"I/We admit that to have read this report and it has followed the scope and quality in partial fulfillment of requirements for The Bachelor Degree of Electrical Engineering (Industrial Power)."

Signature Supervisor Name Date

: EN. MOHD ARIFF BIN MAT HANAFIAH 4/5/06

MOHD ARIFF BIN MAT HANAFIAH Ketua Jabatan (Kawalan, Instrumentasi dan Autemasi) Fakulti Kejuruteraan Elektrik Kolej Universiti Teknikal Kebangsaan Malaysia

.....

C Universiti Teknikal Malaysia Melaka

DESIGN AND IMPLEMENTATION OF AN AUTOMATED LIQUID LEVEL CONTROLLER USING SENSOR AND PLC

ZAIAYU BINTI A. RAHMAN

This Report Is Submitted In Partial Fulfillment of Requirements For The Bachelor Degree of Electrical Engineering (Industrial Power)

> Faculty of Electrical Engineering Kolej Universiti Teknikal Kebangsaan Malaysia

> > APRIL 2006

C Universiti Teknikal Malaysia Melaka

"Hereby the author declares that all the material presented in this thesis to be the effort of the author herself. Any kind of materials that is not the effort of the author has been stated clearly in the references."

Signature	Freis
Author Name	: ZAIAYU BINTI A.RAHMAN
Date	04 MEI 2006

Dedicated to:

Mak, Ayah, Adik-Adik, Kak Na, Kak Rah, Kak Mah, Abang, family and my beloved friends for giving me unconditional love and caring.....

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

First of all, I would like to thank Allah the All Mighty, which with his bless, I manage to complete this thesis.

I would like to express my greatest gratitude and sincere thanks to my supervisor, En. Mohd Ariff Bin Mat Hanafiah, for accepting me as his project student and for his valuable ideas, advice and help in the supervision and discussions of this Final Year Project. In fact, he gave me guidance when obstacles arise throughout this period of time. Once again, I thank him for his tolerance and endeavors.

I am especially grateful to my mother, sister and all of my family, for all their support and understanding along my study. Lastly, my grateful goes to all my colleagues who give me guidance and help in completing this project.

ABSTRACT

Design and implementation the automated liquid level controller using ultrasonic sensor and programmed PLC (Programmable Logic Controller) is a reverse engineering project, where level measurement can be defined as the determination of the position of an existing interface between two media. The ultrasonic sensor will provide the feedback information required to control the process based on a sound wave emission source and the reflection of a sound wave pulse. The PLC is a self contained, rugged computer designed to control processes and contains a microprocessor that has been programmed to drive the output terminals in a specific manner based on the signals from input terminals. Entirely this project consists two main parts in term of software development for PLC (Programmable Logic Controller), ladder diagram. For this project, the Omron SYSMAC CJ1H-series Programmable Controllers is used with the programming language of CX-One programmer. In term of hardware development it consists of sensor selection and design for automated liquid level controller. This controller can be used to control the water level in tank especially in plant, we have to maintain the water level in water tank that used for emergency case from condensate and also can detect if the tank is leaking.

ABSTRAK

Projek Rekabentuk dan Pembangunan Sistem Kawalan Automatik menggunakan 'PLC' bagi Ukuran Ketinggian Cecair dengan menggunakan pengesan 'Ultrasonic' adalah satu projek pembalikan kejuruteraan dimana ia menerangkan bahawa ukuran ketinggian tersebut boleh ditakrifkan sebagai penentuan kedudukan atau kehadiran permukaan diantara dua perantara. Pengesan 'Ultrasonic' yang digunakan akan mengesan ketinggian cecair tersebut dengan menggunakan sistem gelombang pantulan. 'PLC' adalah satu system kawalan proses dimana ia mempunyai mikropemproses yang telah diprogramkan untuk menjalankan terminal output dalam keadaan yang telah ditetapkan berdasarkan kepada isyarat daripada terminal input. Projek ini mempunyai dua bahagian utama iaitu pembangunan program computer untuk 'PLC'. 'SYSMAC CJ1H-series Programmable Controllers' telah digunakan disamping program daripada 'CX-One programmer'. Bagi pembagunan alatan pula, ia termasuklah pemilihan pengesan yang akan digunakan dan juga rekabentuk system yang dibangunkan. Alat kawalan ini boleh diaplikasikan dengan meluas terutamanya dalam industri petro kimia dimana ia sesuai digunakan untuk mengawal air di dalam tangki yang digunakan untuk kecemasandan juga ia dapat mengesan air yang keluar dari tangki sekiranya terdapat kebocoran.

CONTENTS

CHAPTER TITLE

PAGE

PROJECT TITLE	i
DECLARATION	ü
DEDICATION	ш
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF ABREVIATIONS	x
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDIXS	xvi

I INTRODUCTION

Introd	uction	1
Projec	t Liquid Level Control system Using PLC and	3
Ultras	onic Sensor	
The pr	roject Objectives	4
Benefi	it of Liquid level Controller System	4
Scope	project	5
Proble	em Statement	5
1.51	Manual control System	6
1.52	Automatic Control System	6
	Introd Projec Ultras The pr Benefi Scope Proble 1.51 1.52	IntroductionProject Liquid Level Control system Using PLC andUltrasonic SensorThe project ObjectivesBenefit of Liquid level Controller SystemScope projectProblem Statement1.51Manual control System1.52Automatic Control System

II CONTROL SYSTEM PROJECT

2.0	Control System	8
2.1	Automation System	9
2.2	Process Control Industries	11
	2.2.1 Batch process automation	11
	2.2.2 Continuous control system	15
2.3	Level measurement	16
2.4	Flow Measurement	21
2.5	Sensor selection (Level)	26
2.6	Sensor selection (Flow)	34
2.7	Control Valve	40
2.8	On-off control system	42
2.9	PID (Proportional + Integral + Derivative)	45
2.10	PLC (Programmable Logic Controller)	54
2.11	Summary	68

III METHODOLOGY

3.0	Stages to Design a Project	70
3.1	Basic concept for this project	71
3.2	System Concept	74
3.3	The liquid level-Flow control Function	75
3.4	The Prototype design and Built up	79
3.5	Hardware installation	81
3.6	AC Motor and Pump Assembly	82
3.7	Sensor Assembly	83
3.8	Valve Assembly	89
3.9	Control Panel Assembly	91
3.10	Touch Screen Panel	111
3.11	RS232 DB9 Cable	113

IV SOFTWARE DEVELOPMENT

4.0	System Design	115
4.1	The I/O List	116
4.2	Process Algorithm for PLC control	116
4.3	CJ-series Analog Input Units	117
4.4	The Ladder Diagram of Liquid Level Controller	120

V THE RESULT AND FUTURE WORK

5.0	The Result of Project	130
5.1	The Project problems	134
5.2	The Project future work	135
Proje	ect Schedule	136
Conc	lusion	138

REFERENCES 139

APPENDIXS	141

ix

LIST OF ABBREVIATIONS

AC	-	Alternate Current
ADCs	-	Analog to Digital Converter
CPU	-	Central Processing Unit
CX-P	-	CX-Programmer
DACs		Digital to Analog Converter
DC	÷	Direct Current
EEPROM	-	Electrically Erasable Programmable ROM
EPROM	.21	UV Erasable PROM
FBD	-	Function Block Diagram
IL	-	Instruction List
I/O	÷	Input/Output
LAN	-	Local Area Network
LD	-	Ladder Diagram
Р	-	Proportional
PD	-	Proportional + Derivative
PI	-	Proportional + Integral
PID	Ξ.	Proportional + Integral + Derivative
PLC	÷	Programmable Logic Controller
SFC	-	Sequential Function Chart
WC	÷	Water Closet

LIST OF FIGURES

NO	TITLE	PAGE
1.0	An example of a tank level control application	2
1.1	Simple manual control system	6
2.0	The real system of process control	9
2.1	Basic structure of automated system	10
2.2	General structure of an automated system	10
2.3	Process control system for automated liquid level controller	11
2.4	Water tank level continuous control	15
2.5	Two alternative of level measurement	17
2.6	Feedback control shows the continuous measurement	21
2.7	Flow calculation in pipes	23
2.8	Discrete Liquid level detectors	27
2.9	Continuous sonic type level measuring units	28
2.10	Continuous level sensor	30
2.11	Omron electronics ultrasonic sensor	30
2.12	Ultrasonic sensor operation	31
2.13	Wider applications of ultrasonic sensor	32
2.14	Top mounted sonic probe	32
2.15	Ultrasonic detector with two sensors	33
2.16	Various type of orifice plates	35
2.17	Venturi flow	36
2.18	A diagram of Vortex Flow meter	38

2.19	Across the pipe ultrasonic flow meter	39
2.20	Inline flow sensor	40
2.21	On-off valve	41
2.22	2/2-way solenoid valve	42
2.23	On-off system in a tank	43
2.24	Final control element and the control and controlled variable	44
2.25	Proportional functions eliminates offset	46
2.26	Integral functions compensates for rapid changes	48
2.27	Basic op-amps differentiator	50
2.28	Block diagram of a typical PID controller	52
2.29	Ideal PID position control	53
2.30	Block diagram of PID module	53
2.31	CJ1 series PLC from Omron Electronics	55
2.32	Overall dimension for CJI series PLC	56
2.33	CJ1G-CPU44H PLC units	57
2.34	System configuration	57
2.35	CJ1G-CPU44H CPU unit	58
2.36	Memory card used for program memory	59
2.37	A PLC and its related component	60
2.38	Analog I/O modules	62
2.39	I/O units	62
2.40	Block diagram of a PLC	63
2.41	Ladder diagram language	65
2.42	Function block diagram	65
2.43	Instruction list language	66
2.44	Sequential function chart language	66
2.45	A single phase motor (split phase) using a capacitor with a centrifugal	69
	Switch	
3.0	Block Diagram of The Stages Design A Project	71
3.1	Typical overall batch process scheme	73
3.2	On-off system in a tank	74

xiii

3.3	Liquid level - flow determination system for this project	75
3.4	Model liquid level controller	76
3.5	Process Algorithm for LOCAL control	77
3.6	Process Algorithm for REMOTE control	78
3.7	A front view 3D design of Hardware Liquid Level Controller using Solid	79
	Work	
3.8	Basic design for the hardware	80
3.9	The back view 3D design of Hardware liquid level controller using Solid	81
	Work	
3.10	The fully hardware installation on the aluminum rack	82
3.11	A principle running the single phase motor (split phase) using a capacitor	83
	with a centrifugal switch	
3.12	The installation of the AC motor	83
3.13	Installation of ultrasonic sensor on the top of tank	84
3.14	Measurement variety materials	85
3.15	Sensing distance for E4PA-LS50-M1_N	85
3.16	Output circuit	86
3.17	Sensor I/O connector	86
3.18	Sensing possibility	87
3.19	Installation of INLINE flow sensor	88
3.20	Interconnection possibilities for inline flow sensor	89
3.21	Installation of Valve	90
3.22	Materials of valve	91
3.23	Construction circuit for hardware	92
3.24	The front side of control panel	92
3.25	Digital meter panel (process meter)	93
3.26	Nomenclature for process meter	93
3.27	Terminal arrangement	95
3.28	Connection for digital meter panel	95
3.29	Block diagram for process panel	96
3.30	Operating procedures for level	97

3.31	Operating parameter	98
3.32	Operation level setting	98
3.33	Initial setting value procedure	100
3.34	Advanced function setting level procedure	101
3.35	Protect level procedure	102
3.36	Installation of Batch Controller	103
3.37	Burkert Batch Controller	103
3.38	Electrical connection for batch controller	105
3.39	Connection of flow sensor to the panel version	105
3.40	Main menu of the batch controller	106
3.41	Batch A setting	107
3.42	Calibration setting	108
3.43	Calibration menu for BURKERT Batch Controller 8025	111
3.44	Touch screen panel	112
3.45	Touch screen panel design from computer	112
3.46	Designed using NS-Designer	113
3.47	RS232 DB9 serial cable	114
4.0	The whole system connected to the PLC	115
4.1	Input function block diagram	117
4.2	Input specification	118
4.3	Input Circuitry for analog input	118
4.4	Internal configuration for analog input	119
4.5	Voltage input disconnection	119
4.6	The Timer operation	125
4.7	Input numbers	126
4.8	I/O refresh data	127
4.9	Scaling output	129
5.0	Graph Setting value (L) versus time (s)	131
5.1	On-off control element	132
5.2	Continuous process for liquid level control	133
5.3	PID for continuous process	134

xv

LIST OF TABLES

TITLE	PAGE
Table shows the conversion between units	18
Volumetric flow rate	24
Mass flow rate	24
Output circuit	87
Function of every key	94
Indicator	94
Operating procedure	96
Function of the menus	106
Input signal range	126
Setting value versus time	131
Project schedule	136
	TITLE Table shows the conversion between units Volumetric flow rate Mass flow rate Output circuit Function of every key Indicator Operating procedure Function of the menus Input signal range Setting value versus time Project schedule

LIST OF APPENDIXS

NO	TITLE	
Α	PLC Model CJIG, CPU type-CPU44H Datasheet	
в	Ultrasonic Sensor Datasheet	
С	INLINE Flow Sensor Datasheet	
D	2/2 Way Solenoid Valve Datasheet	
E	Omron K3MA - J - A2 (digital meter panel)datasheet	
F	Burkert Batch Controller (panel version)datasheet	
G	Liquid Level control Ladder Diagram	

xvi

CHAPTER 1

INTRODUCTION

1.0 Introduction

Automatic control, by comparison with manual control system, applies to those things that are achieved, during normal operation, without human intervention. This type of control is used where continuous attention to system operation would be demanded for a long period without interruptions. Automatic control does not, however necessarily duplicate the type of control achieved by a human operator. Equipment that employs automatic control is limited to only those things that can be forecast by the input data. Terms such as closed loop control and feedback are commonly used to describe automatic control functions.

The control of liquid level in tanks and flow between tanks is a basic problem in the process industries. The process industries require liquids to be pumped, stored in tanks and then pumped into another tank. Many times the liquids will be processed by chemical or mixing treatment in the tanks, but always the level of fluid in the tanks must be controlled and the flow between tanks must be regulate. Often, the tanks are so coupled together that the levels interact and this must also be controlled.

Level and flow control in tanks are at the heart of all chemical engineering systems. But chemical engineering systems are also at the heart of our economies. Vital industries where liquid level and flow control are essential includes :

- Petro-chemical industries
- Paper making industries
- Water treatment industries

Our lives are governed by level and flow control systems. For example, medical physiology involves many fluid bio-control systems. Bio-systems in our body are there to control the rate that blood flows around our body. The water closet (WC) toilet in your apartment or house is also a liquid level control system. The swinging arm attached to the input valve of the WC water tank allows water to flow into the tank until the float rises to a point that closes the valve. This is the simple and effective level control system for water tanks. Although the WC toilet is now common, but the WC in one of the villages in London was in the *Herrenhaus*. It was a thing of great wonder. Visitors would admire the automatic refilling of the WC tank much more than the beauty of the house and that beautiful countryside.

Tank level control systems are everywhere. All of our process industries, the human body and fluid handling systems depend upon tank level control systems.

Figure 1.0 : An example of a tank level control application

It is essential for control system engineers to understand how tank control systems work and how the level control problem is solved.

1.1 Project Liquid Level Control System Using PLC and Ultrasonic Sensor

This Project Liquid Level Controller System Using PLC and Ultrasonic Sensor will be controlled using PLC (Programmable Logic Controller) as a demonstration. The main concept used in this project is process control concept with industrial measurement techniques that consists of flow and level measurement. Nowadays, many liquid level control system used everywhere especially in chemical industries. But the major function of the liquid level control system using PLC controller is to measure the liquid level in tank continuously, not depend on the highest or lowest point by giving the absolute value of measurement.

This liquid level controller system is not fully automatic system. This hardware can be function as local and remote control. For the local control, this system contain of one batch controller from Burkert as that function as a main controller, one Omron process meter (K3MA-J) to display the level measurement, local button, start button and stop button. We have to set certain value to the batch controller depend to the height of the process tank to allow the water flow through the control valve. The setting value normally set in Liter, but we can choose whether to set it in cm³, US gallon or IMP gallon. Before that we have to setting all the parameters in the batch controller. The further information about setting parameters can be referred to the Chapter 3. Once, the power supply is on, the start button must be pushed. Then, the water will pump from the storage tank to the flow sensor and then through the control valve. When the water comes to the process tank, the ultrasonic level sensor will detect the height of the water in that tank. The process meter will display the value of height of the water in the process tank. The setting parameter 3.

For the remote control system, programming PLC (Programmable Logic Controller) will be used to operate this hardware. The programming used is the ladder diagram programmed and the continuous level measurement detected. By using timer command in PLC, this project can be operated as continuous but it still used the on-off control process concept.

1.2 The Project Objectives

Accurate measurements of level are essential to provide good control in the process industries. Liquid level has no absolute value and is always relative to some reference point such as the top and bottom of the tank. There are several reasons to monitor the level of materials in containers can be divide to :

Monitoring

- i. To control and measure the liquid level in tank continuously.
- To ensure that enough material is available to complete a particular batch production process.
- iii. To determine an inventory of the material in stock.

Safety

- i. To prevent an industrial accident by overfilling an open container.
- To prevent the overfilling of a closed container or an enclosed system. This situation could cause an overpressure condition that may result in a rupture or explosion.
- iii. To monitor tank for leaking.

Economy

 Good level control of solid is also desirable; excessive built up in hoppers can be expensive to clear.

1.3 Benefit of Liquid Level Controller System

In the oil and natural gas industries, liquid level measurement is necessary have the following benefits;

- i. Compute tank inventories of hydrocarbon liquid products and utility liquids.
- Protect equipment such as columns, compressor, turbines and pumps from damage.

C Universiti Teknikal Malaysia Melaka

- iii. Protect operating and maintenance personal against injury resulting from hydrocarbon, corrosive or toxic liquid spillage.
- iv. Protect the environment from the release of objectionable liquids into the rivers and the sea.
- v. Control phase separation processes and product loading operations.

1.4 Scope Project

The project scope for execution this project are ;

- Design and develop the complete automated system that will control the level by giving the absolute value and continuously in term of hardware and software development.
- ii. The hardware development consist of the ultrasonic sensor will detect the level measurement and controlled by PLC, flow sensor that will detect the flow rate of liquid, control valve as the control element, pump and motor.
- iii. The software development consists of CX-One programme as the programming language for Omron CJ1H-Series PLC unit and I will use the ladder diagram and Instruction List programming languages for the PLC.

1.5 Problem Statement

The key characteristic of control is to interfere, to influence or to modify the process. This control function or the interference to the process is introduced by an organization of parts (including operators in manual control) that, when connected together is called the Control System. Depending on whether a human body (the operator) is physically involved in the control system, they are divided into Manual Control and Automatic Control. Due to its efficiency, accuracy and reliability, automatic control is widely used in chemical processed. Therefore, for a control system to operate satisfactorily, it must have the abilities of measurement, comparison, computation and correction.

1.5.1 Manual control system

Figure 1.1 : Simple manual control system

To begin with the shower is cold. To start the heating process the value in the hot water line is opened. The operator can then determine the effectiveness of the control process by standing below the shower. If the water is too hot, the value should be closed a little or even turned off. If the water is not hot enough then the value is left open or opened wider. This shows the human aided control used before the automated control system is recognized.

1.5.2 Automatic control system

Liquid level has no absolute value and always relative to some reference point such as the bottom or top of the tank. It is the height or depth of a liquid above a reference point and is specific to a particular vessel.

First we have the Controlled Variable. This is the basic process value being regulated by the system. It is the one variable that we are special interested. In feedback control the controlled variable is usually the measured variable. An important concept related to the controlled variable is the Set point. This is the predetermined desired value for the controlled variable. The objective of the control system is to regulate the controlled variable at its set point. To achieve the control objective there must be one or more variables we can alter or adjust. These are called the Manipulated Variables. Conclusively, in the control system we adjust the manipulated variable to maintain the controlled variable at its set point. This meets the requirement of keeping the stability of the process and suppressing the influence of disturbances.

The main purpose for this project is to measure the liquid level in tank continuously, not depend on the highest or lowest point.