IMAGE RESTORATION USING MEAN, MEDIAN AND ADAPTIVE FILTER

ADELINE CHUA JIA MIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: <u>IMAGE RESTORATION USING MEAN, MEDIAN AND ADAPTIVE</u> <u>FILTER</u>

SESI PENGAJIAN: SESI 2013/2014

Saya _____ ADELINE CHUA JIA MIN

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. ** Sila tandakan (/)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

 $_{---}$ TIDAK TERHAD

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat tetap :<u>B-7-3, Vista Hijauan,</u> <u>Persiaran Sg. Long 2, Bandar Sg. Long</u> <u>43000 Kajang, Selangor</u> EN OTHMAN BIN MOHD

Nama Penyelia

Tarikh : _____

Tarikh:

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa

IMAGE RESTORATION USING MEAN, MEDIAN AND ADAPTIVE FILTER

ADELINE CHUA JIA MIN

This report is submitted in partial fullfillment of the requirements for the Bachelor of Computer Science (Computer Netowrking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2014

DECLARATION

I hereby declare that this project entitled

IMAGE RESTORATION USING MEAN, MEDIAN AND ADAPTIVE FILTER

is written by me and is my own effort and that no part has been plagiarized without citations

STUDENT: _____ DATE: _____

(ADELINE CHUA JIA MIN)

SUPERVISOR: _____ DATE: _____

(EN. OTHMAN BIN MOHD)

DEDICATION

To my beloved parents, friends and supervisor

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my highest gratitude and deepest appreciation to my dearest supervisor, Encik Othman bin Mohd. Sir, you had truly inspired me with countless of valuable guidance and advices throughout the whole process of this final year project. Your willingness and commitment had motivated me to contribute and work further for this project. Furthermore, your patience and understanding had helped me through all problems and obstacles that I faced during my difficult times. Sir, you did not just help me to solve but also gave me time and chances to modify, repair and improve my weaknesses shown in this project. For this, I would like to say, thank you so much Sir.

Secondly, I would like to thank the evaluator for this project, Dr Nur Azman Abu, for your criticism towards the weaknesses found in my final year project. I appreciate your opinions and guidance for me to improvise my project.

Last but not least, to all my beloved friends in BITC and family members, million thanks for all of your countless support and understanding during the completion of this project. I thanked god for all of your existence. Without all of the helps mentioned above, I would definitely not able to complete my final year project in time.

ABSTRACT

Image Restoration is one of the many fields in Image Processing. The main purpose of Image Restoration is to recover an original image from a degraded image using the mathematical restoration and degradation model. Image Restoration techniques are divided into two domains namely the spatial domain and the frequency Domain. This project studies on the analysis of the Image Restoration using techniques of Mean, Median and Adaptive Filter under the spatial domain. Three different noises including Salt and Pepper noise, Gaussian noise, and Speckle noise are considered in this project to analyse the best noise that each of the proposed techniques are able to remove. The analysis is done by using the image qualities metrics such as MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio).

ABSTRAK

Pemulihan imej merupakan salah satu bidang dalam Pemprosesan Imej. Tujuan utama Pemulihan Imej adalah untuk memulihkan imej yang asal daripada imej degradasi dengan menggunakan pemulihan matematik dan model degradasi. Teknik Pemulihan Imej dibahagikan kepada dua domain iaitu domain 'Spatial' dan domain frekuensi. Kajian projek ini merupai analisis Pemulihan Imej menggunakan teknik penapis 'Mean, Median dan Adaptive' di bahagian domain 'Spatial'. Tiga 'noise' yang berbeza termasuk 'Salt and Pepper noise', 'Gaussian noise', dan 'Speckle noise' akan digunakan dalam projek ini untuk menganalisis 'noise' yang terbaik bagi setiap teknik yang dicadangkan Analisis ini dilakukan dengan menggunakan kualiti imej metrik seperti 'MSE (Mean Square Error)' dan 'PSNR (Peak Signal to Noise Ratio)'.

v

TABLE OF CONTENTS

CHAPTER		SUBJECT	PAGE
	DEC	LARATION	i
	DED	ICATION	ii
	ACK	NOWLEDGEMENT	iii
	ABS	TRACT	iv
	ABS	TRAK	v
	TAB	LE OF CONTENTS	vi
	LIST	FOF TABLES	х
	LIST	FOF FIGURES	xi
	LIST	COF ABBREVIATIONS	xvi
CHAPTER I	INTI	RODUCTION	
	1.1	Project Background	2
	1.2	Problem Statement	3
	1.3	Research Question	4
	1.4	Objective	5
	1.5	Scope	6
	1.6	Project Significant	7
	1.7	Expected Result	7
	1.8	Summary	7
CHAPTER II	LITH	ERATURE REVIEW	
	2.1	Introduction	8
	2.2	Related Work	8
		2.2.1 Image Restoration	10

		2.2.2	The Image Degradation Model	11
		2.2.3	Spatial Domain	12
		2.2.4	Frequency Domain	14
		2.2.5	Noise	15
			2.2.5.1 Salt & Pepper Noise	16
			2.2.5.2 Gaussian Noise	17
			2.2.5.3 Speckle Noise	18
		2.2.6	Mean Filter	18
		2.2.7	Median Filter	20
		2.2.8	Adaptive Filter	21
	2.3	Analy	sis of Current Problem,	
		Justifi	cation	22
	2.4	Propo	sed Solution	23
	2.5	Summ	hary	24
CHAPTER III	MET	HODO	LOGY	
CHAPTER III	MET 3.1		LOGY	25
CHAPTER III		Introd		25 25
CHAPTER III	3.1	Introd Projec	luction	
CHAPTER III	3.1 3.2	Introd Projec	luction et Methodology et Schedule and Milestones	25
	3.13.23.33.4	Introd Projec Projec Summ	luction et Methodology et Schedule and Milestones hary	25 30
CHAPTER III CHAPTER IV	3.13.23.33.4	Introd Projec Projec Summ	luction et Methodology et Schedule and Milestones	25 30
	 3.1 3.2 3.3 3.4 	Introd Projec Projec Summ LEMEN Introd	luction et Methodology et Schedule and Milestones hary WTATION	25 30 34
	 3.1 3.2 3.3 3.4 IMP 4.1 	Introd Projec Projec Summ LEMEN Introd	luction et Methodology et Schedule and Milestones hary	25 30 34 35
	 3.1 3.2 3.3 3.4 IMP 4.1 	Introd Projec Projec Summ LEMEN Introd Projec	luction et Methodology et Schedule and Milestones hary VTATION luction et Requirement	25 30 34 35 35
	 3.1 3.2 3.3 3.4 IMP 4.1 	Introd Projec Summ LEMEN Introd Projec 4.2.1 4.2.2	luction et Methodology et Schedule and Milestones hary VTATION luction et Requirement Software Requirement	25 30 34 35 35 36
	 3.1 3.2 3.3 3.4 IMP 4.1 4.2 	Introd Projec Summ LEMEN Introd Projec 4.2.1 4.2.2 Traini	luction et Methodology et Schedule and Milestones hary XTATION luction et Requirement Software Requirement Hardware Requirement	25 30 34 35 35 36 37
	 3.1 3.2 3.3 3.4 IMP 4.1 4.2 4.3 	Introd Projec Summ LEMEN Introd Projec 4.2.1 4.2.2 Traini Degra	Auction et Methodology et Schedule and Milestones hary ATATION Auction et Requirement software Requirement Hardware Requirement ang Image	25 30 34 35 35 36 37 38

4.5.3 Adaptive Filter 49

4.6	Summary	52
	S anninai j	

CHAPTER V TESTING

5.1	Introduction		53
5.2	Pre-processing		55
5.3	Proces	ssing	58
	5.3.1	Mean Filter	58
	5.3.2	Median Filter	60
	5.3.3	Adaptive Filter	61
5.4	Decisi	ion Making	63
	5.4.1	Mean Square Error and Peak	
		Signal to Noise Ratio	65
	5.4.2	Comparison of MSE and PSNR	
		of Each Technique	66
		5.4.2.1 Mean Filter	66
		5.4.2.2 Median Filter	67
		5.4.2.3 Adaptive Filter	68
5.5	Accur	acy Assessment	68
	5.5.1	Further Testing for Mean Filter	69
	5.5.2	Further Testing for Median	
		Filter	71
	5.5.3	Further Testing for Adaptive	
		Filter	73
5.6	Final (Output	76
	5.6.1	Final Output for Mean Filter	76
	5.6.2	Final Output for Median	
		Filter	79

5.6.3	Final Output for Adaptive	
	Filter	82
5.6.4	Summary of Techniques	85
Summ	ary	87
	5.6.4	 5.6.3 Final Output for Adaptive Filter 5.6.4 Summary of Techniques Summary

CHAPTER VI PROJECT CONCLUSION

6.1	Introduction	88
6.2	Summary of Objective	88
6.3	Future Work	89
6.4	Contribution	89
6.5	Summary	90

REFERENCES	91
APPENDIX A	93
APPENDIX B	96

ix

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Summary of Problem Statement	3
1.2	Summary of Research Questions	4
1.3	Summary of Research Objectives	5
3.1	Activities of PSM 1	31
4.1	Software Requirements	36
4.2	Hardware Requirement	37
5.1	MSE and PSNR of Mean Filter	66
5.2	MSE and PSNR of Median Filter	67
5.3	MSE and PSNR of Adaptive Filter	68
5.4	MSE and PSNR of Mean Filter 5x5	69
5.5	MSE and PSNR of Median Filter 5x5	71
5.6	MSE and PSNR of Adaptive Filter 5x5	73
5.7	MSE and PSNR of Adaptive Filter 7x7	75
5.8	Comparison of Overall Restored Images	78
	Qualities for Mean Filter	
5.9	Comparison of Overall Restored Images	81
	Qualities for Median Filter	
5.10	Comparison of Overall Restored Images	84
	Qualities for Adaptive Filter	
5.11	Summarization of Techniques	85

LIST OF FIGURES

TABLE	TITLE	PAGE
2.1	Image Processing Summary Chart	9
2.2	The degradation model	12
2.3	Filtering in a spatial domain	13
2.4	The two-dimensional DFT	14
2.5	The Inverse of DFT	15
2.6	The PDF of Gaussian random variable	17
2.7	Example of Mean Filter	19
2.8	Example of Median Filter	20
3.1	The Flow of Image Processing	26
3.2	Five Main Stages of the Project	27
3.3	Summary Chart of Image Restoration	28
3.4	Flow Chart of the Project	29
4.1	Cameraman.bmp	38
4.2	LivingRoom.bmp	38
4.3	Jetplane.bmp	39
4.4	Lena.bmp	39
4.5	Peppers.bmp	40
4.6	Sailboat.bmp	40
4.7	The process of degradations for	
	'Cameraman.bmp'	41
4.8	Codes to degrade an image by adding Salt &	
	pepper, Gaussian and Speckle noise	42
4.9	The process of degradation for 'Lena.bmp'	42

4.10	Codes to get separate input image into each	
	band	43
4.11	Codes to degrade an image by adding Salt &	
	Pepper, Gaussian and Speckle noise	43
4.12	The implementation of Mean Filter for	
	'Cameraman.bmp'	44
4.13	Codes to perform mean filtering and display all	
	outputs	45
4.14	The implementation of Mean Filter for	
	'Lena.bmp'	45
4.15	Codes to perform mean filtering and display all	
	outputs	46
4.16	The Flow of Median Filter for	
	'Cameraman.bmp'	47
4.17	Codes to perform median filtering and display	
	all outputs	47
4.18	The implementation of Median Filter for	
	'Lena.bmp'	48
4.19	Codes to perform median filtering and display	
	all outputs	49
4.20	The Flow of Adaptive Filter for	
	'Cameraman.bmp'	50
4.21	Codes to perform median filtering and display	
	all outputs	50
4.22	The implementation of Adaptive Filter for	
	'Lena.bmp'	51
4.23	Codes to perform Adaptive filtering and	
	display all outputs	52
5.1	Image Restoration Testing Process	53
5.2	The flow of Pre-process Testing	55

5.3	Samples of the Original Image (a) Cameraman,	
	(b) Living Room, (c) Jet Plane, (d) Lena, (e)	
	Peppers, (f) Sailboat	56
5.4	Pre-process Testing Output (a) The Original	
	Image Cameraman, (b) The Degraded Image	
	using Salt & Pepper Noise, (c) The Degraded	
	Image using Gaussian Noise, (d) The Degraded	
	Image using Speckle Noise	56
5.5	Band 1 Degraded Image with (a) Salt & Pepper	
	Noise, (b) Gaussian Noise, (c) Speckle Noise	57
5.6	Band 2 Degraded Image with (a) Salt & Pepper	
	Noise, (b) Gaussian Noise, (c) Speckle Noise	57
5.7	Band 3 Degraded Image with (a) Salt & Pepper	
	Noise, (b) Gaussian Noise, (c) Speckle Noise	57
5.8	The Restore Image of (a) Cameraman and (b)	
	Lena from Salt & Pepper Noise using Mean	
	Filter	58
5.9	The Restore Image of (a) Cameraman and (b)	
	Lena from Gaussian Noise using Mean Filter	59
5.10	The Restore Image of (a) Cameraman and (b)	
	Lena from Speckle Noise using Mean Filter	59
5.11	The Restore Image of (a) Cameraman and (b)	
	Lena from Salt & Pepper Noise using Median	
	Filter	60
5.12	The Restore Image of (a) Cameraman and (b)	
	Lena from Gaussian Noise using Median Filter	61
5.13	The Restore Image of (a) Cameraman and (b)	
	Lena from Speckle Noise using Median Filter	61

5.14	The Restore Image of (a) Cameraman and (b)	
	Lena from Salt & Pepper Noise using Adaptive	
	Filter	62
5.15	The Restore Image of (a) Cameraman and (b)	
	Lena from Gaussian Noise using Adaptive	
	Filter	62
5.16	The Restore Image of (a) Cameraman and (b)	
	Lena from Speckle Noise using Adaptive Filter	63
5.17	The Flow of Decision Making for Mean,	
	Median and Adaptive Filter	64
5.18	The Mathematical Formula for MSE	65
5.19	The Mathematical formula for PSNR	65
5.20	MSE for Mean Filter 5x5	70
5.21	Quality of Restored Images Using Mean Filter	
	5x5	70
5.22	MSE for Median Filter 5x5	72
5.23	Quality of Restored Images Using Median	
	Filter 5x5	72
5.24	MSE for Median Filter 5x5	74
5.25	Quality of Restored Images Using Adaptive	
	Filter 5x5	74
5.26	MSE for Adaptive Filter 5x5	75
5.27	Quality of Restored Images Using Adaptive	
	Filter 7x7	76
5.28	The Process of Restoration for 'Cameraman'	
	Image on Gaussian Noise using Mean Filter	77
5.29	Comparison of MSE for Mean Filter 3x3 and	
	5x5	78
5.30	Comparison of Overall Restored Images	
	Qualities for Mean Filter	79

5.31	The Process of Restoration for 'Peppers' Image		
	on Salt and Pepper Noise using Median Filter	80	
5.32	Comparison of MSE for Median Filter 3x3 and		
	5x5	81	
5.33	Comparison of Overall Restored Images		
	Qualities for Median Filter	81	
5.34	The Process of Restoration for 'Sailboat' image		
	on Gaussian Noise using Adaptive Filter	83	
5.35	Comparison of MSE for Adaptive Filter 3x3,		
	5x5 and 7x7	84	
5.36	Comparison of Overall Restored Images		
	Qualities for Median Filter	85	

LIST OF ABBREVIATIONS

TERM

EXPLANATION

MSE	Mean Square Error
PSNR	Peak Signal to Noise Ratio
RP	Research Problem
RQ	Research Question
RO	Research Objective

CHAPTER I

INTRODUCTION

Nowadays, image restoration plays an important role in today's society especially in the field of photography. With the development and usage of Smartphone in every nook and cranny, many photo editing applications has been developed due to the build in camera that allow users to snap pictures at anytime and anywhere. Unfortunately, some of the image taken by those cameras could be affected by noise or blurriness due to random factors of the camera sensor. Noise refers to unwanted information displaying on the image which ruins the image quality. The effects of noise are caused by malfunctioning pixels in camera sensors, transmission of image in some noisy channels or faulty memory locations in hardware. A method was introduced to restore a noisy image which known as Image Restoration. Image Restoration is a field in Image Processing which deals with recovering an original image by sharpening the image from a degraded image using a restoration model and mathematical degradation. There are many filters used in image restoration and different filters are only suitable for different types of degradation model. To investigate further, the analysis was conducted using Mean Filter, Median Filter and Adaptive Filter under Spatial Domain. The aim of the analysis is to determine the best techniques or filter to be used to restore an original image along with their advantages and disadvantages for the given image.

1.1 Project Background

In recent years, the technology of image processing has been developed and evolved as a factor of the evolution of the world. Image processing plays an important role to many fields especially in multimedia and national security. The field of image processing refers to processing digital image by means of a digital computer (Khare & Nagwanshi, 2012). In simple words, the act of Image processing is to change the nature of a digital image by using a computer. It includes many techniques such as Image Recognition, Image Segmentation, Digital Composition, Image Differencing and Morphing, Image Compression, Image Restoration and etc.

Image Restoration is a field of Image Processing which deals with recovering an original and sharpens image from a degraded image using a mathematical degradation and restoration model (Kaur & Chopra, 2012). In other words, image restoration is the process of taking an original image with known, or estimated degradation, and then restoring it back to its original form. Image restoration is often used in the field of publishing or photography where an image was somehow degraded but needs to be improved before it can be printed (Khalaf & Sagheer). The techniques used for image restoration are depends on the model of degradations used to obtain an approximation of the original scene. There are many factors that could cause degradation of an image and image restoration in one of the key fields in today's Digital Image Processing due to its wide area of application (Khare & Nagwanshi, 2012). Noise, motion and blur are examples of degradation model.

The restoration techniques comprise of a variance of filters used to restore the degraded image back to its original form. The filters are divided into two domains, mainly Spatial Domain and Frequency Domain. Filtering in spatial domain is known as spatial filter. This technique consists of a neighbourhood along a pre-defined operation that performs on the image pixels defining the neighbourhood (Tcheslavski, 2008). Spatial Filtering is a technique that you can use to sharpen, blur, smooth, or search for the edges of an image. It is typically use for the noise removal of digital images and to perform some sort of image enhancement. On the other hand, frequency domain is carried out via the Fourier transform. The main concept behind the Fourier transform is that by using a sum of cosine and sine waves of

different frequencies, it can construct any sort of waveform in that matter. Several examples of spatial filtering are Mean Filter, Median Filter, Average Filter, Rankorder Filter and Adaptive Filter. However in frequency domain, examples of the filters are like Inverse Filter, Weiner Filter and Regularized Filter. Thus in this project, only spatial domain filtering techniques will be focused on.

1.2 Problem Statement

Image restoration plays an important role in today's society. It is no longer a new image processing technology used to filter image nowadays. However, image restoration covers a wide range of filter techniques. It also requires some knowledge on basic image processing terms that are using. To justify and determine a specific technique to be applied on a certain image are not easy. Hence, a few research problems are listed as shown in Table 1.1.

 Table 1.1: Summary of Problem Statement

RP	Research Problems		
RP1	Difficulty to understand the use of each of the proposed techniques.		
RP2	Difficulty to identify which type of noise is suitable to be used by		
	each of the proposed techniques.		
RP3	Difficulty to compare the final output after restoration has been		
	done.		

As we can see from Table 1.1, three research problems were conducted to clarify for the research question. The elaboration for each of the Research Problem (RP) is explained as follow:

RP1: Difficulty to understand the use of each of the proposed techniques.

The ideal and knowledge of the proposed techniques were yet to be discovered. Hence it is difficult to know what were the used for each of the proposed techniques and how does it performs.

RP2: Difficulty to identify which type of noise is suitable to be used by each of the proposed techniques for restoration.

In order to determine how the proposed techniques can be able to restore a degraded image, the type of noise that are suitable to be removed for each techniques were analysed further.

RP3: Difficulty to compare the final output after restoration has been done.

The comparison of the final output could not be done if the both RP1 and RP2 are not solved.

1.3 Research Question

Based on the research problems above in Table 1.1, the research questions were identified as shown in Table 1.2 below.

RP	RQ	Research Questions	
RP1	RQ1	What are the uses of each of the proposed techniques?	
RP2	RQ2	Which type of noise is best removed by each of the proposed	
		techniques?	
RP3	RQ3	How to compare the final output after restoration has been	
		done?	

Table 1.2: Summary of Research Questions

The elaborations for each of the Research Questions (RQ) are discussed as follow:

RQ1: What are the uses of each of the proposed techniques?

This research question is to analyze the use for each of the proposed techniques used in this project.

RQ2: Which type of noise is best removed by each of the proposed techniques?

This research question is to identify the type of noise that is best removed by each of the proposed techniques.

RQ3: How to compare the final output after restoration has been done?

This research question is to compare the final output after restoration has been done.

1.4 Objective

According to the research problems and research questions stated in section 1.2 and 1.3, three objectives are conducted as shown in Table 1.3.

RP	RQ	RO	Research Objectives
RP1	RQ1	RO1	To analyze each of the proposed techniques.
RP2	RQ2	RO2	To identify the type of noise that is best remove by each of the proposed techniques.
RP3	RQ3	RO3	To compare the final output after restoration has been done

Table 1.3: Summary of Research Objectives

Further explanation for each of the Research Objectives (RO) is explained as follow: