

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF FACILITIES LAYOUT FOR INCREASE PRODUCTION IN FOOD INDUSTRY

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management) (Hons.)

by

REYANHEALME BIN ROHANAI B051110156 901117-01-6945

FACULTY OF MANUFACTURING ENGINEERING 2014

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and Analysis of Facilities Layout for Increase Production in **Food Industry**

SESI PENGAJIAN: 2013/14 Semester 2

Saya REYANHEALME BIN ROHANAI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAI	
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
No.16, Jalan Tasek 18,	
Bandar Seri Alam,	
Masai, Johor D.T.	
Tarikh:	Tarikh:

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Analysis of Facilities Layout for
Increase Production in Food Industry" is the results of my own research except as
cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) (Hons.). The member of the supervisory is as follow:

(Dr. Seri Rahayu binti Kamat)

ABSTRAK

Industri kecil dan sederhana (IKS) merupakan syarikat kecil yang mengendalikan pengeluaran mengikut permintaan yang tidak menentu. Kesesuaian syarikat dari semasa ke semasa dalam mengikuti permintaan seperti ini boleh mengakibatkan kegagalan dalam pengeluaran syarikat. Melihat kepada situasi ini, projek ini ditubuhkan bertujuan bagi melaksanakan usaha untuk meningkatkan kemampuan produktiviti syarikat dalam memenuhi kehendak pelanggan yang tidak menentu. Oleh itu, syarikat yang bertuah dipilih untuk terlibat sama adalah Aneka Snek SDN BHD yang kini sedang beroperasi di Johor Bahru. Berdasarkan pemerhatian yang telah dilakukan, banyak masalah dilihat berpunca daripada keadaan susun atur syarikat terutamanya susun atur bahagian pengeluaran yang boleh mengakibatkan kos modal syarikat meningkat. Oleh yang demikian, objektif projek mula dikenalpasti dengan tujuan untuk menganalisa susun atur bahagian pengeluaran syarikat yang sedia ada dan peralatan pengendalian bahan yang digunakan. Setelah itu, cadangan akan dibuat terhadap susun atur dan peralatan pengendalian bahan yang boleh memajukan produktiviti syarikat sehingga 5%. Walaubagaimanapun, terdapat sesetengah produk syarikat dihasilkan apabila perlu dan tidak konsisten. Oleh itu, projek ini fokus kepada produk utama syarikat yang mempunyai tahap pengeluaran yang konsisten. Tambahan juga, produktiviti akan digunakan untuk menjangkakan pencapaian susun atur yang baru. Kaedah yang digunakan dalam projek ini ialah kaedah 'Graph Based'bagi mengkaji reka bentuk susun atur yang optimum. Pada masa yang sama, penggunaan kaedah lukisan 3D digunakan untuk memperlihatkan keberkesanan susun atur dengan menggunakan perisian CATIA V5. Keputusan yang dijangkakan bagi projek ini adalah akan ada terhasilnya susunatur fasiliti yang baik serta penggunaan peralatan pengendalian bahan yang bersesuaian supaya ianya dapat meningkatkan kesihatan dan keselamatan pekerja. Hasil daripada ini juga, dijangkakan syarikat dapat memperbaiki kemampuan pengeluaran dalam memenuhi permintaan pelanggan. Akhir kata, saya mencadangkan bahawa syarikat ini perlu mereka bentuk semula susun atur kilang dan menggunakan peralatan pengendalian bahan yang betul supaya mereka benarbenar boleh memaksimumkan keuntungan mereka melalui prestasi produktiviti yang konsisten.

i

ABSTRACT

A small medium industry (SME) is a small scale industry which operates their production according to unpredictable demands. The adaptability on changing demand from time after time makes the SME industry fails to achieve their optimum productivity. It could be better if there are any improvement efforts to support their production. Regarding to this needs, this project was created with the aim to improve the productivity in SME industry. The SME industry that has been chosen is Aneka Snek SDN BHD which located in Johor. According to my observation shows that, many problems was appears from the lack of improper layout condition in this company. In details, it has been captured that the current physical arrangement for production layout was poor and it may causing the higher capital cost for the company. Therefore, the aim for this project has been built so that this problem can be solved effectively. The objective for this project will cover on the finding the optimum facility layout, proper material handling equipment and its contribution to company productivity. It is cited that this project aim to analyse the recent facility layout/material handling equipment and to propose the optimum facility layout/material handling equipment that can improve company productivity up to 5%. However, there are limitations that need to consider before starts on implementing the project methodology. Since that there are unpredictable demands for certain product in Aneka Snek SDN BHD, this project will cover on main products for the company only. Moreover, this project focuses on redesign the production layout whereby productivity will facilitate as a counter measure to justify the expected achievement of the proposed layout. The method used to designing the layout is Graph Based method and the 3D drawing for this layout will be done using Plant Layout tools in CATIA V5. The element/data in Plant layout tools will be recorded using time study method and data are taken at a daily production. The expectation for this project is to helps the SME company to design a good facilities planning and by the same time to enhance the worker safety and healthy through the implementation of proper material handling equipment. It also expected that this company will able to follow their unpredictable demands as well as improving their productivity. In a nutshell, I would suggest that this company should redesign their plant layout and use the proper material handling equipment so that they can actually maximize their profits through a consistent productivity performance.

ACKNOWLEDGEMENT

Praise be to Allah S.W.T for the blessings and grace throughout the completion of this report and Peace upon him Muhammad S.A.W, the messenger of Allah.

First and foremost, I would to express my gratitude to my supervisor, Dr. Seri Rahayu binti Kamat for all her assistance during this project being conducted. I am really appreciated her progressive advice and guidance that motivate me to the accomplishment of this report. Moreover, I am truly grateful to her passion and commitment in monitoring my project throughout the whole semester. My sincere thanks dedicate to FKP Final Year Project Management Team for giving me the meaningful training for report guidance and as well as giving the opportunity for me to perform this project.

I would to express my gratitude to the whole organization in Aneka Snek Sdn. Bhd. for their contribution during the project takes place. I wish to convey my thanks to Manager of Aneka Snek Sdn. Bhd., Mr. Zaini Ibrahim for his permission to let me run this project on this company.

A special thanks goes to my fellow friends and team mates for their support when difficulties were met. Thanks for being there to give a moral support and positive feedback during this report was performed. Last but not least, a thousand of love dedicate to my dearest family for the motivation and concerns when needed. Thank you very much for the motivation and support that never ends to me.

TABLE OF CONTENT

Abs	trak		i
Abs	tract		ii
Ack	nowledg	rement	iii
Tab	le of Cor	ntent	iv
List	of Figur	es	vii
List	of Table	es	ix
List	of Equa	tions	X
CH	APTER	1: INTRODUCTION	1
1.1	Back	ground of Study	1
1.2	Probl	lem Statement	2
1.3	Obje	ctive	3
1.4	Scop	e	4
1.5	Com	pany Background	4
1.6	Proje	ect Gantt chart	6
CH	APTER	2: LITERATURE REVIEW	9
2.1	A bas	sic in facilities planning	9
	2.1.1	Facilities Location	10
	2.1.2	Facilities Design	11
	2.1.3	Facilities Layout	11
2.2	The i	mportance of facilities planning in company productivity	12
2.3	Facil	ity Layout Problem (FLP)	13

2.4	Princ	iples of	Plant Layout	16
	2.4.1	Princ	iple of overall integration	16
	2	.4.1.1	Types of plant layout	16
	2	.4.1.2	The comparison among the layout	20
	2.4.2	Princ	iple of Flow	22
	2	.4.2.1	Types of Flow Patterns	23
	2.4.3	Princ	iples of Minimum Distance	25
	2	.4.3.1	Materials Handling Principles and its contribution to faci	ility
			layout design	26
	2	.4.3.2	Material handling equipment	28
	2	.4.3.3	Types of material handling equipment	29
2.5	Heuri	stic Alg	gorithm approaches in solving the facility layout problem	37
	2.5.1	Grapl	h-Theoretic based heuristic	40
	2.5.2	The b	pasic of productivity	40
	2.5.3	Time	Study	42
CHA	APTER	3: MET	ГНОДОГОСУ	43
3.1	Flow	Chart		43
3.2	Phase	e 1		45
	3.2.1	Identi	ify problem	45
	3.2.2	Tittle	Selection	45
	3.2.3	Litera	ature review	45
3.3	Phase	2		46
	3.3.1	Analy	yse existing layout	46
	3	.3.1.1	Sketch existing layout using Plant Layout tools in	
			CATIA V5	46
	3	.3.1.2	Principles of material handling	47
	3.3.2	Evalu	ate data using Graph Based Method	47
3.4	Phase	2 3		48
	3.4.1	Analy	yse redesign layout	48
	3	.4.1.1	Sketch using layout tools in CATIA V5 software	49
	3	.4.1.2	Principles of material handling	49
	3	.4.1.3	Data Comparison	49

3.5	Phase	2.4	50
	3.5.1	Discussion	50
	3.5.2	Conclusion and Recommendation	50
CH	APTER	4: RESULT AND DISCUSSION	51
4.1	Analy	ysis on existing/actual condition	51
	4.1.1	Company Layout	51
	4.1.2	The material handling equipment	56
4.2	Evalu	nation on actual company layout (Graph Based Method)	62
4.3	Analy	ysis on redesign condition	68
	4.3.1	Redesign Production Layout	68
	4.3.2	Material Handling Equipment	74
	4	Analysis on Proposed Material handling Equipment	74
	4	2.3.2.2 Cost and Benefit Analysis	78
4.4	The la	abour productivity calculation	80
CH	APTER	5: CONCLUSION AND RECOMMENDATION	83
5.1	Conc	lusion	83
5.2	Reco	mmendations	86
	5.2.1	Recommendation on production layout	86
	5.2.2	Recommendations on material handling equipment	87
	5.2.3	Future Work	88
REI	FEREN	CES	92
API	PENDIC	ES	
A	Turni	tin Report	
В	Final	Year Project (FYP) Gantt Chart	
C	Amer	ndments Form	
D	Plant	Layout (Sketching)	
E	Mate	rial Flow (Sketching)	
F	Data	calculation for material movement frequency (JAN 2014)	

LIST OF FIGURES

1.1	The overloaded materials and inappropriate usage of material	
	handling	3
1.2	The organization chart of Aneka Snek SDN BHD	5
2.1	A flow chart for the basic knowledge in facilities planning	10
2.2	The tree structure of layout problem	15
2.3	The example of fixed position plant layout	17
2.4	The example of product layout	18
2.5	The example of process layout	19
2.6	The example of cellular layout	20
2.7	The flow of straight line	23
2.8	The flow of U-shaped	24
2.9	The flow of S-shaped	24
2.10	The flow of W-shaped	25
2.11	The belt conveyor	30
2.12	The roller conveyor	30
2.13	The chain conveyor	31
2.14	The common trolley used in SME industry	32
2.15	The example of hand truck	32
2.16	The example of common pallet	33
2.17	The example of pallet jack	33
2.18	The example of forklift truck	34
2.19	The common industry lift truck	35
2.20	The pallet box	35
2.21	The skid box	36
2.22	The example of round container	36

4.1	The main product (biscuits) process flow chart	53
4.2	The top view of company actual layout	54
4.3	The 3D view of company layout using CATIA modelling software	55
4.4	The 3D view of production department in company layout	55
4.5	The bin used by the company	57
4.6	The trolley used by the company	57
4.7	Tray trolley used by the company	58
4.8	The material flow within production layout	60
4.9	Activity Relationship Chart	63
4.10	Proposed Layout Plan	67
4.11	Implemented Layout Plan according to space available for	
	existing layout	67
4.12	The final proposed production layout	68
4.13	The 3D view of redesign production layout	69
4.14	The top view for redesign layout	69
4.15	The additional section within facility	71
4.16	The distance between functional departments in production layou	t 72
5.1	The layout comparison	86

LIST OF TABLES

1.1	Gantt chart for PSM 1	7
1.2	Gantt chart for PSM 2	8
2.1	A researcher's review about the definition of facility layout	
	problem	14
2.2	The advantages and disadvantages for each type of layout	21
2.3	The literature review about the importance of heuristic	
	algorithm approaches	39
4.1	Material handling checklist	59
4.2	Distance travelled by components in present layout	59
4.3	Closeness Rating Table	63
4.4	Distance travelled by components in redesign layout	73
4.5	Table of improvement status	82
5.1	The recommendations of material handling equipment	87

LIST OF EQUATIONS

2.1	The productivity equation	41
2.2	Labour productivity	41
3.1	The productivity improvement equation	50

CHAPTER 1

INTRODUCTION

This chapter describes the basic ideas and general background of the project. Moreover, it explains the purpose of this report and the constraints need to be taken during study undergoes. Generally, this chapter consists of five (5) main sections which are background, problem statement, objective, and the scope of project.

1.1 Background of Study

The facilities planning play an important role in industrial organization and has involved greatly in many different background of industry. This facility planning is an active area in field of research/paper for many type of industry such as manufacturing or service industry and the favourite issue to be addressed is about the facility layout problems (FLP). A review on manufacturing industry shows that facilities planning problem is one of the matter that have a significant effect upon manufacturing cost, processing lead time, and productivity. Moreover, it was stated that total operating expenditure in manufacturing industry are related to material handling cost up 20 to 50 percent of total expenses (S.P.Singh, 2005). The good

integration between facility layout and material handling design is the essential way to overcome this particular problem. This will require significant steps in making a good planning such set the FLP goals and use the suitable facility layout approaches for observed problem. Hence, in this report the work flow will starts with determining the objective and constraints of the FLP, a deals to the optimal facility arrangement using a proper approaches will be as a methodology and lastly proposing the better production layout that contribute with proper handling equipment as to improve the productivity.

1.2 Problem Statement

The countermeasure for a company to success in their business is not only just looking on the productivity that gives a high profitability but it need to consider on how the way productivity is been implemented. Is there is a waste of time and motion in the layout system during this productivity been carried out or maybe, is the recent layout best support the process to achieve an optimum productivity. This entire countermeasure can be best solved by implementing the strategic facilities planning. The importance of facility planning in improving the company productivity is greatly helps the company to impart in their competitive position in marketplace. It represents the relationship of material flow, information flow and its operating personnel to enhance the company output and profit. According my observation in the Aneka Snek SDN BHD, it is shows two factors/elements that should be highly improve which is facilities layout (production layout) and material handling equipment. Take on the example of production layout, the facility arrangement was poor and there were excessive flow between the work cells which result in waste of processing time. Furthermore, the inappropriate usage of material handling equipment to transfer load/material between departments will affect to the company productivity and the product quality.

Figure 1.1: The overloaded materials and inappropriate usage of material handling

Objective 1.3

The objective of the project is the essential part in report making as it controls the performance for the suggested layout. Therefore, the objectives for this project are set to:

- 1. Study the production layout and material handling equipment for selected SME industry.
- 2. Redesign the company layout as well as production layout by using the Layout Algorithmic Approaches (Graph Based Method) and propose the optimal facilities layout that increased the company production.
- 3. Identify the material handling used and proposing the suitable material handling equipment to improve productivity by performing the cost and benefit analysis.

1.4 Scope

The scope of this report is explaining the field of the research and project limitations towards the report result and recommendations. Therefore the scope for this project is as below:

- 1. The scope of this project/research is to evaluate facilities of company layout and material handling equipment in food industry.
- Since that the time allocate to make a research is limited, it will only cover one
 SME Company which named as Aneka Snek SDN BHD
- 3. Regarding to my past experience working in small industry, the product will not to be produce continuously and there is a certain product will be produce according to demand. Therefore, this project will only cover on the main product for the selected company. The reason is main product will being run every day, the demand is always available and it has a great positive impact on company profit.

1.5 Company Background

The selected SME Company for this project is Aneka Snek SDN BHD. Aneka Snek SDN BHD is one of the Bumiputra Company that was established in August 2006 and located in Kg. Ulu Pulai, Gelang Patah, Johor with land area of approximately 8880 square feet. The company has 15 workers which 11 of them will locate at production department and the remaining are located at administration department.

Apart from that, this company supply variety types of snacks food, cake and packaging foods. In terms of sales marketing, this company has a great demand and request around the suppliers from the Malaysia and Singapore such as Senai Airport, Johor and Mustafa Centre, Singapore. The objectives of the company itself are to be one of the local SME Company that expands their sale to international level and able to compete with others successful snacks company. In order to fulfil their objectives, this company has made a great cooperation with government and non-government

agency such as FAMA, MARDI, SIRIM and TEKUN Nasional by participate the entire exhibition conducted by these agencies.

Furthermore, this company has created a strategic organizational structure so that the company profit and sales could be sustained. The organizational of Aneka Snek SDN BHD are stated as below:

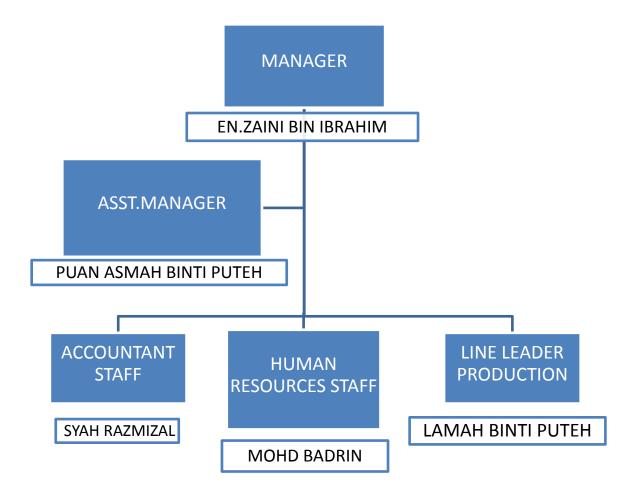


Figure 1.2: The organization chart of Aneka Snek SDN BHD

Project Gantt chart 1.6

This project Gantt chart is designed to ensure the project accomplishment due to the given time. The activities will set orderly followed by the week to finish each of the activities. By making this, it will work as a guidelines to the report progress and assist the project to be finished at the right time. Below are the project Gantt chart for PSM 1 and PSM2.

Table 1.1: Gantt chart for PSM 1

15							
14							
13							
12							
11							
10							
6							
∞							
7							
9							
N.							
4							
κ							
2							
1							
Week	Determination of project tittle	Introduction	Literature Review	Methodology	Finalizing Report	Submission Report PSM 1	Presentation PSM

C Universiti Teknikal Malaysia Melaka

Table 1.2: Gantt chart for PSM 2

	1	ı	ı		ı	ı	
15							
14							
13							
12							
11							
10							
6							
~							
7							
9							
5							
4							
3							
2							
1							
Week	Data Collection and Analysis	Result	Discussion	Conclusion	Finalizing Report	Submission Report PSM 2	Presentation PSM 2

C Universiti Teknikal Malaysia Melaka

CHAPTER 2

LITERATURE REVIEW

This chapter describes the previous study on research regarding to the stated problems. This literature review highlights the relevant study to support the decision-making in project development. Furthermore, the content of literature review is aligned with the objectives of the project. For the purpose of my report, it will describe the literature study of facility layout problems, layout design principles and as well as material handling principles.

2.1 A basic in facilities planning

A facility planning is a field of study that relevant to the discipline of plant layout for a company. In other words, this facility planning may very useful in solving the issues of facility layout problem. Basically, it comprise many of stages such deciding the best facilities location, creating a good facilities design and as well as providing the best facility layout for expected company. The goals are to improve the company productivity and eliminating all waste elements that appears in the

recent/new plant layout. In that case, this section will discuss more about the facilities location, facilities design and facilities layout so that a clear understanding about this basis knowledge could be achieved.

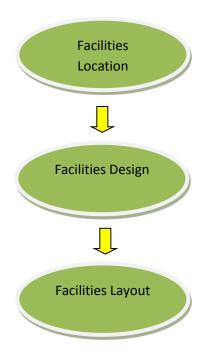


Figure 2.1: A flow chart for the basic knowledge in facilities planning

2.1.1 Facilities Location

The *facilities location* means the location of the facility refers to its placement with respect to customer, suppliers, and other facilities with which it interfaces. The location decision should be implemented carefully to avoid from selecting a poor location which may cause a constant source of higher cost, higher investment and frequent interruptions of production. Therefore, the facilities location should be made based on a careful consideration of all factors that are essentially gives the value-added in efficient running the company productivity.

10