TESIS^ APPROVAL STATUS FORM

JUDUL:	
SESI PENGAJIAN:	~
Saya	
	(HURUF BESAR)
	M/Sarjana/Doktor Falsafah) ini disimpan di Maklumat dan Komunikasi dengan syarat-syarat
 Perpustakaan Fakulti Tekr membuat salinan untuk tuj Perpustakaan Fakulti Tekr 	lej Universiti Teknikal Kebangsaan Malaysia. nologi Maklumat dan Komunikasi dibenarkan juan pengajian sahaja. nologi Maklumat dan Komunikasi dibenarkan sebagai bahan pertukaran antara institusi pengajian
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TE	RHAD
(TANDATANGAN PENULIS)	(TANDATANGAN PENYELIA)
Alamat tetap :	
	Nama Penyelia
Tarikh :	Tarikh :
pihak berkuasa.	ULIT atau TERHAD, sila lampirkan surat daripada kan sebagai Laporan Projek Sarjana Muda (PSM)

VIRTUAL LOCAL AREA NETWORK FOR CONTROL NETWORK TRAFFIC

CHEAH CHOON WAH

This report is submitted in partial fulfillment of the requirements for the Bachelor of Information and Communication Technology (Computer Network)

FACULTY OF TECHNOLOGY AND COMMUNICATION TECHNOLOGY
KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA
2004

ADMISSION

I admitted that this project title name of

VIRTUAL LOCAL AREA NETWORK FOR CONTROL NETWORK TRAFFIC

is written by me and is my own effort and that no part has been plagiarized without citations.

STUDENT	<u></u>		Date :	
		(CHEAH CHOON WAH)	
SUPERVISOR	;;		Date :	
	(M	UHAMAD SYAHRUI, AZHA	R SANI)	

DEDICATION

To my beloved parents CHEAH KIM CHUAR and TIOW SWAN CHOO, thanks for blessing their son and give him the best ever have....

ACKNOWLEDGEMENTS

First, I would like to thank the KUTKM for giving us such a great opportunity to carry the Project Sarjana Muda PSM I(BITU 3973) and PSM II (BITU3983) in special semester, especially to MUHAMAD SYAHRUL AZHAR SANI, thank for giving good advise and guide to complete the report. His constructive guidance, tireless assistance, advice and patience in helping me to complete this PSM are appreciated. He volunteers his valuable time to help me put my best foot forward. He is willing to share the invaluable and specific guidance, knowledge and skills with me. His kindly and friendly during every personal meeting really impressed me.

Taking this opportunity, I would like to thank, all of the lecturers in KUTKM that gives their cooperation during my PSM by providing me with the required needs. Without their cooperation, I would not be able to go through the phase smoothly.

My deepest gratitude and appreciations to Mr Sim Moh Seng (CIM Development / Network Section Manager). Thank for giving me full trust of and willing to provide me information for the projects, and support and assistance throughout the period of my research in NS. Many opinions and advices from his ease and fasten my progress for my tasks and projects.

Furthermore, I would like to acknowledge my profound gratitude for National Semiconductor Sdn Bhd for accepting me as a reference for the project research and giving me the chance to learn while completing my PSM research.

ABSTRACT

Virtual Local Area Network (VLAN) is a technology to logical grouping of network resource and user connected to a administrative network on a switch. The project is to create network design and build a simulation VLANs base on National Semiconductor Sdn. Bhd(NSEM). Current NSEM network design can define as flat network, it is one large broadcast domain. By creating VLANs on NSEM network, their will separate broadcast domain into smaller broadcast domain within a switch, by assigning different ports in the switch to different subnetworks. This will reduce unnecessary broadcast traffic on network. VLANs can potentially reduce the cost associated with moves, adds and changes, in addition to reducing the cost for unused ports on non-VLAN hub and switches. Therefore by grouping certain user or server can be accomplishing, without physical boundary, it enhance network security and also easy management for network administrator. The project help to research proof of concept VLAN technology can reduce broadcast traffic, virtual grouping resource or user, network security, network enhancement. Methodology use to development of project is Model-Driven Development (MDD), the strategy and approach to achieving some goal presented as a framework in which related processes made up of activities or steps are grouped. Each phase have own guideline rather than as a strict set of instructions. Create a simulation VLAN environment and testing under windos98/XP/2000 operating system. The project brings advantage and may recover new method or strategy to creating a VLAN.

ABSTRAK

Virtual Local Area Network (VLAN) merupakan cara untuk mengumpul peralatan rangkaian and pengguna rangkaian dengan menggunakan switch yang boleh menguruskan rangkaian. Projek ini adalah merancangkan rangkaian dan juga membuat satu simulasi dengan merujuk kepada rangkaian semasa di National Semiconductor Sdn. Bhd(NSEM). Pada masa ini rangkajan di NSEM merupaka flat network, dan satu broadcast domain yang besar. Dengan adanya VLANs ia dapat memecahkan broadcast domain yang besar kepada kumpulan rangkaian yang lebih kecil. Ini dapat mengurangkan pembelanjaan untuk segala penyelengaraan seperti memindah, menambah dan mengubah unused ports on non-VLAN hub and switches. Dengan itu pengumpulan kepada pengguna dan juga server dapat dilaksanakan tanpa halangan fizikal, dan itu juga dapat mengetatkan keselamatan rangkaian serta pengawalan kepada rangkaian itu sendiri. Projek dapat membantu ketepatan teknologi VLAN iaitu mengurangkan broadcast traffic, virtual mengumpulkan peralatan dan pengguna, keselamatan rangkaian dan menambah kelancaran rangkain. Projek menggunakan metodologi Model-Driven Development (MDD), strategi ini dapat menujukkan pencapaian rangka, iaitu mengambarkan proses-proses dan aktiviti-aktiviti. Setiap langkah mempunyai penunjuk lebih baik daripada syaratsyarat yang dihalang. Simulasi VLANs adalah dalam keadaan pengoperasian windos98 /XP /2000. Projek VLAN dapat membawah kebaikan, iaitu menjumpai cara-cara atau strategi baru untuk membuat VLAN.

TABLE OF CONTENTS

COI	NTENT	PAGE
TEC	SIS^ APPROVAL STATUS FORM	
	TURAL LOCAL AREA NETWORK(VLAN)	i
	MISSION	ii
	DICATION	iii
ACK	KNOWLEDGEMENTS	iv
ABS	STRACT	\mathbf{v}
ABS	STRAK	vi
TAB	BLE OF CONTENTS	vii
LIST	T OF TABLES	xi
LIST	T OF FIGURES	xii
LIST	T OF ACRONYMS	xiii
LIST	T OF APPENDICES	xvi
СНА	APTER I INTRODUCTION	
1.1	Preamble/Overview	1
1.2	Problem statements	2
1.3	Objective	4
1.4	Scopes	4
1.5	Contributions	5
1.6	Expected Output	5
CHA	APTER II LITERATURE REVIEW	
2.1	Introduction	6

		viii
2.2	Fact and Finding	6
2.2.	1 Theory Of VLANs Works	7
2.2.2	2 Discussion a case study 1	11
2.2.3	3 Discussion a case study 2	12
2.3	Summary	13
CHA	APTER III PROJECT PLANNING AND	
MET	THODOLOGY	
3.1	Introduction	14
3.2	High-Level Project Requirements	15
3.2.1	Project Facilities Requirement	15
3.2.2	Software Requirement	15
3.2.3	Hardware Requirement	16
3.3	System Development Approach	16
3.3.1	Preliminary Planning Phase	18
3.3.2	Problem Analysis Phase	19
3.3.3	Requirements Analysis Phase	20
3.3.4	Decision Analysis Phase	21
3.3.5	Design Phase	22
3.3.6	Construction Phase	24
3.3.7	Implementation Phase	25
3.3.8	Operation And Support	26
3.4	Project Schedule and Milestones	27
3.4.1	Work Breakdown Structure	28
3.4.2	Gantt Chart	28
3.5	Summary	28
CHAP	TER IV ANALYSIS	
.1	Introduction	30
.2	Analysis Of Current System	31
.2.1	Business Process	31
.2.2	Problem Analysis	32
.2.3	Problem Statements	34

	1	3	Č
	I.	•	7

4.3	Analysis of to be System	33
4.3.1	Functional Requirement	35
4.3.2	Non-Functional Requirement	36
4.3.3	1.1.0	37
4.3.3.	1 Software Requirement	37
4.3.3.	2 Hardware Requirements	41
4.3.3.	3 Implementation/Deployment Requirement.	42
CHA	PTER V DESIGN	
5.1	Introduction	44
5.2	Preliminary/High Level Design	44
5.2.1	Raw Data/Pilot Review	45
5.3	System Architecture	45
5.4	Logical Design	46
5.5	Physical Design	55
5.4	Summary	60
CHA	PTER VI IMPLEMENTATION	
6.1	Introduction	61
6.2	Hardware Configuration Management	61
6.2.1	Hardware Setup	62
6.2.1.	1 Cisco Catalyst 2950G-12-EI Specification	62
6.2.1.	2 Cisco Router 2610xm Specification	64
6.2.2.	1 Cisco Catalyst 2950G-12 Configuration	64
6.2.2.	2 Cisco Catalyst 2950G-12 Configuration	76
6.3	Describe hardware functionalities	85
6.3.1	Describe Catalyst Router 2610XM hardware	85
functi	onalities	
6.3.2	Describe hardware functionalities Catalyst 2950	86
6.4	Security	87
6.4.1	Security policies and plan	87
6.4.2	Software and hardware necessary to implement the	89
policie	es	

- 8			
- 8			
- 8			
- 3			
- 5			
-			
- 2			
- 2			

6.4.3	Backup	91
6.5	Development Status	92
0.5		
CHAI	PTER VII TESTING	
7.1	Introduction	94
7.2	Test Plan	95
7.2.1	Test Organization	95
7.2.2	Test Environment	95
7.2.3	Test Schedule	96
7.3	Test Strategy	96
7.3.1	Classes Of Tests	97
7.4	Test Design	97
7.4.1	Test Description	98
7.4.2	Test Data	98
7.5	Test Case Results	105
CHAP	PTER VIII PROJECT CONCLUSION	
8.1	Observation on Weaknesses and Strengths	107
8.2	Propositions for Improvement	107
8.3	Conclusion	108
BIBLI	OGRAPHY	109
APPE	NDIXES	111

6.4.3	Backup	91
6.5	Development Status	92
CHAI	PTER VII TESTING	
7.1	Introduction	94
7.2	Test Plan	95
7.2.1	Test Organization	95
7.2.2	Test Environment	95
7.2.3	Test Schedule	96
7.3	Test Strategy	96
7.3.1	Classes Of Tests	97
7.4	Test Design	97
7.4.1	Test Description	98
7.4.2	Test Data	98
7.5	Test Case Results	105
CHAP	TER VIII PROJECT CONCLUSION	
8.1	Observation on Weaknesses and Strengths	107
8.2	Propositions for Improvement	107
8.3	Conclusion	108
BIBLI	OGRAPHY	109
APPE	NDIXES	111

LIST OF TABLES

TABLE NO TITLE	PAGE
T. 11. 21. Coftware Poquirement	15
Table 3.1: Software Requirement	
Table 2.2: Hardware Requirement	16
Table 5.1: IP Address range	47
Table 5.2: VLANs ID And Location	51
Table 5.3: Device Name	54
Table 5.4: Interface IP Address	56
Table 5.5: Physical Connectivity Information	56
Table 6.1: Mode in switch and router	62
Table 6.2: Cisco Catalyst 2950G-12 (vlanswitch1) Configuration	66
Table 6.3: Configuration Cisco Catalyst 2950G-12 (vlanswitch2)	72
Table 6.4: Cisco Router 2610XM (router2610-1) Configuration	77
Table 6.5: Cisco Router 2610XM (router2610-2) Configuration	81
Table 6.6: Switch Model And IOS	90
Table 6.7: Router Model And IOS	91
Table 6.8: The Implementation Status	93
Table 7.1: VLANs Test Schedule	97
Table 7.2: Cisco Catalyst 2950G-12 Test vlanswitch1	99
Table 7.3: Cisco Catalyst 2950G-12 Test vlanswitch2	100
Table 7.4: Cisco Router 2610XM router2610-1 Test	101
Table 7.5: Cisco Router 2610XM router2610-2 Test	102
Table 7.6: System Integration Test	103
Table 7.7: VLANs Functionality Test	105
Table 7.8: Test Case Results Simulation VLANs	107

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 2.1: Port-based V	I ANo	7
Figure 2.2: MAC Address	ss-based VLANs	9
Figure 2.3: Layer 3 (or p	rotocol)-based VLANs	10
Figure 4.1: Current NSE	M network	32
Figure 5.1: VLANs Arch	itecture	45
Figure 5.2: VLANs Desi	gn	47
Figure 5.3: NSEM overa	all view	48
Figure 5.4: NSEM 3 rd flo	oor	49
Figure 5.5: NS 2 nd floor		50
Figure 5.6: NS First Floo	or I	50
Figure 5.7: NSEM Sub E	Building First Floor/Second Floor	51
Figure 5.8: 3 rd Floor		52
Figure 5.9: 2 ⁿ Foor	*	52
Figure 5.10: 1st Floor		53
Figure 5.11: Sub Buildin	g Near NSEM Main Building	53
Figure 5.12: Logical Vie	ew Of Simulation VLANs	54
Figure 5.13: Physical Vie	ew Of Network Design	55
Figure 5.14: The Assume	LANs Network Design	58
gigure 5.15: The Simulat	ion VLANs Network Design	59
Figure 6.1: Print screen	of backup configuration file	92

LIST OF ACRONYM

DESCRIPTION **ACROYMN** [A] [B] [C] Computer Security Institute's CSI [D] Distributed Denial Of Service **DDOS** Distributed Component Object Model **DCOM DTEs Data-Terminal Equipment** DCE **Data-Communication Equipment** [E] [F] **FTMK** Fakulti Teknologi Maklumat dan Komunikasi FTP File Transfer Protocol [G]GUI Graphic User Interface

HyperText Transfer Protocol

[H]

[I]

HTTP

IC

Integrated Circuit

TEEE

Institute of Electrical and Electronics

Engineers.

IP

Internet Protocol

IPX

Internetwork Packet eXchange

ICMP

Internet Control Message Protocol

IDF

Intermediate Distribution Frame

[K]

KUTKM

Kolej Universiti Teknikal Kebangsaan Malaysia

[L]

LAN

Local Area Network

[M]

MAC

Medium Access Control

ME

Millenniums

MDD

Model – Driven development

MSFC

MultiLayer Switch Feature Card

MDF

Main Distribution Frame

N

NSEM

National Semiconductor (Melacca)

NETBIOS

Network Basic Input/Output System

[P]

PC

Personal Computer

PSM I

Projek Sarjana Muda Satu

PSM II

Projek Sarjana Muda Dua

POP

Post Office Protocol

[R]

RPC

Remote Procedure Call

RAD

Rapid Application Development Model

RADIUS

Remote Authentication Dial-In user Service.

RIP

Routing Information Protocol

[S]

SDLC System Development Life Cycle

SMTP Simple Main Transfer Protocol

SSH Secure Shell

[T]

TACACS Terminal Access Controller Access Control

System

TCP Transmission Control Protocol

TTL Time To Live

[U]

UTP Unshielded Twisted-Pair

UDP User Datagram Protocol

[V]

VLAN Virtual Local Arae Network

VTP Virtual Trunking Protocol

[W]

WBS Work Breakdown Structure

LIST OF APPENDICES

APPENDIX TITLE	PAGE
	110
APPENDIX 1.1: National Semiconductor Electronic Malacca	112
APPENDIX 3.1: The Model- Driven Development Route	113
APPENDIX 3.2: Work Break down Structure	114
APPENDIX 3.3: Work Break down	115
APPENDIX: 3.4 Gantt Chart	117
APPENDIX 4.1: NSEM OPERATION FLOW CHART	118
APPENDIX 4.2: Source Code UDP SERVER	119
APPENDIX 4.3: Source Code UDP CLIENT	121
APPENDIX 6.1: Cisco Catalyst 2950G-12 Specification	124
APPENDIX 6.2: Cisco Router 2610XM Specification	126
APPENDIX 6.3: Cisco Catalyst 2950G-12	128
Configuration(vlanswitch1)	
APPENDIX 6.3: (vlanswitch1) Configuration Cisco Catalyst	131
2950G-12	
APPENDIX 6.4: Cisco Catalyst 2950G-12 Print Screen	134
Configuration(vlanswitch2)	
APPENDIX 6.5: (vlanswitch2) Cisco Catalyst 2950	137
Configuration File	
APPENDIX 6.6: Print screen of configure router2610-1	139
APPENDIX 6.7: (Router2610-1) Cisco Router 2610XM	142
Configuration File	
APPENDIX 6.8: Print screen of configure router2610-2	143
APPENDIX 6.9: (Router2610-2) Cisco Router 2610XM	145

Configuration File	
APPENDIX 7.1: PING to Cisco Catalyst 2950G-12 Interface	146
10.1.65.1	
APPENDIX 7.2: Print screen vlanswitch1 interface fa0/12 is up	147
APPENDIX 7.3: PING to Cisco Catalyst 2950G-12 Interface	147
10.1.45.1	
APPENDIX 7.4: Print screen vlanswitch2 interface fa0/12 is up	147
APPENDIX 7.5: Print screen PING all router2610-1 interface	147
APPENDIX 7.6: Print screen 'show run'	148
APPENDIX 7.7: Print screen 'show int fa0/0.1, fa0/0.2, fa0/0.3'	148
APPENDIX 7.8: Print screen PING all router2610-2 interface	149
APPENDIX 7.9: Print screen 'show run'	149
APPENDIX 7.10: Print screen 'show int fa0/0.1, fa0/0.2	150
,fa0/0.3'	
APPENDIX 7.11: UDP Test	150
APPENDIX 7.12: APPENDIX 7.12: PC 7 UDP SERVER	154
APPENDIX 7.13: Print screen command 'show vlan'	154
APPENDIX 7.14: Print screen command 'show vlan'	155
APPENDIX 7.15: Print Screen PC 1 UDP Server	155
APPENDIX 7.16: Print Screen PC 2 UDP Server	156
APPENDIX 7.17: Print Screen PC 7 UDP Server	157
APPENDIX 7.18: Spynet Network Traffic Capture	158
APPENDIX 7.19: Print Screen Monitoring UDP Network Traffic	158
APPENDIX 7.20: Print Screen monitoring computer in network	159

CHAPTER I

INTRODUCTION

1.1 Preamble/Overview

Project Virtual Local Area Network (VLAN) is to design a efficient network design that enhancement on current National Semiconductor, Malacca (NSEM) network business need, and setup practical a simulation environment.

National Semiconductor Sdn Bhd is located at Batu Berendam Free Trade

Zone in Malacca. See Appendix 1.1: for NSEM building. It builds on 7.8 acres land, its manufacturing area covers 26,000 square feet, Assembly Facilities covers 14,500 square feet and lastly Testing Facilities covers 11,500 square feet. When NSEM was established, it only has a few hundred employees compare to 2500 by the time now. As the company name mentioned, National Semiconductor Electronics Malacca, NSEM produce the most advanced state of the art technology and manufacturing process among the industries of semiconductor.

The organization of research, choose is National Semiconductor Sdn Bhd (NSEM) network. This is because the current NSEM network environment is use range IP class B. The main problem is extraneous traffic issue, this is because broadcast activity occurrence by every communication on NSEM network. Therefore Virtual Local Are Network is the solution and enhancement for NSEM current network.

The project develop under Fast Methodology (Model Driven Development Route), it choose because suitable to the project VLAN, and it is one of the oldest or most use approaches to analyzing and designing information system is based on modeling.

1.2 Problem Statements

The problems on current NSEM LANs, are network device include computer workstation, network printer, server and machinery adapter to network that connected to each other by means of a switch and router. These network devices are primarily used to transmit incoming data throughout the network. In most cases, if two individuals were to send data simultaneously, a collision would occur and all the data transmitted would be lost. This collision would continue to propagate throughout the network by the switches, making it necessary for the original data to be sent again. LAN segments are formed with workstations, by switch. These are commonly known as collision domains because collisions remain within that segment.

A broadcast domain or LAN is the area in which broadcasts and multicasts are confined. Therefore, one or more LAN segments can be incorporated in a single LAN. The physical connection between the, workstations, switches, and routers determines broadcast and collision domains, meaning that everyone participating in the LAN must to in the same location. As the result, busy traffic often be the problems of NSEM network.

NSEM network administrators are forced to spend much of their time dealing with moving users and workstations. Although there are tools that facilitate network management, costs for network management represent a considerable financial load for an average company. The costs for network management rise with each additional network user and with the demand for higher flexibility of the network.

Due to leak management, it increase of cost to maintain and waste all kind of resource such as human recourses, time relocate and more.

The disadvantage of flat network, are broadcast message will send to all network device in the network. It is dangerous if a computer / workstation / machinery is infected by W32.Blaster. W32.Blaster is worm that exploits the DCOM RPC vulnerability. All infected workstation/machinery are aggressive to perform distributed denial of services DDOS to Microsoft update server. This cause whole network traffic be came very busy then slow down the network or bring down workstation/machinery. Beside above disadvantage, under a flat network every network device receive broadcast message, this highly expose to everyone confidential information such as plain text password include, telnet password, email password, ftp password. Other such as email content, credit card number, account number and more.

VLAN is a technology to logical grouping of network resource and user connected to a administrative network on a switch. It provides easier administration, giving way to the constraints of physically connected networks. Just as individuals belong to multiple workgroups, individual workstations and servers can participate in multiple VLANs. Broadcast domain can be defined without the use of router, but are used if there is a need to communicate between two VLANs.

Every single information change is document like, switch name, where it locate, switch port label to which VLAN group are document for future reference, this ensure when the information need, it can be search immediately. Therefore it enhance network management With VLAN can solve all the problem above.

1.3 Objective

- To shrink broadcast domain, VLANs reduce size of broadcast domain.
 Therefore reducing extraneous traffic and improving the efficiency of the whole network by segment current NSEM network.
- ii. To simplify network administrative, adding, moving, removing network device can be dealt with quickly and conveniently from the management console rather than the wiring closet. This enable the management run smoothly without any doubt making any decision relate change on NSEM network.
- iii. To enhanced network security, VLANs create virtual boundaries that can only be crossed through a router. The standard, router-based security measures can be used to restrict access to each VLAN as required.

1.4 Scopes

- Design a new network design, the design a new network diagram base on current NSEM intranet, and with VLAN technology enhancement.
- ii. Build a simulation according a part of design, Build a VLANs simulation environment in KUTKM Cisco Lab that similar to the network design. Cisco Router and Cisco Catalyst Switch are equipping, and client of the simulation network is few computers with windows XP as operating system platform.

iii. VLAN configuration, port-based VLAN with 802.1Q VLAN encapsulation. A VLAN Trunking Protocol (VTP) domain is create to multicast messages to inform all other switches in the VTP domain.

1.5 Contributions

The new network design solve major networking difficulty that often occurrence in NSEM network.

1.6 Expected Output

The result expected is few VLANs are create. Each VLANs have own VLAN id. Each VLAN's node (computer, network printer etc.) belong to a single broadcast domain. Broadcast traffic from one node in a VLAN reaches ever other node in the same VLAN and broadcast traffic does not travel from one VLAN to other VLANs.