

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MINKOWSKI FRACTAL PATCH ANTENNA FOR Wi-Fi APPLICATION

This report submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor's Degree in Electronics Engineering Technology (Telecommunications) with Honours

by

AMIRA ELEZA BINTI AZEMI B071110126 890830-04-5222

FACULTY OF ENGINEERING TECHNOLOGY 2015

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Minkowski Fractal Patch Antenna for Wi-Fi Application

SESI PENGAJIAN: 2014/15 Semester 1

Saya Amira Eleza Binti Azemi

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

	SULIT	(Mengandungi ma atau kepentingan dalam AKTA RAH	klumat ya Malaysia s SIA RASM	ng berda sebagaii /II 1972)	arja ma	ah I na	kes yar	elamatan ng termaki	tub
	TERHAD	(Mengandungi ma oleh organisasi/ba	iklumat TE adan di ma	RHAD	yar /eli	ng t dika	ela an	h ditentuk dijalankar	an 1)
	TIDAK TERHAD)							
				Disah	nka	n o	leh	:	
	Non			Ç	R	n	L,	•	
Alamat Tet	ap: V		0 0	. 0)		2	_	
N0 16 A, In	npian Kasih		Cop Rasi	mi:					
Kubang Pa	ya Pauh, 02600 /	Arau,		NURULHA	Lin	BIN	HA	SSIM	
Perlis.			Jabatan Te	eknologi K a un Fakutti Tek Universiti Tek	ulera notoj nika	an Fle gi Keji Mala	ektron urutei iysia l	rik dan Komputer raan Vieloto	
Tarikh:_⊋	6.01.2015		Tarikh:	26	1	١	1	2015	_
Jika Laporan rkenaan den	PSM ini SULIT atau gan menyatakan se	ı TERHAD, sila lampiı ekali sebab dan temr	kan surat d ooh laporan	laripada PSM ini	pih pe	ak l erlu	oerk dik	kuasa/orgai elaskan se	nisas baga

** i ber SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Minkowski Fractal Patch Antenna For Wi-Fi Application" is the results of my own research except as cited in references.

Signature	:	N/ú
Author's Name	:	Amira Eleza Binti Azemi
Date	:	26.01.2015

•

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

⁽NURULHALIM BIN HASSIM)

ABSTRACT

This report elaborated on the theories and techniques in the process of shrinking the size of an antenna through the usage of fractals. The Minkowski fractal patch antenna was investigated. The Minkowski fractal patch antenna was introduced in order to reduce the size of antenna using miniaturization technique. This project presented the design of fractal patch antenna based on the basic structure of square antenna operating at 2.45GHz for Wi-Fi application. The fractal design was introduced into the basic structure for the purpose of reducing the size of the elements. Thus, an expectation would be set on the miniaturization to be achieved. Simulations wave performed on several sets of the structures design using Computer Simulation Technology Software. The simulation result showed that the fractal iteration and the iteration factor had different effects on the reduction of the patch antenna. From the experiment, the result showed that the 1st and 2nd iteration Minkowski fractal patch antenna managed to reduce the antenna size, while maintained the same resonant frequency as that of the normal square patch antenna. Fractal antennas can obtain radiation pattern and input impedance similar to a longer antenna, yet take less special area due to the many contours of the shape. Fractal antenna is a fairly new research area and more likely to have a promising future when used and designed into whole other applications.

ABSTRAK

Laporan ini mengulas mengenai teori dan teknik dalam proses mengecilkan saiz antena menggunakan pembahagian atau pecahan kepada bahagian-bahagian kecil melalui fraktal . Di dalam laporan ini, antena Minkowski akan dikaji. Antena Minkowski diperkenalkan bagi mengurangkan saiz dengan mengunakan teknik pengecilan. Projek ini menunjukkan corak lakaran atau rekaan antena yang mengandungi pembahagian kecil yang asalnya adalah antena segiempat sama yang beroperasi pada frekuensi 2.45 GHz untuk aplikasi Wi-Fi. Corak pada fraktal ini diperkenalkan kepada struktur asas untuk mengurangkan saiz pada elemen-elemen tersebut. Oleh itu, pengecilan saiz antena akan dicapai. Lakaran struktur antena dapat dilihat dengan menggunakan perisian CST (Computer Simulation Technology). Keputusan simulasi menunjukkan pecahan kepada bahagian-bahagian kecil dan faktor pembahagian memberi kesan yang berlainan kepada pengecilan saiz antena. Daripada eksperimen yang telah dijalankan, keputusan menunjukkan pecahan kepada bahagian kecil bagi peringkat pertama dan kedua akan mengurangkan saiz antena disamping mengekalkan frekuensi resonan seperti antena segiempat sama. Fraktal antena ini berjaya mendapatkan corak radiasi dan penentangan litaran elektrik terhadap pengaliran kuasa elektrik yang sama dengan antena asal tetapi mengambil kawasan yang kurang dengan bentuk kontur. Fraktal antena adalah penyelidikan yang agak baru dan dijangka akan memberi masa depan yang cerah untuk pelbagai aplikasi.

iv

DEDICATION

To my dearest mother, father and my family for their continuous encouragement and support. "You are my inspiration to strive for excellence"

ACKNOWLEDGEMENT

Let me start by giving my gratitude to the one and only Allah the Almighty who with His insight and blessing has been a beacon to guide me on my journey in finishing this report.

My sincerest appreciation and heartfelt recognition towards my honorable supervisor, Mr. Nurulhalim Bin Hassim for assisting me in understanding the fundamental of antenna that inspired me to make this work a success, as well for his valuable and priceless experiences and wisdom. I greatly appreciate his assistance and support during the completion of this report. I would also like to extend my gratitude to my co-supervisor Mr Abdul Halim Bin Dahalan for all the inputs and aids in developing my practical skills as well as providing the overall concept for the thesis.

I would like to show my gratefulness to the warmth and encouragement that I was at pleasure of receiving from my beloved father, En. Azemi Bin Zakaria, my beloved mother, Pn. Chik Binti Isa and also all my family members throughout the duration of my project. Without their love and patience, I would not be able to go through the tough times experience in the process of making this report. A special mention also for my wonderful acquaintance, Hafiz Aizat Bin Hazli for his neverending supports and the internal and external motivation that has been provided, as well as his earnest efforts in ensuring this project to come to fruition. Finally, my gratitude is directed towards my mentor Mr. Nornikman Bin Hassan for his contribution of ideas that had been provided regarding the theories behind the antenna and also for the meetings and sessions that were conducted. I simply would not be able to proceed if not for his kind and compassionate tutoring. Last but not least, I would also like to give my thanks to whoever has assisted me in the process of completing this report.

TABLE OF CONTENT

CHAPTER	ITEM	PAGE
	PROJECT TITLE	i
	ABSTRACT	iii
	ABSTRAK	iv
	DEDICATION	v
	ACKNOWLEDGEMENT	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATION	xvii
	LIST OF SYMBOLS	xviii
1	INTRODUCTION	
	1.1 Brief Technical Overview	1
	1.1.1 Wi-Fi Introduction	1
	1.2 Objective	2

1.3 P	roble	em Statement	2
1.	3.1	Introduction	2
1.	3.2	Solution Overview	3
1.4 V	Vork	Scopes	4
1.5 P	rojec	t Methodology	5
1	1.5.1	Work Flow Description	6
1.6 R	Repor	t Structure	7

LITERATURE REVIEW

2.1 Introduction to Wi-Fi	8
2.1.1 Wi-Fi standards	9
2.1.2 Frequency Range	12
2.1.3 Benefits of Wi-Fi	12
2.1.3.1 Wireless Ethernet	12
2.1.3.2 Extended Reach	12
2.1.3.3 Cost Reduction	13
2.1.3.4 Mobility	13
2.1.3.5 Flexibility	13
2.1.4 Applications For Wi-Fi	13
2.1.4.1 Internet Sharing Devices	13
2.1.4.2 Wireless Printers or Scanners	14
2.1.4.3 Video Streaming	14
2.2 Introduction of Antenna	15
2.3 Antenna Theory	15
2.4 Types of Antennas	16
2.4.1 Antenna Characteristic	16
2.4.2 Parameters of Antenna	16
2.4.2.1 Radiation Pattern	16
2.4.2.2 Return Loss	18
2.4.2.3 Voltage Standing Wave Ratio	18
2.4.2.4 Bandwidth	19
2.4.2.5 Gain	20
2.4.2.6 Directivity	21

2

viii

2	2.4.2.7 Efficiency	22
2	2.4.2.8 Beamwidth	22
2	2.4.2.9 Polarization	23
2.5 Fractal Ante	enna	23
2.5.1 Int	troduction	23
2.5.2 Fr	actal Geometry	24
2.5.3 Fr	actal Advantages	24
2.6 Microstrip	Antennas	25
2.6.1 In	troduction of Microstrip Antennas	25
2.6.2 Ba	sic of Microstrip Antennas	25
2.6.3 Ao M	lvantages and disadvantages of icrostrip Antennas	27
2.7 Feeding Te	chnique	31
2.7.1 N	licrostrip Line Feed	32
2.7.2 C	oaxial Feed	33
2.7.3 A	perture Couple Feed	34
2.7.4 P	roximity Coupled Feed	35
2.7.5 C	omparison of Feeding Methods	36
2.8 The Minko	wski Fractal	37
2.8.1 In	troduction	37
2.8.2 D	esign Consideration for Minkowski	
F	ractal Patch Antenna	39
2	2.8.2.1 Substrate Selection	39
2	2.8.2.2 Element Width and Length	40
2	2.8.2.3 Design Consideration for	
	Minkowski Patch Geometry	42
	ix	

3

PROJECT METHODOLOGY

3.1 Project Methodology	43
3.2 Theoretical Development	44
3.2.1 Performance Requirements	44
3.2.2 Fractal Antenna Patterns	45
3.2.3 Implementation Considerations	45
3.3 Design the Minkowski Fractal Patch antenna	46
3.3.1 Substrate Selection	46
3.3 2 Design the Minkowski Fractal Patch Antenna	46
3.3.2.1 Calculation on Square Patch Antenna	46
3.3.2.2 Calculation on 1 st Iteration Minkowski	
Fractal Patch Antenna	48
3.3 2.3 Calculation on 2 nd Iteration Minkowski	
Fractal Patch Antenna	48
3.4 Design the Minkowski Fractal Patch Geometry	49
3.4 1 Design a microstrip patch antenna with the	
following parameters	49
3.4.2 Design Equations	49
3.4.3 Theoretical Formula	49
3.4.3.1 Square Patch Minkowski Fractal	
Antenna (Calculation)	49
3.4.3.2 1 st Iteration Minkowski Fractal	
Antenna (Calculation)	50

$3.4.3.3 2^{na}$	¹ Iteration Minkowski Fractal	
An	tenna (Calculation)	51
3.4.4 Optimization	L	52
3.4.4.1 Squ	are Patch Minkowski Fractal	
Ar	ntenna (Optimized)	52
3.4.4.2 1 st	Iteration Minkowski Fractal Antenna	
An	ntenna (Optimized)	53
3.4.4.3 2 nd	^d Iteration Minkowski Fractal Antenna	
Ar	ntenna (Optimized)	54
3.5 Experimental Setup		55
3.5.1 Simulation Pr	rocess	55
3.5.2 Fabrication N	lethod	55
3.5.3 Measuremen	t Process	57
3.6 Experimental Testing		58
3.6.1 Antenna Reso	onance Testing	59
3.7 Gantt Chart		60

RESULTS AND DISCUSSION 4

4.1 Simulation Result	61
4.1.1 Square Microstrip Patch Antenna (Optimized)	61
4.1.2 1 st Iteration Minkowski Fractal	
Antenna (Optimized)	64

T.I.J 2 Iteration Willikowski i lacu	4.1.3	2^{nd}	Iteration	Minkowski	Fracta
--------------------------------------	-------	----------	-----------	-----------	--------

F	Antenna (Optimized)	66
4.2 Measuremen	at Result	68
4.2.1	Square Microstrip Patch Antenna	68
4.2.2	1 st Iteration Minkowski Fractal Antenna	69
4.2.3	2 nd Iteration Minkowski Fractal Antenna	70
4.3 Discussion		71

5 CONCLUSION AND FUTURE WORKS

5.1 Conclusion	75
5.2 Future Works	76

REFERENCES	7	7

APPENDIX A	79
APPENDIX B	84
APPENDIX C	86
APPENDIX D	87

LIST OF TABLES

NO	TITLE PA			
Table 2.1	Summary of the various Wi-Fi offerings	11		
Table 2.2	Advantages and disadvantages of microstrip antenna	28		
Table 2.3	Comparison of feeding methods	36		
Table 2.4	Material properties	40		
Table 3.1	Calculation value and optimization value	55		
Table 3.2	Parametric study of width and length of the antenna	56		
Table 3.3	Project planning for psm 1	60		
Table 3.4	Project planning for psm 2	60		
Table 4.1	Comparison between simulation and measurements			
	result	69		
Table 4.2	Comparison of gain and return loss between simulation	n		
	and measurements result	69		

LIST OF FIGURES

NO	TITLE	PAGE
Figure 1.1	Methodology Flow Chart	6
Figure 2.1	Logo of Hardware devices certified by the Wi-Fi Alliance	9
Figure 2.2	Radiation lobes and beamwidths of antenna pattern	17
Figure 2.3	Linear plots of power pattern and its associated lobes and	
	beamwidth	17
Figure 2.4	Antenna bandwidth in respect to return loss measurement	20
Figure 2.5	Beamwidth pattern of an antenna	22
Figure 2.6	Shapes of microstrip patch antenna	26
Figure 2.7	Basic Structure of microstrip	27
Figure 2.8	Microstrip feed (line feed)	32
Figure 2.9	Probe fed Rectangular Microstrip Patch Antenna (Coaxial Fee	d) 33
Figure 2.10	Aperture coupled feed	34
Figure 2.11	Proximity-coupled Feed	35
Figure 2.12	Zero, 1^{st} and 2^{nd} iteration Minkowski fractal microstrip	
	antennas	38
Figure 2.13	The Antennas Structures	42

Figure 3.1	Square Patch Antenna (Calculation)	49
Figure 3.2	1 st Iteration Minkowski Fractal Antenna (Calculation)	50
Figure 3.3	2 nd Iteration Minkowski Fractal Antenna (Calculation)	51
Figure 3.4	Square Patch Antenna (Optimized)	52
Figure 3.5	1 st Iteration Minkowski Fractal Antenna (Optimized)	53
Figure 3.6	2 nd Iteration Minkowski Fractal Antenna (Optimized)	54
Figure 3.7	The flow of fabrication process	56
Figure 3.8	Machine for fabrication process	56
Figure 3.9	Return Loss Measurement Setup	57
Figure 3.10	Gain Measurement Setup	57
Figure 3.11	Radiation Pattern Measurement Setup	58
Figure 3.12	Experimental setup for antenna return	
	loss measurements	59
Figure 4.1	Return loss of the square microstrip patch antenna	61
Figure 4.2	Bandwidth for square microstrip patch antenna	62
Figure 4.3	The S-Parameter Smith Chart of the square microstrip	
	patch antenna	62
Figure 4.4	3D Radiation Pattern of the square microstrip patch	63
Figure 4.5	2D Radiation Pattern of the square microstrip patch antenna	63
Figure 4.6	Return loss of the first Iteration Minkowski Fractal Antenna	
	(Optimized)	64
Figure 4.7	Bandwidth for first iteration Minkowski fractal patch antenna	64
Figure 4.8	3D Radiation Pattern of the first Iteration Minkowski	
	Fractal Antenna (Optimized)	65
Figure 4.9	2D Radiation Pattern of the first Iteration	
	Minkowski Fractal Antenna (Optimized)	65
	XV	

Figure 4.10	Return loss of the second Iteration Minkowski Fractal Antenna (Optimized)	66
Figure 4.11	Bandwidth for second iteration Minkowski fractal	
	patch antenna	66
Figure 4.12	3D Radiation Pattern of the second Iteration Minkowski Fractal Antenna(Optimized)	67
Figure 4.13	2D Radiation Pattern of the second Iteration Minkowski Fractal Antenna (Optimized)	67
Figure 4.14	Return loss of the square microstrip patch antenna	68
Figure 4.15	Radiation Pattern of the square microstrip patch antenna	68
Figure 4.16	Return loss of the 1 st Iteration microstrip patch antenna	69
Figure 4.17	Radiation Pattern of the 1 st Iteration microstrip	
	patch antenna	69
Figure 4.18	Return loss of the 2 nd Iteration microstrip	
	patch antenna	70
Figure 4.19	Radiation Pattern of the 2 nd Iteration microstrip	
	patch antenna	70
Figure 4.20	Construction of Minkowski Fractal	
	Patch Antenna	71
Figure 4.21	Simulation and measurement return loss of	
	Minkowski fractal patch antenna	73
Figure 4.22	Radiation pattern for the second iteration	
	minkowski patch antenna in 3D	74

xvi

LIST OF ABBREVIATION

ABBREVIATION		DESCRIPTION		
CST	-	Computer Simulation Technology		
IEEE	-	Institute of Electrical and Electronics Engineers		
FR4	-	Flame Retardant 4		
SMA	-	SubMiniature version A		
VSWR	-	Voltage Standing Wave Ratio		
BW	- , -	Bandwidth		
HPBW	-	Half Power Beamwidth		
OFDM	-	Orthogonal frequency-division multiplexing		
HT	-	High Throughput		
MIMO	-	Multiple input/multiple output		
FEC	-	Forward error correction		
RL	-	Return Loss		
RF	-	Radio Frequency		
2D	-	2 Dimensional		
3D	-	3 Dimensional		
WLAN	-	Wireless Local Area Network		
Wi-Fi	-	Wireless Fidelity		

LIST OF SYMBOLS

SYMBOL		DESCRIPTION
f	-	Frequency
f_r	-	Frequency resonant
G	-	Antenna Gain
P_t	-	Total radiated power
P_a	-	Total input power
Zo	-	Characteristics impedance
Z_L	-	Load impedance
Z _{in}	-	Input impedance
f_{H}	-	Upper frequency
f_L	-	Lower frequency
f _c	-	Center Frequency
D	-	Directivity
h	-	Substrate height
ε _r	-	Dielectric constant
E _{eff}	-	Effective dielectric constant
e	-	Antenna efficiency
ľ	-	Reflection coefficient
W	-	Width
L	-	Length
V _r	-	Reflected voltage
V _i	-	Incident voltage
t	-	Thickness

xviii

р	-	Iteration factor
Δ_L	-	Patch Length Extension
L _e	-	Effective Patch Length
W_p	-	Patch Width
L_p	-	Patch Length

CHAPTER 1

INTRODUCTION

1.1 Brief Technical Overview

The goal of this project is to design a Minkowski fractal patch antenna for Wi-Fi application. The antenna will have properties that benefit the modern wireless communication.

A new development of fractal antenna engineering research is driven due to significant improvement of speed in computing, which is required for the design. Several attributes of fractal antenna deemed as advantages over conservative antenna types include how it radiate electromagnetic energy. This can be used to improve the functionality of latest wireless communication receivers.

1.1.1 Wi-Fi Introduction

"Wi-Fi" is a type of wireless networking protocol that allows devices to communicate without cords or cables. Wi-Fi is technically an industry term that represents a type of wireless local area network (LAN) protocol based on the 802.11 IEEE network standard (Chen, 2009). It is the most popular means of communicating data wirelessly, within a fixed location, today.

The IEEE established 802.11b in 1999 is to improve the data rate of the original 802.11 standard. IEEE 802.11b wireless Ethernet also operates on the 2.4GHz band (Chou, 2010). There are many good reasons to use IEEE 802.11b wireless Ethernet. One of which is due to reduced cost in fabrication because of the FR 4 and exceptional signal range. In order to satisfy the demand for precision and reliability, a high performance Wi-Fi antenna must be able to operate at 2.45GHz frequency.

1.2 Objectives

a) To design a miniaturized antenna using Minkowski fractal.

b) To investigate the behavior of the Minkowski fractal patch antenna properties.

c) To make a comparison between the hardware measurement and simulation.

1.3 Problem Statements

1.3.1 Introduction

Common designs are sensitive to only a narrow range of frequencies and thus, cause it to be less efficient. One of the ways to improve antenna performance is to use array antenna but this technique requires larger antenna size and increased weight. Fractal antenna designs can overcome some of these problems. Another common design problem is antenna sensitivity to the narrow range of frequencies which creates inefficiency. It is a known problem for small and portable antennas. Experiments have shown that antennas built with only a small number of iterations of a fractal process can exhibit sensitivity at frequency.

1.3.2 Solution Overview

Fractals can be used to enhance antenna designs. The method is in the design of miniaturized antenna elements. These can lead to antenna elements which are more discrete for the end user. Minkowski fractal patch antenna is proposed since it can reduce the size with miniaturization technique. The Minkowski fractal design is introduced into the basic structure intended to reduce the frequency of operation. Hence, miniaturization can be achieved.

Since using fractals as an approach to antenna design is a relatively new development in the field of antenna research, the Minkowski microstrip antenna is selected for this project. This antenna is simple to design and its radiation properties are far better documented in research literature than other types of antennas.

Fractals have been used in computer graphics and coding, non-linear chaotic circuits and more. Generally, by using fractals in antennas, the following properties can be achieved.

- a) Reduction of physical radiator size, degree of reduction depends on type of fractal used
- b) Multiband behavior is result of self-similarity
- c) Radiation patterns in frequency also is self-similar
- d) Non-integral ratio of following resonant frequencies
- e) Opportunity of realization in planar technique