure 2.4: Locator	13
Figure 2.5: Clamps	14
Figure 2.6: Horizontal-handle toggle clamps	15
Figure 2.7: Clamped Position	15
Figure 2.8: Vertical Handle Toggle Clamps	16
Figure 2.9: Clamped Position	16
Figure 2.10: Type of Bushing	17
Figure 2.11: Brackets angle	20
Figure 2.12: Example of fastener	21
Figure 2.13: Body in White	22
Figure 2.14: Structural part of BIW	23
Figure 2.15: Checking Fixtures	24
Figure 2.16: Definitions of Major Development Phases	29

Figure 3.1: Methodology Flowchart

34

Figure 3.2: Checking Fixture Process	35
Figure 3.3: Framework of Research	38
Figure 3.4: Flow Chart of Approval Checking Fixture Process	40
Figure 3.5: Categories of Idle Time.	41
Figure 3.6: Design Concept	42
Figure 3.7: Example of Panel Setting.	44
Figure 3.8: Example of Small Checking Fixtures	46
Figure 3.9: Example of Medium Checking Fixtures.	46
Figure 3.10: Example of Large Checking Fixtures.	46
Figure 4.1: CF Main Elements	52
Figure 4.2: Front Area of Car Parts	53
Figure 4.3: Example of basic body parts of the car	54
Figure 4.4: Bracket Hvac Unit Lower Panel (Small)	55
Figure 4.5: Rail Roof Panel (Large)	55
Figure 4.6: Front Floor Panel (Large)	55
Figure 4.7: Front Floor Panel (Large)	56
Figure 4.8: Cowl Top Inner Panel (Medium)	56
Figure 4.9: Cowl Top Outer Panel (Medium)	56
Figure 4.10: Small Base Structure	57
Figure 4.11: Medium Base Structure	58

Figure 4.12: Large Base Structure	59
Figure 4.13: Clamper Stand with Toggle Clamps	64
Figure 4.14: Type C	65
Figure 4.15: Type D	65
Figure 4.16: Type E	65
Figure 4.17: Type A	66
Figure 4.18: Type B	66
Figure 4.19: Caster Wheel Types	80
Figure 4.20: CF Part Library Structures	87
Figure 4.21: Step 1	89
Figure 4.22: Step 2	89
Figure 4.23: Step 3	90
Figure 4.24: Step 4	90
Figure 4.25: Step 5	91
Figure 4.26: Step 6	91
Figure 4.27: Step 7	92
Figure 4.28: Clamper Stand with Toggle	92
Figure 4.29: Step 8	93
Figure 4.30: Pin and Bush	93
Figure 4.31: Step 9	94
Figure 4.32: Assembly of L-bracket	94

Figure 4.33: Step 10

Figure 4.44: Complete Checking Fixture Design

95

USED ACRONYMS / ABBREVIATIONS

CF	-	Checking Fixture
BIW	-	Body in White
PQR	-	Part Quality Requirement
SESB	-	Shazu Engineering Sdn. Bhd.

CHAPTER 1

INTRODUCTION

Chapter one describes the overall background of this project research. The scope of this research is focused at Shazu Engineering Sdn. Bhd. The content of this chapter includes background, problem statement, project objectives, scope of project, and potential benefits from the project.

1.1 Background of the Study

This study introduces development of a library or catalogue for Checking Fixtures items like clamper, stand, and toggle to be used in Checking Fixtures process. Shazu Engineering Sdn.Bhd. has been involved in the automotive industry since its establishment in September 2003. The company is owned by 100% Bumiputra and is entrusted to provide the most cost effective, reliable and accurate consultation services to the customers. As of mid-2009, Shazu Engineering has been assigned as quality consultant for the development of Savvy, Satria Neo, Persona, New Saga and Exora. Starting with only four employees, currently Shazu is supported by 27 dedicated employees with high technical expertise and management skills.

Established in the year 2003, Shazu Engineering has been an eminent manufacture of Checking Fixtures & Assembly fixture for many companies. Shazu Engineering is engaged in manufacturing custom designed as well as standard specification products. Shazu Engineering qualified workforce is able to ensure complete compliance with their clients' requirements and specifications.

The fixtures are manufactured from high quality raw material procured from local vendors with extremely reliable reputations to produce high grade Checking Fixtures and Assembly Fixtures.

Auto-body parts include the stamping parts, subassemblies jointed with stamping parts, the auto-body framework and all kind of trims which are formed into complicated surfaces. The quality of covering these parts considerably affects car performance and airproofing. During the manufacturing process, in order to ensure parts quality, it is important to measure parts with checking fixtures which are used to locate and hold the workpiece in 3D space according to measure planning.

Checking fixtures for auto body parts have different types according to measuring planning and parts features. The main type of such checking fixtures can be described as follows; measuring fixtures, combined checking fixtures, profile modeling casting checking fixtures, and additional checking fixtures. Correctly selecting the checking fixture type for auto body parts is a first step to design a good checking fixture.

In the quality control process of auto-body manufacturing, selecting which type of checking fixture takes into consideration on the features and parameters of the part that would be measured; so the information of the auto body part is important for checking fixtures is not unique since numerous plans are possible. Traditionally, the selection of a checking fixtures type relies heavily on the designer's expertise and experience. Performance evaluation of a checking fixtures type is also very difficult due to high non-linear relationship of the design parameters. Consequently, it is not immediately apparent if a checking fixture type is optimal or near optimal for the given part.

1.2 Problem Statement

As products and processes are becoming more complex, the decision making involved in product design and manufacturing engineering have to consider many variables. Time Loss is some of the major problem experienced in SESB. By reducing time loss, the production output and profitability to the company will increase besides reduce the cost such as salary for overtime work. Design department preparing the concept based on quality integration mode. From the concept, designer will plan the design checking fixtures based on the customer requirements. Designer needs to design the checking fixtures based on the concept, so it will take time to make it, so as a designer, time consuming and accuracy is very important. When it takes too long time and will cause work to be inefficient. It is important to accurately design a checking fixture. It can be time consuming to change the design if the design is not accurate or design changed by the customers. Checking fixtures has many types of size. It depends on the customers which part of the car that they want to develop such as rear floor, front floor, side door, panel roof and many mores. Checking fixtures have many child parts such as toggle clamp, clamper, and stand. It will take time to design all the parts to make a checking fixtures process done.

1.3 Objective of the Study

The purpose of this study is to develop database for (CF) Checking Fixtures for automotive parts. The complexity and detail of a database design is dictated by the complexity and size of the checking fixtures itself. Overall, the study objective involves three main stages which are:

- i. To identify the problem of time constraints in the design process of Checking Fixtures.
- ii. To recommend tools and methods used in Checking Fixture process.
- iii. To develop a library or catalogue for Checking Fixtures processes parts.

1.4 Scope of the Research

This study seeks to solve the problems as SESB located at Shah Alam, Selangor. SESB is a company that manufactures checking fixtures for cars and listed among the automotive industry. This study will focus primarily on the loose panel part and time loss at the design department. Interview and observation methods also include gaining more understanding about some detail processes. The result of the study will then be used to achieve the objectives. This study was limited only for Shazu Engineering Sdn. Bhd.

1.5 Potential Benefits from the Research

Following are the potential benefits that can be obtained from the carried out project. The potential benefits from the project had been classified into two categories:

1.5.1 Benefits to Industry

The benefits of the conducted project to the industry can be summaries as below:

- a) The manufacturing industry and students can exchange knowledge between each other.
- b) Increase the accuracy of designing the important automotive parts.
- c) The improvements of the work efficiency.

1.5.2 Benefits to University

The benefits of the conducted project to the industry can be summaries as follow:

- a) Create the relationship between UTeM and manufacturing industry.
- b) Providing possible subject to be taught in UTeM that is applicable in real industry world.
- c) The mission of UTeM achieved, which is to develop a curriculum that encourages critical thinking, problem solving, teamwork and social skills.