DESIGN AND ANALYSIS OF A MULTIVARIATE REGRESSION MODEL USING ARTIFICIAL NEURAL NETWORK

MUHAMMAD RIZMAN BIN MOHD B051110265

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2014

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF A MULTIVARIATE REGRESSION MODEL USING ARTIFICIAL NEURAL NETWORK

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotics & Automation) (Hons.)

by

MUHAMMAD RIZMAN BIN MOHD B051110265 890109565003

FACULTY OF MANUFACTURING ENGINEERING

2014

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and Analysis of a Multivariate Regression Model Using Artifical Neural Network

SESI PENGAJIAN: 2013/14 Semester 2

Saya MUHAMMAD RIZMAN BIN MOHD

Mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaanseperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

SULIT

TERHAD

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

C-5-4 PPR Kerinchi Lembah Pantai

Jalan Pantai Permai 1 Off

59200 Kuala Lumpur

Tarikh: _____

Tarikh:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Analysis of a Multivariate Regression Model Using Artificial Neural Network" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MUHAMMAD RIZMAN BIN MOHD
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotics & Automation) (Hons.). The member of the supervisor committee is as follow:

.....

(Engr. Dr.-Ing Azrul Azwan Bin Abdul Rahman)

ABSTRAK

Rangkaian neural menyediakan satu aplikasi yang boleh digunakan dalam pelbagai bidang secara luas. Ia adalah teknik baik yang baru untuk menyelesaikan masalah dalam pelbagai sistem yang kompleks. Tujuan kajian ini adalah untuk membangunkan satu model rangkaian neural buatan berdasarkan model regresi. Dalam sistem yang kompleks pengunaan pengiraan matematik seperti kaedah regresi boleh menyebabkan beberapa masalah berlaku dan ketepatan sistem ini tidak dapat disimpulkan. Untuk mengkaji prestasi rangkaian neural, satu eksperimen direka. Proses mesin pengisaran berkelajuan tinggi, dipilih bagi menjalankan ujikaji menggunakan kaedah Box Behken. 29 sampel digunakan dengan menggunakan pembolehubah parameter seperti kelajuan pemotongan, kadar suapan dan kedalaman pemotongan. Data kekasaran permukaan diperoleh, dikumpul untuk digunakan dalam menganalisa model rangkaian neural dan regresi. Model regresi menggunakan daripada manakala rangkaian neural menggunakan algoritma kabur rangkaian kognitif dengan mengunakan peraturan pembelajaran pembezaan hebbian dan fungsi pengaktifan linear. Model matematik yang dibangunkan menggunakan kaedah regresi berganda menunjukkan ketepatan 96,637 %, manakala sebagai untuk model yang dibangunkan menggunakan pameran rangkaian neural ketepatan 99.999976% dan 99.9999596% untuk latihan dan ujian peringkat masingmasing, dalam meramalkan kekasaran permukaan. Ini menunjukkan kebolehlaksanaa dalam rangkaian neural untuk membandingkan kepada regresi berganda. Keputusan ini adalah sebagai panduan untuk kajian masa depan atau untuk pelaksanaan dalam sistem yang kompleks.

ABSTRACT

Neural network provide an application that can be applied in a broad range. It is a great new technique for solving problems in many different disciplines. The purposed of this study is to develop a model of artificial neural network based on a model of regression. In a complex system, using hard computational such as regression method could cause several problems to occur and the accuracy of the system cannot be inferred. In order to study the performance of neural network, an experiment is designed. High speed end milling is one of the manufacturing processes that are selected for the experiment conducted based on the design of experiments using Box-Behken method. 29 samples were conducted using variables parameters such as cutting speed, feed rate and depth of cut. The data of surface roughness obtain are collected to be used in analyzing the model of neural network and multiple regression. Regression model using the second-order form while neural network using fuzzy cognitive network algorithm with differential hebbian learning rules and linear activation function. The mathematical model developed using multiple regression method demonstrate the accuracy of 96.637%, while as for the model developed using neural network exhibit an accuracy of 99.999976% and 99.9999596% for training and testing stage respectively, in predicted of the surface roughness. This shows the feasibility and applicable of neural network compare to multiple regressions. This result is as a guide for future research or implement on the complex system.

DEDICATION

All praise to HIM for make this to reality To my beloved parents for their endless support To my lecturers for their knowledge given to me To myself for not easily giving up when facing difficulties To my love of my life for always being an understand on my situation

ACKNOWLEGDEMENT

I would like to express my sincere gratitude my supervisor, Engr. Dr.-Ing Azrul Azwan, my former supervisor, Dr. Omid Motlagh for all the guidance in completing this thesis. Nevertheless, to all friends of mine that never stop to give me support in moral way and also in doing this research.

TABLE OF CONTENT

ABSTRAK	i
ABSTRACT	iii
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES	XV

CHAPTER 1: INTRODUCTION		1
1.1	Overview of Research	1
1.2	Problem Background	2
1.3	Problem Statement	4
1.4	Objectives of the Research	4

vii

СНАР	CHAPTER 2: LITERATURE REVIEW		
1.0	Summary	,	
1.8	Summary	7	
1.7	Organization of Thesis	6	
1.6	Significance of Research	5	
1.5	Scope of the Research	5	

2.1	Introduction		8
2.2	Model of Linear Regression		9
	2.2.1	Simple Linear Regression	9
	2.2.2	Polynomial Regression	10
	2.2.3	Multi Linear Regression	10
	2.2.4	Technique of Linear Estimation	11
		2.2.4.1 Least-Squares Estimation technique	11
		2.2.4.2 Maximum Likelihood Estimation Technique	12
		2.2.4.3 Bayesian Estimation Technique	13
2.3	Mode	l of Nonlinear Regression	13
	2.3.1	Technique of Nonlinear Estimation	14
		2.3.1.1 Gradient Method	14

		2.3.1.2 Newton-Raphson Method	15
		2.3.1.3 Other Method	15
2.4	Mode	l of Multi-variable Regression	16
2.5	Varial	ble Reduction Methods	17
	2.5.1	Principal Component Analysis Method	18
	2.5.2	Exploratory Factor Analysis Method	18
2.6	Neura	l Network	20
	2.6.1	Biological Neural Network	21
	2.6.2	Artificial Neural Network	22
	2.6.3	Single Layer Network	23
		2.6.3.1 The Perceptron	26
	2.6.4	Feed-Forward vs. Recurrent Neural Network	27
		2.6.4.1 Back-Propagation	29
		2.6.4.2 The Backpropagation Algorithm	29
	2.6.5	Fuzzy Cognitive Map	30
2.7	Gener	al Regression Neural Network	31
2.8	Differ	ential Hebbian	32
2.8	Summ	nary	34

CHAPTER 3: METHODOLOGY

3.1	Research Methodology	35
3.2	Define the Variable's Parameter for Dataset	37
	3.2.1 CNC Variable's Parameter	37
3.3	Experimental Design	38
3.4	Multi Regression Analysis	38
	3.4.1Development of Regression Model	39
3.5	Artificial Neural Network	40
	3.5.1 CNC Dataset	40
	3.5.2 Data Normalization	40
	3.5.3 Network Algorithm	41
	3.5.4 Transfer Function	42
	3.5.5 Learning Function	43
	3.5.6 Performance Function	44
	3.5.7 Development ANN Prediction Model	45

35

46

CHAPTER 4: RESULT & DISCUSSION

4.1	Normalization Data	46
1.1	1 tormanization Data	10

х

4.2	Results for Multiple Regression Analysis		
	4.2.1	Multiple Regressions' Model Analysis	49
	4.2.2	Multiple Regressions': Predicted and Actual Comparison	54
4.3	Result	s for Artificial Neural Network	57
	4.3.1	Artificial Neural network's Model Analysis	60
	4.3.2	Model Testing of Neural Network	62
	4.3.3	Artificial Neural Network's: Predicted and Actual Comparison	64
	4.3.4	Overall Evaluation: Artificial Neural Network vs. Multiple Regr	essions'
			66
4.4	Fuzzy	Cognitive Map of Artificial Neural Network Model	67
4.5	Summ	nary	68
CHA	PTER 5	5: CONCLUSION & RECOMMENDATIONS	69
5.1	Concl	usion	69
5.2	Recon	nmendations for Future Research	71
REFE	ERENC	Ε	72
APPENDIXES			

xi

LIST OF TABLES

Table 3.1: The Levels of each Parameter.	35
Table 4.1: Normalized Data for Variables Parameter.	45
Table 4.2: Results of ANOVA test for surface roughness regression model.	51
Table 4.3: Comparison between actual and predicted regression analysis roughness.	surface 53
Table 4.4: Performance function of MRA on prediction of surface roughness.	55
Table 4.5: The training parameter of the network model.	55
Table 4.6: Comparison between actual and predicted neural network analysis roughness on training stage.	surface 56
Table 4.7: Performance error value of ANN in training stage.	59
Table 4.8: Comparison between actual and predicted neural network analysis roughness for testing stage.	surface 61
Table 4.9: Performance error on testing stage of ANN model.	61
Table 4.10: Performance of training and testing ANN network.	63
Table 4.11: Comparison of the accuracy of the MRA model and ANN model.	64

LIST OF FIGURES

16

Figure 2.1: Fitting a regression plane to a set of samples in 2D space

Figure 2.2: Schematic illustration of two biological neurons. The dendrites act and when a neuron fires an action potential propagates along its axon in the Interaction between neurons takes place at junction called synapses.	as inputs direction. 21
Figure 2.3: The McCulloch-Pitts model of a single neuron forms a weighted sum inputs $x_{1,,x_d}$ given by $a = \sum_i w_i x_i$ and then transforms this sum using a reactivation function $g()$ to give a final output $z = g(a)$.	um of the 10n-linear 22
Figure 2. 4: A selection of typical activation function.	23
Figure 2.5: Step Function.	24
Figure 2. 6: Piecewise Linear Function.	25
Figure 2.7: Sigmoidal Function with Various Slope Parameters.	26
Figure 2.8: A model of feed-forward network information; always moves one	direction;
it never goes backwards.	28

Figure 2.9: Sample architecture for a recurrent neural network (Glenn Pietila, 2012) 28

Figure 2.10: Representation of a General 2-layer Neural Network.30Figure 2.1: An example a model of FCMs.31

xiii

Figure 3.1: General	Framework of proposed study	36
i iguie 5.1. Ocherar	nume work or proposed study	

Figure 3.2: Notion of nested FCM: input node x_i and its respective weight function.

	42
Figure 3.3: Flow of modeling ANN for surface roughness prediction.	45
Figure 4.1: Residual plots versus fitted value.	50
Figure 4.2(a): Normal plot of residuals.	52
Figure 4.2(b): Residuals vs. Run.	52
Figure 4.3(a): Outlier T plot.	52
Figure 4.3(b): Cook's distance plot.	52
Figure 4.2: Surface roughness of the measured and predicted data for regressions.	nultiple 56
Figure 4.3: The structure of ANN for surface roughness prediction.	59
Figure 4.4: Residual vs. Predicted plot of ANN model in training stage.	62
Figure 4.5: Residual vs. Predicted plot of ANN testing stage.	64
Figure 4.6(a): Training; comparison of observed value with predicted value.	65
Figure 4.6(b): Testing; comparison of observed value with predicted value.	65
Figure 4.7: Plot of predicted surface roughness using multiple regression and network, and actual surface roughness.	neural 67

Figure 4.8: (a) Untrained (b) Trained; Fuzzy Cognitive Map of Relationship Modeling

68

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ANN	-	Artificial neural network
ANOVA	-	Analysis of Variance
CNC	-	Computer Numerical Control
DOE	-	Design of Experiment
EFA	-	Exploratory factor analysis
FCM	-	Fuzzy cognitive map
FKP	-	Fakulti Kejuruteraan Pembuatan
GLS	-	Generalized Least Squares
GRNN	-	General regression neural network
IRLS	-	Iteratively Reweighted Least Squares
MAE	-	mean absolute error
MAPE	-	Mean Absolute Percentage Error
MSE	-	Mean Square Error
OLS	-	Ordinary least-squares

PCA	-	Principal component analysis
RMSE	-	Root mean squared error
RNN	-	Recurrent neural network
RSM	-	Response Surface Method
SMC	-	Squared multiple correlations
SSE	-	sum square error
TLS	-	Total Least Squares
UTeM	-	Universiti Teknikal Malaysia Melaka
R _a	-	Determinant Coefficient
f_z	-	Feed rate
a_D	-	Axial Depth of Cut
a_R	-	Radial Depth of Cut
V _c	-	Cutting Speed

xvi

CHAPTER 1

INTRODUCTION

This section basically will view on the introduction of the thesis. A brief explanation on the background of the thesis and followed by a problem statements defined based on the theme of the research and an objectives focus of this thesis underlined by the limitation. The limitations are underlined on the designed scope for this research. A structure on the organization of this thesis research will be given briefly.

1.1 Overview of Research

Neural network provide an application that can be applied in a broad range. It is a powerful new technique for solving problems in many different disciplines. This theme of research basically will focus onto two different things. At the end of this research will give a correlation in both themes which are difference views; those areas are multivariate regression and related to neural network existing application to express a neural regression.

Linear and nonlinear regression methods are most likely used to modeling the mathematical model of regression computation. Based on several methods come up from the mathematicians, it can be presented by using this capabilities of mathematical model in the computation. This because regression refer as the problem to model a continuous dependent variables as a continuous function and can be possible to independent variables also. Therefore, classis model used to present linear and nonlinear of regression problem.

In order to relate with this research themes, neural network is a method used to develop and design for a regression problem. Hence, the main purpose of this research is to demonstrate the optimum use of artificial neural network (ANN) as a soft computation tool for determining the multivariable input and output interrelation in order determine the function for regression.

As with any modeling tool, to build a model that is effective need a lot of preparation. This preparation involves specifying the model, determining the multivariable data involved and justify the model with a sample case of an extracted data to be test. (Uys, 2010).

The concern in this context of research is often many techniques and methods that are used in these preparation to compute multivariable data. Therefore in this multivariate regression analysis using an artificial neural network, several models are proposed previous study will be view as the literature for methods used.

1.2 Problem Background

In the range of a large environment, a concern into the variables in the system which include the multivariable for the pattern recognition is to justify the correlation between multivariable influences in certain environment of a system which include dependents and independents variables. A computational classic method is often used in this situation with a precise result. The concern here is for representing a modeling to a linear or nonlinear regression problem, a statistical model especially for nonlinear cannot be express in an explicit form as nonlinear regression model (Uys, 2010).

In addition, in the context of regression models, despite a linear or nonlinear, the main concern is about the relationship between the dependent and independent variables as mathematical function in order to define each other. In generally, as an example; of all maps the input for observation, x_i , i = 1, ..., p to an output y, defines a regression function for the maps, as this is a continuous variables (Uys, 2010).

The aim to utilize the powerful techniques of neural network can be implies here to use it excellent prediction capabilities to replace classic mathematical method. However, they are a method and techniques used in the state of preparation of statistical nature of a research system. Regression neural network are one of the several method purpose that will be discussed in details in the literature review section. Drawing a function for the interrelation nodes in a neural network for the regression problem of a system is the final state of the research analysis.

The very important part on this subject is an attempt to express neural networks in term and notation of a regression function to develop a regression neural network for a replaced mathematical model. The definition to be made on neural regression is based on the methods of linear regression. In this way, it will explain how neural networks can be fitted into a framework of a regression model. Further in this will show how the classification of neural network can be made in regression applications as according to Uys (2010).

Considering in a large environment range of system, for a specific system, involving multivariable input that influence the condition of an environmental. Imagine a linear pattern from the multivariable time series of data values for that certain system. The multivariable factors contribute to the condition of a certain environment need to be determined in this case for the interrelation of the variables in between it.