INTERACTIVE 3D MODEL IN MOBILE APPLICATION FOR SELF-ACUPRESSURE PRACTISE

LU MAY NI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: <u>INTERACTIVE 3D MODEL IN MOBILE APPLICATION FOR SELF-</u> ACUPRESSURE PRACTISE

SESI PENGAJIAN: TAHUN 3, 2013/2014

Saya <u>LU MAY NI</u> (HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjan/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1 Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2 Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3 Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4 ** Sila tandakan (/)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

_____TIDAK TERHAD

(TANDATANGAN PENYELIA)
Penyelia:
Tarikh:

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa

C Universiti Teknikal Malaysia Melaka

INTERACTIVE 3D MODEL IN MOBILE APPLICATION FOR SELF-ACUPRESSURE PRACTISE

LU MAY NI

This report is submitted in partial fulfilment of the requirements for the Bachelor of Computer Science (Interactive Media)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2014

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby declare that this project report entitled

INTERACTIVE 3D MODEL IN MOBILE APPLICATION FOR SELF-ACUPRESSURE PRACTISE

Is written by me with my own effort and no part has been plagiarized

without citations

·

STUDENT	:		Date:
		(LU MAY NI)	
SUPERVISOR	:		Date:
		(MOHD ADILI BIN NORASIKIN)	
		C) Universiti Teknikai Malaysia Melaka	

DEDICATION

I dedicated this thesis to my families who support me. From the bottom of my heart, I would like to thank them for the support. Without their support, I can't come this far. I would like to dedicate this thesis to all the lecturers who have thought me and share knowledge from the beginning until today.

ACKNOWLEDGEMENT

I am very grateful to express my gratitude to my supervisor, En. Mohd Adili Bin Norasikin who is always supporting me and giving me advise during the progress of the project. This project will not be success without his supervision. He always trusts that I can do it.

I would like to thank to my family members who always support me. With their endless love, care and moral support throughout this project, I have more effort to do it. My success is their happiness. And their happiness is my happiness.

Lastly, I heartiest thank to my friends who are always there when I need them. They give me idea and suggestion during the process to complete this project. Thank you for your guidance and support.

iv

ABSTRACT

Interactive 3DModel in Mobile Application for Self-Acupressure Practise is an Android application. This application develops to show acupressure point and its interconnection point. Acupressure is an alternative way to relieve pain. This method is applied by using thumb. Besides that, relieve pain by taking painkillers will cause many side effects to our body. The objectives of this project are to develop an application to show acupressure points and its interconnection point, to develop an interactive 3D visual model for self-acupressure points in mobile application, to recommend a set of self-acupressure and to evaluate user acceptance for application. This project use Agile methodology for the development process. This method divided into iterations. Each iteration includes the task to release increment of new functionality. The iteration includes planning, requirement analysis, design, implementation, testing and evaluation. There are 2 types of testing activity carried out, and each type involve different group of test users. The testing activities for this project include alpha testing and beta testing. Alpha testing involved a group of multimedia developer to test the functionality of the application. While the beta testing involved 30 public users to test the user acceptance test. As the results of the testing, test user understand the application. Besides that, they agree that this application can help them to learn how to apply acupressure. The goal of this project is recommend an alternative way to relieve pain. Hopefully, this application will help user to learn and apply self-acupressure treatment.

ABSTRAK

Interaktif 3D Model in Aplikasi untuk Amalan Titik Self-Acupressure adalah sabuah aplikasi Android. Pembangunan aplikasi untuk menunjukkan titik selfacupressure dan titik sambungannya. Self-acupressure merupakan cara alternatif untuk melegakan kesakitan. Kaedah ini menggunakan ibu jari untuk menekan. Di samping itu, ubat penahan sakit yang sering digunakan akan menyebabkan kesan sampingan pada badan kita. Objektif projek ini adalah untuk membangunkan aplikasi untuk menunjukkan titik acupressure dan titik sambungannya, untuk membangunkan model 3D yang interaktif untuk titik acupressure dalam aplikasi mudah alih, untuk mencadangkan satu set titik acupressure dan untuk menilai penerimaan pengguna aplikasi. Projek ini menggunakan kaedah Agile dalam proses pembangunan. Kaedah ini dibahagikan kepada beberapa lelaran. Setiap lelaran akan menambahkan fungsi baru. Lelaran dalam kaedah in termasuk perancangan, analisis keperluan, reka bentuk, pelaksanaan, pengujian dan penilaian. Terdapat 2 jenis activiti ujian akan dijalankan, dan setiap activity melibatkan pengguna ujian yang berbeza. Aktiviti ujian untuk projek ini termasuk ujian Alpha dan ujian Beta. Ujian Alpha melibatkan sekumpulan pembangun multimedia untuk menguji fungsi permohonan. Ujian Beta pula melibatkan 30 pengguna awam untuk menguji ujian penerimaan pengguna. Daripada keputusan ujian menunjukkan pengguna memahami aplikasi ini. Selain itum mereka setuju bahawa pembangunan aplikasi ini boleh membantu mereka untuk belajar bagaimana menjalankan acupressure. Matlamat projek ini adalah untuk mencadangkan cara alternatif untuk melegakan kesakitan. Oleh demikian, pembanguanan ini dapat membantu pengguna untuk belajar and menjalankan acupressure.

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xi
CHAPTER I	INTRODUCTION	
	1.1Project Background	1
	1.2 Problem Statements	2
	1.3 Objective	3
	1.4 Scope	3
	1.5 Project Framework	4
	1.6 Project Significance	5
	1.7 Expected Output	5
	1.8 Conclusion	5
CHAPTER II	LITERATURE REVIEW AND PROJECT	
	METHODOLOGY	

2.1 Introduction

6

	2.2 Facts and Findings	6
	2.2.1 Domain	7
	2.2.1.1 Acupressure	7
	2.2.1.2 3D Model in Android	8
	Application	
	2.2.1.3 Interactive 3D Model of	8
	Acupressure in Smartphone	
	2.2.2 Existing System	8
	2.2.2.1 Massage Map 3D Free	9
	2.2.2.2 AcuApp® Free	10
	2.2.2.3 3D Face Acupressure	11
	2.2.3 Comparison of Existing System	12
	2.3 Project Methodology	12
	2.4 Project Requirement	13
	2.4.1 Software Requirement	14
	2.4.2 Hardware Requirement	15
	2.4.3 Other Requirement	16
	2.5 Project Schedule and Milestones	16
	2.6 Conclusion	17
CHAPTER III	ANALYSIS	
	3.1 Introduction	18
	3.2 Current Scenario Analysis	18
	3.2.1 Massage Map 3D Free	19
	3.2.2 AcuApp®Free	20
	3.2.3 3D Face Acupressure	22

3.3 Requirement Analysis23

3.3.1 Project Analysis	23
3.3.1.1 Need Analysis	24
3.3.1.2 User Analysis	24
3.3.1.3 Requirement Gathering	24
3.4 Conclusion	29

CHAPTER IV DESIGN

4.1 Introduction	30
4.2 System Architecture	30
4.3 Preliminary Design	31
4.4 User Interface	33
4.4.1 Navigation Design	33
4.5 Conclusion	39

CHAPTER V IMPLEMENTAION

5.1 miloduction	
5.2 Media Creation	40
5.2.1 Production of Graphic	41
5.2.2 Production of 3D Model	41
5.3 Media Integration	42
5.4 Product Configuration Management	44
5.4.1 Configuration Environment Setup	44
5.4.1.1 Installation of Eclipse ADT with	44
the Android SDK	
5.4.1.2 Create New Project	47
5.4.1.3 Run Application on Smartphone	51
5.4.1.4 Build Application	55

	5.4.2 Version Control Procedure	57
	5.4.2.1 Alpha Version	57
	5.4.2.2 Beta Version	58
	5.5 Summary	58
CHAPTER VI	TESTING	
	6.1 Introduction	59
	6.2 Test Plan	59
	6.2.1 Test Organization	60
	6.2.2 Test Environment	60
	6.2.3 Test Schedule	61
	6.3 Test Strategy	62
	6.4 Test Design	63
	6.4.1 Test Description	63
	6.4.2 Test Data	66
	6.5 Test Results and Analysis	72
	6.5.1 Test Results	73
	6.5.2 Analysis Results	76
	6.6 Conclusion	86
CHAPTER VII	PROJECT CONCLUSION	
	7.1 Observation on Weakness and Strengths	87
	7.7.1 Weakness	87
	7.7.2 Strengths	88
	7.2 Propositions for Improvement	89
	7.2.1 Apply Texture on 3D Model	89
	7.2.2 Highlight for Selected Point	89

7.2.3 Support for More Gadgets	89
7.3 Contribution	90
7.4 Conclusion	91
REFERENCES	91
APPENDIX A	94
APPENDIX B	96
APPENDIX C	98

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of Existing System	12
2.2	Software Requirement	14
2.3	Hardware Requirement	15
2.4	Others Requirement	16
5.1	Version control procedure and description	58
6.1	The details of the test organization	60
6.2	List of test environment	61
6.3	Test Schedule	61
6.4	Rating indicate and description	62
6.5	List of question for functionality testing	64
6.6	List of question for user acceptance test	65
6.7	Test data of functionality testing	67
6.8	Test data of user acceptance testing	68
6.9	Result of Functionality Testing	73
6.10	Results of user acceptance test	74

LIST OF FIGURES

DIAGRAM

TITLE

PAGE

1.1	Project Frameworks	4
2.1	Interface Massage Map 3D Free	9
2.2	Interface AcuApp Free	10
2.3	Interface 3D Face Acupressure	11
2.4	Agile Methodology	13
2.5	Gantt Chart	17
3.1	Flow chart of application Message Map 3D Free	19
3.2	User Interface of Massage Map 3D Free	20
3.3	Flow chart of application AcuApp Free	21
3.4	User Interface of AcuApp Free	21
3.5	Flow chart of application 3D Face Acupressure	22
3.6	User Interface of 3D Face Acupressure	23
3.7	Distribution Respondent by Gender	25
3.8	Distribution Respondent by Age Group	25
3.9	Distribution Respondent by Face Pain in Their	26
	Body	
3.10	Distribution of Respondent by Treatment for	26
	Relieve Pain	
3.11	Distribution of Respondent by Understand Side	27
	Effects of Painkillers	
3.12	Distribution of Respondent by Know of	27
	Acupressure Can Relieve Pain	

3.13	Distribution of Respondent by Own Smartphone	28
3.14	Distribution of Respondent by Try Application	28
	about Acupressure for Relieve Pain Before	
3.15	Distribution of Respondent by Content Prefer in	29
	Application	
4.1	System Architecture	31
4.2	Main screen	31
4.3	Main Menu screen	32
4.4	Model with Points screen	32
4.5	Interconnection point of acupressure screen	33
4.6	Navigation Design	34
4.7	Screenshot of main screen	35
4.8	Screenshot of Main Menu	36
4.9	Screenshot of Show 3D Model	37
4.10	Screenshot of when acupressure point selected	38
4.11	Screenshot of Show Interconnection Point	39
5.1	Adobe Photoshop CS4	41
5.2	Adobe Illustrator CS4	41
5.3	Icon Autodesk Maya 2012	41
5.4	Exporting Model to .obj File	43
5.5	Insert the exported .obj file into assets folder	44
5.6	Install ADT plugin for Eclipse	45
5.7	Add repository	46
5.8	Add available software	47
5.9	Create new project	48
5.10	Fill in application details	48
5.11	Configure launcher icon	49

5.12	Create activity	50
5.13	Form of blank activity	51
5.14	Developer option in setting	52
5.15	Turn on USB debugging	53
5.16	Run application	54
5.17	Select device	54
5.18	Export signed application package	55
5.19	Create new keystone	56
5.20	Choose destination of .apk file	57
6.1	Statistic of visual clarity of functionality testing	77
6.2	Statistic of navigation and interactivity of	79
	functionality testing	
6.3	Statistic of content of functionality testing	80
6.4	Statistic of visual clarity for user acceptance	82
	testing	
6.5	Statistic of navigation and interactivity of user	83
	acceptance testing	
6.6	Statistic of functionality and interactivity of user	84
	acceptance testing	
6.7	Statistic of effectiveness for user acceptance	85
	testing	

LIST OF ABBREVIATION

3D - three-dimensional

CHAPTER I

INTRODUCTION

This chapter introduces the Interactive 3d Visual Model in Mobile Application for Self-Acupressure Points. It is developed for the purpose of encouraging people selftreatment using acupressure to relieve pain. Self-treatment acupressure is an alternative way to relieve pain instead of taking drugs like painkillers.

1.1 Project Background

Nowadays, many people face pain on their body parts and most of them choose to take painkillers to relieve the pain. Painkillers can relieve pain effectively. However, it only relieves the pain temporarily and it will cause side effects to our body.

Acupressure is also an effective alternative way to relieve pain in a variety of conditions. Acupressure is easy to learn and can be self-practise. There are many mobile applications about acupressure points. However, most of the mobile applications do not support interactive 3D visual model and less focus on the interconnect pressure point of

acupressure to relieve pain. In addition, most of the people do not know about the self-treatment using acupressure point.

For this project, an interactive 3D visual model mobile application for selftreatment using acupressure is developed. These applications include an interactive 3D visual model, which contain all the acupressure points and its interconnection points to relieve pain. Thus, users can check the acupressure points for each part of the body and its interconnection points using this application. Therefore, it is more convenient for the users to learn about the self-treatment using acupressure. This application can be installed on the Smartphone and can use anytime and anywhere.

1.2 Problem Statements

Currently, many of the people rely on painkillers to relieve pain. Most of them do not know the painkillers will cause side effect to our body. Acupressure is also an effective alternative way to relieve pain. It can relieve pain by applying pressure to interconnect pressure point of acupressure point. In addition, many people do not know about the self-treatment using acupressure.

There are many mobile applications about acupressure, but most of them using 2D image for acupressure points representation where the interactive between users and the model. Moreover, user hard to identify the actual part of the acupressure points on their body.

Besides that, many applications less focus on the interconnect pressure points to relieve pain. Interconnect pressure points are the points to apply pressure to relieve the pain. The current application does not show the interconnect pressure points of acupressure points, users need to find out the point by searching it.

1.3 Objective

This project embarks on the following objectives:

- a. To develop an application to show acupressure points and its interconnection point.
- b. To develop an interactive 3D visual model for self-acupressure points in mobile application.
- c. To recommend a set of self-acupressure points for relieving pain.
- d. To evaluate user acceptance for the application.

1.4 Scope

This project is developed for encouraging people about self-treatment using acupressure. The target users of this application are those who face pain in their body. This application is a mobile application to install on Android Smartphone.

This application is mainly focused on self-treatment acupressure points and its interconnect pressure point to relieve pain. This application provides an interactive 3D model to view acupressure points and the interconnect pressure point to relieve pain. Each acupressure points are labeled to prevent confusion.

Figure 1.1: Project Framework

C Universiti Teknikal Malaysia Melaka

1.6 Project Significance

This project is developed to encourage people to relieve pain without using painkillers. The alternative way to relieve pain by using acupressure is effective. Furthermore, the acupressure can be self-treatment and easy to learn. The self-treatment acupressure is applied using the finger to apply pressure to acupressure interconnect pressure points. In addition, relieve pain by acupressure will not cause any side effect to our body system.

1.7 Expected Output

This project will develop an android application of interactive 3D visual model on self-acupressure points. This application is to recommend a set of self-acupressure points and its interconnecting pressure points for relieving pain.

1.8 Conclusion

As a conclusion, this project is focused on interactive 3D visual model mobile application on acupressure points and its interconnect pressure point. The application is only for Android gadgets.

5

CHAPTER II

LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

This chapter discuss about the area of study related to this project. The domain of this project is defined and reviewed. The existing applications related to acupressure are compared and review. The methodology used in this project development is determined. The software and hardware requirement to develop this project is also determined.

2.2 Facts and Findings

In this section, the domain focused in this project is determined and reviewed. The pros and cons of the existing system are discussed to improve the functionality of the application that developed in this project.