REMOTE SENSING TECHNIQUE FOR OIL PALM AGE CLASSIFICATION USING LANDSAT-5 TM SATELLITE

SHAMALA VADIVELU

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: REMOTE SENSING TECHNIQUE FOR OIL PALM AGE CLASSIFICATION USING LANDSAT-5 TM SATELLITE

SESI PENGAJIAN: <u>2013/2014</u>

Saya	SHAMALA VADIVELU
	(HURUF BESAR)

Mengaku membenarkan tesis (PSM/Sarjana/DoktorFalsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis dan projek adalah hak milik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Silatandakan (/)

 SULIT	(Mengandungi	maklumat	yang
	berdarjah keselam	atan atau kepent	tingan
	Malaysia seperti	yang termakt	ub di
	dalam AKTA RA	HSIA RASMI 1	972)
 TERHAD	(Mengandungi r	naklumat TER	RHAD
	yang telah	ditentukan	oleh
	organisasi/badan	di mana penyeli	idikan
	dijalankan)		
 TIDAK TERHAD			

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat	tetap:	Lot	3248,	Batu4	DR.	CHOO YUN HUOY
JalanSek	colah ,	Rantau	Panjang,	42100		NamaPenvelia
<u>Klang.</u>						r tulliur on yonu
Tarikh :					Tarikh :	

CATATAN: *Tesis dimaksudkan sebagai Laporan Projek Sarjana Muda (PSM) **Jika Tesis ini SULIT atau TERHAD, sila Lampirkan surat daripada pihakberkuasa

REMOTE SENSING TECHNIQUE FOR OIL PALM AGE CLASSIFICATION USING LANDSAT-5 TM SATELLITE

SHAMALA VADIVELU

This report is submitted in partial fulfilment of the requirements for the Bachelor of Computer Science (Artificial Intelligence)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2014

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby declare that this project report entitled

REMOTE SENSING TECHNIQUE FOR OIL PALM AGE CLASSIFICATION USING LANDSAT-5 TM SATELLITE

is written by me and is my own effort and that no part has been plagiarized without citations.

STUDENT :

DATE:_____

(SHAMALA VADIVELU)

SUPERVISOR:_____

DATE:_____

(DR CHOO YUN HUOY)

C Universiti Teknikal Malaysia Melaka

DEDICATION

I dedicate my final year project report to my family and friends. To my supervisor, Dr. Choo Yun Huoy and Dr. Asmala Ahmad, for guiding and helping me to finish up this project. I would like to express deep gratitude to my beloved parents for a life-long love and affection. They have been very supportive and encouraging in completion of my thesis and throughout the years of my studies. On top that, I also would like to dedicate this report to my close friends and family who have been very supportive throughout the project development.

ACKNOWLEDGEMET

I would like to greatly thank the contribution of the following individuals in helping me throughout the project. Firstly is my supervisor, Dr. Choo Yun Huoy and evaluator, Dr. Asmala Ahmad who have given me a lot of encouragement, guidance and support from the initial to the final level of my project which successfully developed an understanding of the project in me. Besides that, I also would like to thank my parents for being so supportive throughout the projects and helped me a lot in term of moral support. They were so helpful where my parents accompanied me to the study area. And not forgetting the Eng Soon Plantation coordinator, Mr. Perumal who has helped in providing the information required for this study. Lastly, I would like to thank my class peer for their cooperation and camaraderie and to all those who supported me in any aspect throughout the project.

ABSTRACT

Age of oil palm is an important variable used in carbon and yield forecasting studies. Conventionally, the age classification of oil palm was made manually by mapping the plantation area. This technique is time consuming and difficult to classify a large area of hectare which causes difficulty for organisation like MPOB to analyse on the yield production. With remote sensing, the nature of acquiring the oil palm age through spectral response is more convenient. Limited studies were concerning the performance of current technique in classification of oil palm age. Mostly were using traditional parametric statistical approaches. Moreover, previous studies for vegetation age prediction were carried using different remote sensing approaches consisting of different resolution and measurements of data. This project demonstrates the procedure/algorithm to classify age of oil palm trees using LANDSAT-5 TM remote sensing data. The study were conducted in two phases; where phase I is the land cover classification whereas phase II is the oil palm age classification. Firstly, region of interest (ROI) was identified and drawn in order to supply training and testing pixels for the supervised classification. Maximum likelihood (ML) classifier was used for land cover classification with overall accuracy of 85.69%. Whereas, three classifiers were studied, such as: ML, Neural Network (NN) and Support Vector Machine (SVM) for oil palm age classification. Two sets of training set, smaller training set and larger training set were compared to obtain a good result. The accuracy of the classifications was assessed by using confusion matrix and decision boundary analysis. In conclusion, SVM could be used to classify oil palm age as it performs the best with highest overall accuracy of 91.89%. It is stable of limited amount and quality of training data. Further study can focus on hybrid techniques for age classification with accuracy assessment using ground truth image instead of ROI.

ABSTRAK

Usia kelapa sawit adalah pembolehubah penting yang telah digunakan dalam banyak kajian, seperti dalam kajian karbon dan ramalan hasil. Sebelum ini, pengesanan umur atau pengelasan kelapa sawit telah dibuat secara manual dengan pemetaan kawasan ladang. Teknik ini memakan masa dan sukar untuk organisasi seperti MPOB untuk mengelaskan kebesaran hektar. Dengan ,remote sensing", sifat memperoleh umur kelapa sawit melalui tindak balas spektrum adalah lebih mudah. Kurang kajian mengenai prestasi teknik semasa untuk klasifikasi umur kelapa sawit. Kebanyakannya adalah menggunakan pendekatan tradisional statistik parametrik. Selain itu, kajian sebelum ini untuk ramalan umur tumbuhan telah dijalankan menggunakan pendekatan dengan sensor satelit berlainan yang terdiri daripada resolusi dan pengukuran data yang berbeza. Projek ini menunjukkan prosedur / algoritma untuk mengklasifikasikan umur pokok kelapa sawit menggunakan LANDSAT-5 TM data. LANDSAT-5 TM adalah sensor yang merekodkan dalam 7 band spektrum. Kajian ini telah dijalankan dalam dua fasa; di mana fasa I adalah klasifikasi kawasan manakala fasa II adalah klasifikasi umur kelapa sawit. Pertama, kawasan telah dikenalpasti untuk membekalkan "training" dan "testing" piksel. ML merekod hasil yang cukup baik dengan ketepatan keseluruhan 85.69%. Manakala, tiga kaedah klasifikasi, seperti: ML, NN dan SVM digunakan untuk pengelasan umur kelapa sawit. Dua set set latihan, set latihan yang lebih kecil dan set latihan lebih besar dibandingkan untuk mendapatkan hasil yang baik. Ketepatan pengelasan dinilai dengan menggunakan matriks kekeliruan dan analisis sempadan keputusan. Kesimpulannya, SVM boleh digunakan untuk mengelaskan umur kelapa sawit dimana ketepatannya adalah yang tertinggi iaitu 91.89%. Ia boleh klasifikasi dengan jumlah dan kualiti data latihan yang terhad. Kajian lanjut boleh memberi tumpuan kepada teknik-teknik hibrid untuk pengelasan umur dengan penilaian ketepatan menggunakan imej kebenaran tanah dan bukan ROI.

TABLE OF CONTENTS

CHAPTER SUBJECT

PAGE

4

	DEC	CLARATION	ii
	DEI	DICATION	iii
	ACI	KNOWLEDGEMENTS	iv
	ABS	STRACT	V
	ABS	STRAK	vi
	TAF	BLE OF CONTENTS	vii
	LIS	T OF TABLES	xii
	LIS	T OF FIGURES	XV
	LIS	T OF ABBREVIATIONS	xviii
	LIS	T OF ATTACHMENTS	xix
CHAPTER 1	INT	RODUCTION	
	1.1	Project Background	1
	1.2	Problem Statement	3
	1.3	Objective	4

C Universiti Teknikal Malaysia Melaka

1.4 Scopes

		1.4.1	Software Scope	4		
		1.4.2	Data Scope	4		
		1.4.3	Area of Study Scope	5		
	1.4.4	4 Use	r Scope	7		
	1.5	Proje	ct significance	7		
	1.6	Expec	cted Output	8		
	1.7	Conc	lusion	8		
CHAPTER 2	LITERATURE REVIEW AND ANALYSIS					
	2.1	Introc	luction	9		
	2.2	Life c	of Oil Palm	10		
	2.3	Remo	te Sensing Interest	14		
		2.3.1	Review of remote sensing	14		
		2.3.2	Age Classification and	18		
			Remote Sensing Interest			
	2.4	Super	vised Classification	21		
		2.4.1	Supervised Maximum	22		
			Likelihood			
		2.4.2	Support Vector Machine	23		
		2.4.3	Neural Network	25		
	2.5	Analy	vsis	26		
		2.5.1	Problem analysis	27		
		2.5.2	Data requirement	27		
		2.5.3	Software and Hardware			
			Requirement	28		
		2.5.3	Ancillary Data Requirement	28		
	2.6	Concl	lusion	29		
CHAPTER 3	ME'	ГНОД	OLOGY AND DESIGN			
	3.1	Introc	luction	30		

3.2	Phases	31
J. <u>_</u>	1 mabeb	51

		3.2.1	Phase One- Analysis	32
			Preliminary Study	
		3.2.2	Phase Two – Design	32
		3.2.3	Phase Three - Experimental	32
			and Results	
		3.2.4	Phase Four- Testing/Evaluation	33
		3.2.5	Phase Five- Conclusion	33
	3.3	Project	Schedule and Milestone	34
	3.4	Design	s on Oil Palm Age Classification	35
		3.4.1	Input	37
		3.4.2	Selecting ROI for Land cover	37
		3.4.3	Generate Random Sample for	38
			Land Cover Classification	
		3.4.4	Maximum Likelihood	38
			Classification	
		3.4.5	Non-oil Palm Masking	38
		3.4.6	Subset/Resize	39
		3.4.7	Selecting ROI for Oil Palm Age	39
		3.4.8	Generate Random Sample for	40
			Oil Palm Age Classification	
		3.4.9	Supervised Classification using	40
			ML,SVM and NN	
		3.4.10	Output	41
		3.4.11	Accuracy Assessment/Testing,	41
			Compare and Analysis	
	3.5	Conclu	ision	41
CHAPTER 4	IMP	LEMEN	NTATION AND RESULTS	
	4.1	Introdu	iction	42
	4.2	Data p	re-processing	42
		4.2.1	Input data process	43

4.2.2 Region of Interest (ROI) 45

			4.2.2.1	ROI Selection for	45	
				Land Cover		
			4.2.2.2	ROI Selection for	46	
				Age Class		
		4.2.3	Generat	e Random Sample	47	
			4.2.3.1	Random sample for	47	
				Land Cover		
			4.2.3.2	Random sample for	48	
				Age Class		
		4.2.4	Non-oil	Palm Masking	49	
		4.2.5	Subset/R	lesize	49	
	4.3	Class	ification		50	
		4.3.1	Land C	over Classification	51	
			using N	laximum Likelihood		
		4.3.2	Oil Pal	m Age Classification	52	
			using S	VM,NN and ML		
	4.4	Outpu	Output		54	
	4.5	Accu	Accuracy Assessment/Testing			
	4.6	Conc	lusion		56	
CHAPTER 5	ACCURACY ASSESMENT/TESTING					
	5.1	Introduction			57	
	5.2	Confi	usion Mat	rix Accuracy Analysis	57	
		5.2.1	Compa	rison between ROI and	59	
			ML Cla	assification on Land		
	Cov					
		5.2.2	Compa	rison between ROI and	64	
			SVM C	Classification on Oil Palm		
			Age			
		5.2.3	Compa	rison between ROI and	67	
			NN Cla	ssification on Oil Palm		
			Age			

	5.2.4	Comparison between ROI and	71
		NN Classification on Oil Palm	
		Age	
5.3	Decisi	ion Boundary Analysis	74
5.4	Concl	usion	77

CHAPTER 6 CONCLUSION

6.1	Introduction	78
6.2	Strengths	78
6.3	Weakness	79
6.4	Proposition for Improvement	80
6.5	Conclusion	80

REFERENCES	81
APPENDICES	85

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Varieties of Oil Palm	11
2.2	Description of LANDSAT TM Bands	16
2.3	LANDSAT TM Band Combinations	17
2.4	Software and Hardware requirement	28
3.1	Final Year Project Schedule and Milestone	34
3.2	Selection of ROI for Land Cover	37
3.3	Selection of ROI for Oil Palm Age	39
4.1	Sets of Random Samples	48
4.2	Total Covered Area of Each Class Using SVM	54
	NN and ML Classifier for Set A	
4.3	Total Covered Area of Each Class Using SVM,	55
	NN and ML Classifier for Set B	
4.4	Overall Accuracy of Each Training Set for Age	56
	Classification	
5.1	Confusion Matrix in Pixels for ROI vs. ML	60
5.2	Confusion Matrix in Percentage for ROI vs. ML	61
5.3	Confusion Matrix in Commission and Omission;	62
	ROI vs. ML	
5.4	Confusion Matrix in Producer Accuracy and User	62
	Accuracy for ROI vs. ML	
5.5	Confusion Matrix in Pixels for ROI vs. SVM	65
5.6	Confusion Matrix in Percentage for ROI vs. SVM	65

5.7	Confusion Matrix in Commission and Omission	65
	for ROI vs. SVM	
5.8	Confusion Matrix in Producer Accuracy and User	66
	Accuracy for ROI vs. SVM	
5.9	Confusion Matrix in Pixels for ROI vs. NN	68
5.10	Confusion Matrix in Percentage for ROI vs. NN	68
5.11	Confusion Matrix in Commission and Omission	68
	for ROI vs. NN	
5.12	Confusion Matrix in Producer Accuracy and User	68
	Accuracy for ROI vs. NN	
5.13	Confusion Matrix in Pixels for ROI vs. ML	69
5.14	Confusion Matrix in Percentage for ROI vs. ML	69
5.15	Confusion Matrix in Commission and Omission	70
	for ROI vs. ML	
5.16	Confusion Matrix in Producer Accuracy and User	70
	Accuracy for ROI vs. ML	
5.17	Confusion Matrix on Ground Truth Image (Pixels)	72
	Between SVM vs. NN	
5.18	Confusion Matrix on Ground Truth Image	73
	(Percent) Between SVM vs. NN	
5.19	Confusion Matrix on Ground Truth Image	73
	(Commission and Omission) for SVM vs. NN	
5.20	Confusion Matrix on Ground Truth Image	73
	between SVM vs. NN	
5.21	Overall Comparison of All Matrixes	77
6.1	Results of Classification Commission Error of	79
	SVM, NN and ML	

LIST OF FIGURES

TITLE

FIGURE

PAGE

1.1	Image of Landsat 5	5
1.2	Bukit Kerayong Oil Palm Estate	6
2.1	Statistic on Producer and Exporter of Oil Palm	10
2.2	Average of Productive Oil Crop	11
2.3	Growth of Oil Palm a) Young Seedling	12
	b) Seedlings with Bifid Leaf	
2.4	Nursery at Bukit Kerayong	12
2.5	Design for Mature Oil Palms	13
2.6	Average Yields versus Age of Oil Palm	13
2.7	Electromagnetic Spectrum	14
2.8	Concept of classification of remotely sensed data	22
2.9	Linear support vector machine example	24
2.10	Generic Three-Layer Neural Network Structure	25
2.11	Land Cover Map	28
2.12	Oil Palm Plantation Map	29
3.1	Phases of Experiment	31
3.2	Oil Palm Age Classification Process	36

3.3	Flow of classification	40
4.1	Image in combination of VNIR (Visible near	43
	Infra-Red) (4), red (3), green (2)	
4.2	Basic stats	44
4.3	Min, Mean, Mean and Standard Deviation of	44
	Input Image	
4.4	Histogram of Frequency versus Data Value	45
4.5	10 ROI for Land Cover	46
4.6	Selection of ROI for four classes	46
4.7	Selection of ROI (a) Image with 40% training	47
	pixels, (b) Image with 60 % testing pixel	
4.8	Sample (a) Image with 40% training pixels, (b)	48
	Image with 60 % testing pixel of set D	
4.9	Non-oil palm masking	49
4.10	Subset of Oil Palm Region	50
4.11	Min, Mean, Mean and Standard Deviation	50
	of Input Image	
4.12	Basic stats for Subset Image	50
4.13	ML classification	51
4.14	Basic statistic of ML Classified Image	51
4.15	Histogram of Number of Pixels versus Data Value	52
4.16	Classification of Oil Palm Age Using Set A	52
4.17	Classification of Oil Palm Age Using Set B	53
5.1	Image of (a) 60% ROI and (b) ML classification	59
5.2	Classified Image using (a) SVM, (b) NN and (c)	64
	ML Classifier	
5.3	Comparison of Age Classification Using (a) SVM	71
	and (b) NN	
5.4	Decision Boundary for SVM Classification	75
5.5	Decision Boundary for NN Classification	75
5.6	Decision Boundary for ML Classification	75

LIST OF ABBREVIATIONS

DMC	-Disaster Management Constellation
ENVI	-Environment for Visualizing Images
LAI	-Leaf Area Index
MCI	-Multi-Coefficient Image
ML	-Maximum Likelihood
AVHRR	-Advanced Very High Resolution Radiometer
MODIS	-Moderate-resolution Imaging Spectroradiometer
NN	-Neural Network
OBIA	-Object-Based Image Analysis
SVM	-Support Vector Machine
ТМ	-Thematic Mapper
MPOB	-Malaysian Palm Oil Board

LIST OF ATTACHMENTS

ATTACHMENT	TITLE	PAGE
A.1	Decision Boundary Coding for SVM	86
A.2	Decision Boundary Coding for NN	87
A.3	Decision Boundary Coding for ML	89

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.1 Project Background

Satellite remote sensing data constitute a significant potential source of information on our environment, provided they can be adequately interpreted. Remote sensing is the observations and measurement of objects from a distance where objects or the recorders are not in contact under investigation. Remote sensing is one of the technologies used in image processing. Certain physical properties of objects are determined by remote sensing through the measurement of some kind of energy that is emitted; transmitted, or reflected from an object. Remote sensing has been used in many fields such as vegetation, meteorological analysis, inspection and prevention of geological disaster and military purposes. According to study by Bacour, vegetation has a major influence on the exchange of energy between the atmosphere and the earth's surface as it is fundamental element of earth surface (Bacour et al.2002). Remote sensing has been recognized as a reliable method for prediction of various biophysical and biochemical vegetation variables (Cohen et al. 2003). First report of remote sensing being implemented in agricultural management, although indirectly used, begun with the mapping of soil resources from aerial photography in 1929 by Kellogg. Remote sensing was possible for oil palm plantation with the improving in the quality and availability of remote sensing as oil palm has become the most important commodity crop in Malaysia .Based on an

🔘 Universiti Teknikal Malaysia Melaka

article by UNEP Global Environmental Alert Service (GEAS), in Asian region, Malaysia and Indonesia, records the highest production where 85 per cent of global production of oil palm takes place there. 45% of the world"s oil palm production is by Malaysia and it exports 80% of its total production. Malaysia is being under large scale plantation system operating as a nucleus of many smallholder producers (Butler, et al., 2009). Conventionally, the age detection or classification was made manually by mapping the plantation area. From my ground survey on 28th March, according to the plantation officer, they keep track of the plantation age by mapping up the plantation area manually. He did mentioned that this manually method sometimes cause inaccurate due to carelessness in data interpretation by the workers. This file system wasn"t systematic and may cause loss of the data. Besides that, acquisition of information on a large area of oil palm plantation are also difficult and time consuming if the data are kept manually as the whole area might be owned by various plantation owners. With remote sensing technology, the nature of acquiring the oil palm age through spectral response is more convenient.

The economic vitality of oil palm crop requires accurate and timely of its agronomy for best management strategy. Fruit bunches which are harvested from oil palm trees being used to produce palm oil. One of the important factor of fruit bunches production is the age. Oil palm starts its production at the age of two years old. Its optimum production is at the age of six to ten years after planting. Age of oil palm is an important variable which has been used in many studies, like in carbon study and yield forecasting. In terms of carbon study, age is a variable in algometric equation for estimating oil palm biomass and carbon stocks. Oil palms also produce twice more oil than rape seed and almost four times more than soy beans, groundnut and sunflower per hectare per year (Tan, et al., 2009). Therefore, age prediction using remote sensing is seen to be vital. Usage of remote sensing could actually be useful for some of the parties such as Malaysian Palm Oil Board (MPOB) in term of prediction of annual yield as age of the oil palm highly correlate with the yield production. The data used in this study is satellite data. The satellite data come from several bands (multispectral) of Landsat-5 TM (Thematic Mapper).Images from these high resolution satellites can have 1m or sub meter pixel resolutions.

1.2 Problem Statement

The study of age classification using remote sensing technology offers a new alternative way over the conventional methods practised elsewhere. Vegetation age has commonly used in study of yield production, carbon stocks and monitoring of yields. The mapping and monitoring of vegetation biochemical and biophysical variables is important for spatially distributed modelling of vegetation productivity, evapotranspiration, and surface energy balance. Measurements of this feature of vegetation manually would be labor-intensive and costly, so it is practical on experimental plots using remote sensing. Conventionally, the age classification of oil palm was made manually by mapping the plantation area. This technique is time consuming and difficult to classify a large area of hectare which causes difficulty for organisation like MPOB to analyse on the yield production. Nature of acquiring the oil palm age through spectral response is more convenient. The study on the relationship of spectral measurements from LANDSAT 5 TM data with oil palm age is a little shallow. LANDSAT 5 TM is being used due to its capability of capturing spectral wavelengths sensitive to vegetation such as band 2, band 3 and band 4. Images from this high resolution satellite can have 1m or sub meter pixels resolutions. Limited studies were concerning the performance of current technique in classification of oil palm age. Mostly were using traditional parametric statistical approaches. Furthermore, the existing techniques are also being studied on different satellite sensors consisting of different resolution and measurements of data. Thus, the aim of this study is to compare the relationship of spectral measurements from Landsat-5 TM satellite data with oil palm age and develop procedure for vegetation classification. The study is also to propose a technique for oil palm age classification. This study will be helpful for some of the organizational boards to decide the actions to remedy low yield regions as one could predict the yield that supposed to obtain for a particular age.

In order to achieve aim of the study, the study embarks on the following objectives:

- 1. To compare the spectral measurements from satellite for oil palm age classification.
- 2. To propose a procedure for vegetation extraction and classification.
- To propose a techniques for oil palm age classification using a LANDSAT-5 TM satellite data.
- 4. To verify the results, analyse and make accuracy assessment of the produced result.

1.4 Scopes

The scope of the study is divided into four parts: software scope, data scope, area of study scope and user scope.

1.4.1 Software Scope

Mainly, there are two software tools being used in this study. Firstly is the ENVI 4.5 toolbox which is used to process and analyse the image of LANDSAT-5 TM satellite data while the second would be MATHLAB R2010a for representing and analysing decision boundary.

1.4.2 Data Scope

The data that is used for this study is a Landsat 5 Thematic Mapper (TM) satellite data dated on 22nd August 2005. Landsat 5 TM was a low Earth orbit