PARALLEL PROCESSING IN COMPUTE UNFIED DEVICE ARCHITECTURE (CUDA) FOR ENERGY SAVING GLASS (E-GLASS)

KHOO WEN XIN

UNIVERSITY TEKNIKAL MALAYSIA MELAKA 2014

C Universiti Teknikal Malaysia Melaka

LAMPIRAN B: BORANG PENGESAHAN STATUS TESIS BORANG PENGESAHAN STATUS TESIS*

JUDUL:

SESI PENGAJIAN:_____

Saya KHOO WEN XIN

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. ** Sila tandakan (/)

	SULIT	(Mengandungi maklumat yang berdarjah	
		keselamatan atau kepentingan Malaysia	
		seperti yang termaktub di dalam AKTA RAHSIA	
		RASMI 1972)	
	TERHAD	(Mengandungi maklumat TERHAD yang telah	
		ditentukan oleh organisasi/badan di mana	
		penyelidikan dijalankan)	
	TIDAK TERHAD		
(TANDATAN	IGAN PENULIS)	(TANDATANGAN PENYELIA)	
Alamat tetap:		Dr Abdul Samad Shibghatullah	
		Nama Penyelia	
Tarikh:		Tarikh:	

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

C Universiti Teknikal Malaysia Melaka

PARALLEL PROCESSING IN COMPUTE UNFIED DEVICE ARCHITECTURE (CUDA) FOR ENERGY SAVING GLASS (E-GLASS)

KHOO WEN XIN

This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Computer Networking)

C Universiti Teknikal Malaysia Melaka

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITY TEKNIKAL MALAYSIA MELAKA 2014

DECLARATION

I hereby declare that this project report entitled

PARALLEL PROCESSING IN COMPUTE CUDA FOR ENERGY SAVING GLASS (E-GLASS)

Is written by me and is my own effort and that no part has been plagiarized without citation

STUDENT	:	DATE:

(KHOO WEN XIN)

SUPERVISOR

:_____ DATE:_____

(DR ABDUL SAMAD BIN SHIBGATULLAH)

DEDICATION

To my beloved parents Khoo Yu Boon and Ooi Chye Kee for supporting me in completing my final year project. Encouragement will never be less throughout my study and I will like to dedicate this to them.

ACKNOWLEDGEMENTS

I would like thank my parents and my sister for giving me support and encouragement for completing my final year project. Besides I would like to thank Teoh Khai Chien for his generosity of lending me his own personal laptop in order for me to develop my whole system during the duration of my final year project 1 and 2 development. Besides, I would like to thank Dr Samad bin Shibgatullah my supervisor for helping me and guide me throughout my final year project and the consultation advices that he gave. Additional of it, I would like to thank Farah Ayuni for being my best tutor in my testing phase of designing the coating structure and the simulation software that has been used in the testing phase.

ABSTRACT

Energy saving glass is used to keep the warmth and temperature if the building instead of using thermal radiator or machine to generate the heat all the time during winter. Yet the coating structure of the glass is mostly in regular shape such as tripoles and circular with very small size that limits the useful signal such as wireless signal and radio frequency to pass through. In order to develop a complex coating structure genetic algorithm technique is used. Yet genetic algorithm require a fast processing speed in order to cope with the process of creating new chromosome from the population and undergoes the selection, crossover and mutation operation processes. Hence parallel processing is need to overcome this problem with the use of both CPU and GPU to eliminate the need of purchasing high performance CPU and the needs of adding additional repeaters to increase the wireless signals. The coating structure will be presented in binary bits in a text file that shows best chromosome. The result will then be analyzed in a simulation tool that uses to check for the signal transmission efficiency and rate loss. Besides, speed test will be done to determine whether parallel processing can increase the speed in running the program code.

ABSTRAK

Parallel Processing in CUDA in Energy saving glass merupakan satu system yang menggunakan teknik pemprosesan selari bagi NVIDIA kad graphic platform. Sistem ini akan menhasilkan chromosome yang kemudian akan digunakan untuk simulasi testing. Keputusan simulasi ini akan menetukan sama ada salutan design bagi saving glass ini membolehkan frequency radio untuk masuk ke dalam bangunan.

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
CHAPTER I	INTRODUCTION	
	1.1 Project Background	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	140	

1.4 Scopes	4
1.5 Project Significance	4
1.6 Expected Output	5
1.7 Conclusion	6

CHAPTER II LITERATURE REVIEW AND PROJECT

METHODOLOGY

2.1 Introduction	7
2.2 Facts and Finding	8
2.2.1 Introduction	8
2.2.2 Current Approaches with Energy Saving Glass	9
2.2.3 Genetic Algorithm as Optimization Method	13
2.2.3.1 Overview of the Genetic Algorithm	14
Techniques	
2.2.4 Parallel Genetic Algorithm	18
2.2.5 Graphic Processing Unit as Processing	22
Platform (Parallel Processing)	
2.3 Project Methodology	25
2.4 Project Requirements	27
2.4.1 Software Requirement	27
2.4.2 Hardware Requirement	27
2.5 Project Schedule and Milestone	27
2.5.1 Stages of activities in each process	27
2.5.1.1 Planning stage	28
2.5.1.2 Analyzing stage	28
2.5.1.3 Implementing stage	29
2.5.1.4 Testing stage	29
2.5.1.5 Closing stage	29

	2.6 Conclusion	33
CHAPTER III	ANALYSIS	
	3.1 Introduction	34
	3.2 Problem Analysis	35
	3.2.1 Identified Problem	38
	3.3 Requirement Analysis	39
	3.3.1 Software Requirement	39
	3.3.2 Hardware Requirement	40
	3.4 Conclusion	41
CHAPTER IV	DESIGN	
	4.1 Introduction	42
	4.2 High Level Design	43
	4.2.1 System Architecture	55
	4.2.2 Output Design	56

4.3 Detailed Design	57
4.3.1 Software Specification	58
4.4 Conclusion	62

CHAPTER V IMPLEMENTATION

5.1 Introduction	63

	5.2 Software Configuration Management	63
	5.2.1 Configuration Setup	63
	5.2.2 Version Control Procedure	72
	5.2.2.1 Formal Control	72
	5.2.2.2 Informal Control	73
	5.3 Implementation Status	74
	5.4 Conclusion	77
CHAPTER VI	TESTING	
	6.1 Introduction	78
	6.2 Test Plan	78
	6.2.1 Test Organization	78
	6.2.2 Test Environment	79
	6.2.2.1 Location /Environment	79
	6.2.2.2 Hardware/Software Configuration	79
	6.2.2.2.1 Configuration and Preparation	79
	6.2.2.2.2 Training Prior to Testing	80
	6.2.3 Test Schedule	80
	6.3 Test Strategy	80
	6.3.1 Classes of Tests	80
	6.4 Test Design	81

6.4.1 Test Description	
6.4.2 Test Data	81
6.4.2.1 Speed Test	81
6.4.2.2 White box and Black box Testing	85
6.4.2.2.1 Black box Testing	85
6.4.2.2.2 White box Testing	88
6.4.2.3 CST Testing	89
6.5 Test Results and Analysis	95
6.6 Conclusion	98

CHAPTER VII	PROJECT CONCLUSION	
	7.1 Observation on Weakness and Strength	99
	7.2 Proposition for Improvement	100
	7.3 Contribution	100
	7.4 Conclusion	101
REFERENCES		102
APPENDICES		104

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE	TITLE	PAGE
1	Speed Test	92
2	Black box Testing	93
3	White box Testing	93
4	CST Testing	94

LIST OF FIGURES

DIAGRAM	TITLE	PAGE
1.1	Irregular Shapes Of Existing Coating	9
1.2	The Double Regular Shapes	10
1.3	Double Rectangular Design Shape	10
1.4	A Cross Dipole Shape Dimension	11
1.5	A Lowpass And Highpass Rectangular Coated Design Shape	12
1.6	Pre- Existing FSS Design Generated By Periodic Method	12
	Of Moment	
1.7	The Double Regular Shapes	13
1.8	Various Popular Crossover Diagrams	17
1.9	Mutation Operations after Crossover Operation	18
1.10	A Schematic of A Master-Slave Parallel GA	20
1.11	Coarse-grained Parallel Genetic Algorithms	21
1.12	Architecture of GPU	24
1.13	Architecture of CUDA	25
1.14	Top-Down Approach Process and Activities	30
1.15	Gantt Chart Activities	31
1.16	Milestones base on Gantt Chart Activities	32

2.1	General Process Flow Chart	36
2.2	Main Flow Chart	37
3.1	High Level Design	43
3.2	General Flow Chart	44
3.3	Generate Chromosome Flow Chart	45
3.4	Generate Crossover Flow Chart	46
3.5	Mutation Flow Chart	47
3.6	Data Flow Diagram Level 0	48
3.7	Data Flow Diagram Level 1	49
3.8	Data Flow Diagram Level 2	50
3.9	Data Flow Diagram Level 3	50
3.10	Data Flow Diagram Level 4	51
3.11	Data Flow Diagram Level 5	52
3.12	Data Flow Diagram Level 6	53
3.13	Data Flow Diagram Level 7	54
3.14	System Architecture	55
3.15	Example of Output (Text File)	56
3.16	Detailed Design	57
3.17	Software Specification	58
3.18	Example of Output	59
3.19	Example of Output in 2GA.txt	60

3.20	Example of Output in Best Chromosome.txt	61
4.1	Verify Installation and Version Model	64
4.2	Verify Bandwidth Test	65
4.3	Copy Important Program File	65
4.4	Edit CUDA 5.5.props	66
4.5	Edit CUDA 5.5.tagets	67
4.6	Edit CUDA 5.5.target	67
4.7	Edit CUDA 5.5.target	68
4.8	Edit CUDA 5.5.target	68
4.9	Place the Copy Files in MSBUILD Folder	69
4.10	Add cu Extension	70
4.11	Change Supported Version to 1700	70
4.12	Select Console Application	71
4.13	Select Build Dependencies	71
4.14	Select CUDA 5.5(targets, .props)	72
4.15	Calculate Fitness Function	74
4.16	Crossover Function	75
4.17	Mutation Function	76
4.18	Selection Function	76
5.1	Speed Test with 5000 Population Sizes	82
5.2	Speed test with 5000 Population Sizes Timeline	82

5.3	Speed test with 1000 Population Sizes	83
5.4	Speed test with 100 Population Sizes	83
5.5	Speed test with 20 Population Sizes	84
5.6	Speed test with 20 Population Sizes Timeline	84
5.7	Input or Predefine value for CHRO_LENGTH	85
5.8	Output Value for CHRO_LENGTH with 100 Binary Bits	85
5.9	Predefine Input as Binary Number Using Bool	86
5.10	Output in Binary Bits	86
5.11	Output in Binary Bits	87
5.12	Output of Population Size	87
5.13	Correct Fitness Value	88
5.14	Fitness Value of 46 Instead of 47	89
5.15	Fitness Value of 40 Instead of 42	89
5.16	Fitness Value of 53 Instead of 50	89
5.17	Best Chromosome with Fitness Value 53	89
5.18	Coating Structure of 100Bits with 0.5 mm Of Glass Width	90
5.19	Simulation Result of 100Bits with 0.5 mm Of Glass Width	90
5.20	Coating Structure of 100Bits with 2 mm Of Glass Width	91
5.21	Simulation Result of 100Bits with 2 mm	91

Of Glass Width

5.22	Coating Structure of 400Bits with 0.5 mm	92
	Of Glass Width	
5.23	Simulation Result of 400Bits with 0.5 mm	92
	Of Glass Width	
5.24	Coating Structure of 400Bits with 0.1 mm	93
	Of Glass Width	
5.25	Simulation Result of 400Bits with 0.1 mm	93
	Of Glass Width	
5.26	Coating Structure of 400Bits with 2 mm	94
	Of Glass Width	
5.27	Simulation Result of 400Bits with 2 mm	94
	Of Glass Width	
6.1	Installation of NVIDIA latest driver, Microsoft	104
	Visual Studio Professional 2012 and CUDA Document	
	Toolkit 5.5	
6.2	Create New CUDA Project	105
6.3	Compile Program	106
6.4	Debug Program	107
6.5	Result after Debug	107
6.6	Result in Text File	108
6.7	Result in Text File 111GA.txt	108
6.8	Result in Text File Best Chromosome.txt	109

CHAPTER I

INTRODUCTION

1.1 Project Background

E-saving glass is benefit in keeping the temperature of the room or it keeps the warmth of certain place. It has it special coating structure that can prevent the heat energy from being release out. Besides, it reflects the incoming UV ray from being penetrate into the building or vehicles, which more or less act like a filter but in a form of fabrication instead of plastic.

The problem occur when the coating of the glass actually limits the signals such as infrared, radio wave (WIFI) from getting into the room due to the coating of the glass, as most of the useful signal cannot penetrate into the glass that causes the loss of useful signal in the room which can limits the bandwidth of the signal. Besides, the coating structure on the glass is varies and mostly are in regular shapes.

In order to generate complex and irregular coating structure, it may be a difficulty in implementation as the techniques that have been use require reaching an ideal result. By

using the parallel Genetic algorithm technique, it is able to create new chromosome, and develop new population by using the chromosome that have created.

The purpose of using parallel genetic algorithm as can provide faster speed in generate and execute the coding which, will then using the GPU(Graphic Processer Unit) together with CPU(Center Processing Unit) to execute the processes; as executing genetic algorithm command and codes requires longer time to process due to the creation of the new chromosome and population. Hence, the project will be focus in using CUDA programming language, the language that use in NVDIA graphic card. By executing the process using both GPU and CPU will speed up the processing time more than usual as two processes can be ran at the same time which will decrease the opportunity in having bottle neck and reduce the cost of purchasing high processing speed computer or devices. After the development of coating structure, it will then tested by Computer Simulation Tool (CST) to see the end result of the coating structure and decide which will be an ideal coating structure for the glass.

1.2 Problem Statement

The problem occurs when the coating of the glass actually limits the signals such as infrared, radio wave (WIFI) from getting into the room due to the coating of the glass, as most of the useful signal cannot penetrate into the glass that causes the loss of useful signal in the room which can limits the bandwidth of the signal. Besides, the current coating structure on the glass is varies and mostly are in regular shapes. In order to generate complex and irregular coating structure, it may be a difficulty in implementation as the techniques that have been use require reaching an ideal result.

Hence, parallel genetic algorithm method is chosen, as it can generate complex structure of the glass coating besides it can select the best coating chromosome to develop new population without affecting other population. Here is the problem again when we are using parallel genetic algorithm, as we know that using parallel GA may require fast processing time and speed for the processor in order to execute and run the processes and commands that generate by the creating of new coating chromosomes and population, unless we have more than one processor also know as central processing unit. In order to have more than one processor, we may need a very high-end technology computer to process the processes threads. Hence, we came up with using graphic processing unit (GPU) also known as the graphic card that can run the processes together with the CPU that provide faster speed in processing the processes generate by the parallel GA. Besides, different types of GPU have different types of coding method that can be used.

1.3 Objective

i. To develop new coating structure using parallel genetic algorithm

Parallel genetic algorithm enables to develop new chromosome and population by using selection, mutation or crossover method. All these method enable to develop irregular shape of coating structure. Parallel genetic algorithm enable fast processing and executing of the command as it use both CPU and GPU to process the processes that can save time and provide faster speed.

ii. To decrease the chances of useful signal from being lost

Based on the current coating structure of E-glass, it has filter most of the useful signal from getting into the building by reflecting them. Hence the chances of useful signals that can go into the building have been reflected away or loss that has limits the bandwidth.

iii. Parallel Processing using CPU and GPU

Since the development of the parallel genetic algorithm require the need to generate new chromosome and population in order to create the complex coating structure before it can be tested as an optimal coating structure. Yet, this step requires high speed processor in order to generate the chromosome and the best fitness function. Hence, with the use of GPU together with CPU can generate a very fast processing time in executing the codes base on our GPU capacity which most of the laptop nowadays already equipped with it. That is one of the ways to reduce the cost in purchasing high speed processor.

1.4 Scopes

i. Parallel processing using GPU and CPU.

Parallel genetic algorithm requires faster speed to execute the process; hence the use of GPU together with CPU to process the processes can speed up the processing time. CUDA (only for NVDIA graphic card) programming language uses C++ as the coding technique.

ii. Develop a new coating structure for E-glass saving

To enhance the current coating structure by developing a new coating structure that is complex and irregular in shape by using parallel genetic algorithm that enable to create new coating chromosome and develop new population without affecting the current population.

Using Computer Simulation tool (CST) to determine most suitable coating structure.
The coating structures need to be tested first before it can be determine to be the most ideal coating structure. By using the CST, we can determine the coating structure suitability base on the result that has been generated.

1.5 Project Significance

This project will beneficial the society nowadays as most of the users is demanding on the wireless technology such as WIFI that uses the radio frequency. By allowing more useful signal from getting through the building, the users or employees can increase their work efficiency and will reduce the cost of implementing more base station to have a better signals or bandwidth.

1.6 Expected Output

This project will help to overcome the loss of useful signal inside the building by developing the coating structure of the glass that used to overcome the signal that pass through the building. Besides, with the use parallel processing that used to run the genetic algorithm function create a new platform in reducing the cost of buying a high performance Central Processing Unit (CPU) as both CPU and GPU can run the process parallel in order to execute the process which consider to be a win-win solution.