

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND PROTOTYPING OF HUMAN FOLLOWING MOBILE ROBOT

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours.

By

MUHAMMAD NORPAZMIL BIN CHE PA

FACULTY OF MANUFACTURING ENGINEERING 2010

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: DESIGN AND PROTOTYPING OF HUMAN FOLLOWING MOBILE ROBOT

SESI PENGAJIAN: 2009/2010

Saya <u>MUHAMMAD NORPAZMIL BIN CHE PA</u> mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka .
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(MUHAMMAD NORPAZMIL BIN CHE PA)

Alamat Tetap: No.3, Kampung Baru Sungai Karangan, 09410 Padang Serai, Kedah Disahkan oleh:

(MOHD HISHAM BIN NORDIN)

Cop Rasmi:

MOHD HISHAM BIN NORDIN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Tarikh: 17 MAY 2010

Tarikh: 17 MAY 2010

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM). ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "DESIGN AND PROTOTYPING OF HUMAN FOLLOWING MOBILE ROBOT" is the results of my own research except as cited in references.

 Signature
 :

 Author"s Name
 :

 Date
 :

 20 OCTOBER 2009

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of the supervisory committee is as follow:

(EN. MOHD HISHAM BIN NORDIN)

ABSTRACT

The purpose for this project was to build a mobile robot prototype that can follow people in linear motion during walking. It will produce an intelligent robot, in which we called it as Human Following Mobile Robot. The robot is not controlled by controller; however it uses microcontroller (PIC) as a controller where the Infrared Sensor and Ultrasonic Sensor act as a detector for human movement. The infrared sensor consists of transmitter and receiver. For ultrasonic sensor are consists of two receivers and two transmitter which being applied to the robot. The object and human position will be defined by the reflection of the signals send by transmitter to receivers. Each signals received by the receivers is processed by the microcontroller in digital form. Then, it will send the order to the mechanical system to produced movement to the robot. The receiver is located at the front of the robot where human will holding the transmitter. The direction for the robot will follow the signal from transmitter signal to the receiver. In a nut shell robot will follow the signal from transmitter and avoid the obstacles by using ultrasonic sensor. Further research will be done to ensure the project will achieve the goal.

ABSTRAK

Tujuan penulisan kertas kerja ini dijalankan adalah untuk membina sebuah prototaip robot mobil yang berkemampuan mengikut manusia berjalan dalam keadaan garis lurus. Projek ini akan menghasilkan sebuah robot pintar dengan tajuk yang diberikan sebagai Robot Mobil Mengikut Manusia Berjalan (Human Following Mobile Robot). Robot ini akan beroperasi dengan menggunakan alat kawalan arah pergerakkan seperti pengesan Infra-merah(Infrared Sensor).Pengesan Infra-merah akan digabungkan dengan Pengesan Ultrasonik (Ultrasonic Sensor)dimana akan digunakan sebagai deria kepada robot yang akan mengesan pergerakkan dan dikawal dengan menggunakan pengawal mikro (PIC). Pengesan ultrasonic tersebut terdiri daripada dua buah penerima dan dua penghantar gelombang ultrasonic manakala untuk pengesan infra-merah terdiri daripada satu penghantar dan satu penerima yang akan dipasang pada robot mobil. Tindak balas yang diberikan oleh pengesan inframerah pengesan ultrasonik terhadap penerima dan penghantar gelombang akan menentukan kedudukan objek dan manusia. Setiap gelombang yang diterima oleh penerima akan diproses oleh pengawal mikro sebagai suattu nilai digital lalu menghantar arahan ke bahagian litar keluaran yang terdiri daripada sistem mekanikal, seterusnya akan menghasilkan pergerakan pada robot mobile tersebut. Kombinasi penerima dan penghantar di letakan di bahagian hadapan robot mobil membantu menguatkan isyarat. Perbezaan antara isyarat yang dihantar dan diterima akan menentukan arah pergerakan robot mobil. Kajian-kajian akan dilakukan bagi memastikan projek ini dapat dihasilkan dengan jayanya.

DEDICATION

Dedicated to my father, Che Pa Bin Wahab and my mother, Che Normah Binti Ishak. To my supervisor, En. Mohd. Hisham Bin Nordin, lecturers and friends for all of their help and friendship.

ACKNOWLEDGEMENT

I would like to convey my appreciation and indebtedness to those who has been great surprised and helpful for the completion at the project to bring it to success in respect with favorable advice and feasible solution. Thus, I feed comfortably to take this golden opportunity to express my millions of gratitude to my supervisor, En. Mohd. Hisham Bin Nordin for her kindly advice and guidance during the project providing tremendous considerately and useful comment and materials to overcome each obstacle I had faced. Also special thanks to my friends that give me some help during doing this project. Thanks extended to FKP lecturer who had provided technical help and assistance throughout the project. Lastly I would like to thank my family, who has been the loveliest advisor to give continually support and inspiration throughout my campus life.

TABLE OF CONTENT

Abstra	ct	i
Abstrak		
Dedica	Dedication	
Ackno	wledgement	iv
Table of	of Content	v
List of	Table	
	viii	
List of	Figure	ix
List of	Abbreviations, Symbols, Specialized Nomenclature	xii
1. INT	RODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	4
1.3	Objective of Project	5
1.4	Scopes of project	5
2. LIT	ERATURE REVIEW	6
2.1	Introduction	6
2.2	Introduction of Robotic	7
2.2.1	Human Following Mobile Robot	8
2.2.2	Human Following Mobile Robot Related Projects	9
2.2.2.1	An Implementation of a Color Following System using the CMUcam3	9
2.2.2.2	Obstacles Avoidance Method for an Autonomous Mobile Using Two	10
	IR Sensor	
2.2.2.3	Detecting and Following Humans with a Mobile Robot	14
2.2.2.4	Object Capture with a Camera-Mobile Robot System	16
2.2.2.5	Toward Real-time Human Detection and Tracking in Diverse	18
	Environment	
2.2.2.6	Intelligent Escort Robot Moving Together With Human	21
2.2.2.6	(a) Human Detecting Using Light Emitting Device (LED)	21

2.2.2.	6(b) Human Detecting Using Ultrasonic Transponder	24
2.2.2.2	7 Obstacles Avoidance for Mobile Robot ExplorationRobot	27
	with Onboard Embedded Ultrasonic Range Sensor	
2.3	Mechanical Structure	31
2.3.1	Stainless Steel	31
2.3.2	Acrylic	32
2.3.3	Aliminium	33
2.3.4	Carbon Fiber	33
2.3.5	Teflon	34
2.4	Actuator	35
2.4.1	Electrical Motor	35
2.4.1.	1 Stepper Motor	36
2.4.1.	2 Servo Motor	37
2.4.1.	3 Brush Motor (BDC)	37
2.5	Sensor	39
2.5.1	Infrared Sensor (IR Sensor)	39
2.5.2	Ultrasonic Sensor	40
2.6	Mechanical Software	40
2.6.1	Solid Work	41
2.6.2	AutoCad	42
2.7	Programming Software	43
2.7.1	MPLab Software	43
2.7.2	Micro C Compiler software	44
2.8	Electrical Software	45
2.8.1	Proteus PCB Express	46
2.9	Power Source	47
2.8.1	Rechargeable Batteries	47
3. MF	THODOLOGY	48
3.1	Introduction	48
3.2	Project Planning	48
3.2.1	Title Selection	52
3.2.2	Preliminary Research Work	52
3.2.3	Problem Review	52

3.2.4	Problem Analysis			
3.2.5	Data Collection			
3.2.6	Literature Review	53		
3.2.7	Analysis and Components Consideration	54		
3.2.8	Methodology	55		
3.2.9	Design and Prototyping Consideration	55		
3.2.10	Project Design and Prototyping	55		
3.2.11	Testing and Analyzing	55		
3.3	Software Development	56		
3.3.1	Mechanical Software	56		
3.3.2	Electrical Software	56		
3.3.3	Programming Software	57		
3.4	Project Tools	58		
3.4.1	Bending Machine	58		
3.4.2	Laser Cutting Machine	59		
3.4.3	Cutting Machine	60		
3.4.4	Cordless Drills Machine	61		
3.4.5	Solder Iron	61		
3.5	Components Selection	62		
3.5.1	Pugh Chart Method	63		
3.6	Preliminary Design	64		
3.6.1	Design of Mobile Robot			
4. DES	SIGN AND PROTOTYPING	67		
4.1	Introduction	67		
4.2	Bill of Materials	67		
4.3	Mechanical Design and Develop	69		
4.4	Electrical Part	72		
4.4.1	Controller Board	73		
4.4.2	PIC16F877A Microcontroller	76		
4.4.3	DC Motor Driver	79		
4.4.4	Ultrasonic Board Sensor	83		
4.4.5	Infrared Board Sensor (Receiver/Transmitter)	85		
4.5	Human Following Mobile Robot System Operation	87		

5. TESTING, RESULT AND DISCUSSION		89
5.1	Introduction	89
5.2	Test 1: Obstacles Sensing and Collision Avoidance	89
5.3	Test 2: Human Following in Linear Motion	93
5.4	Discussion	96

6. CONCLUSION AND RECOMMENDATION

101

6.1 Conclusion

101

- 6.2 Recommendation 102
- 6.2.1 Electrical Components 102
- 6.2.2 Programming

103

REFERENCES

104

APPENDICES

107

LIST OF TABLES

2.1	Advantages and disadvantages DC motor	
3.1	Components selection for sensors	
3.2	Components selection for actuators	
3.3	Components selection for mechanical structure	
3.4	Description of robot parts	
4.1	Human Following Mobile Robot design and prototyping materials and components	
4.2	Process to developing the Mechanical Structure	69
4.3	Pins tasks for each function	
4.4	Pin Function Description	80
4.5	Description of MD30B board	81
4.6	Connection between ultrasonic sensor and AR40B controller	84
5.1	The result of distance versus voltage	92
5.2	The results of voltage efficiency versus distance	95
5.3	Comparison between literature review project and human following	96
	mobile robot	

LIST OF FIGURES

1.1	Idea of the project		2
2.1	CMUcam3 Hardware		9
2.2	Vehicle platform with CMUcam3 without screen	10	
2.3	The position of IR sensors		11
2.4	The actions of the mobile robot	12	
2.5	Examples of possible situation	12	
2.6	The command system		13
2.7	A human detection and tracking scenario		15
2.8	The complete mobile robot/camera system consists of an overhead.		17
	Webcam, a computer, and a mobile robot vehicle equipped with		
	a device to capture tennis balls. The overhead camera simplifies		
	the system; pixels approximately correspond to physical coordinates		
2.9	The description of the figure shown below		17
2.10	Swiss Range SR-3000 3D time of flight camera	18	
2.11	iRobot PackBot EOD mobile robot		19
2.12	iRobot Create mobile robot, with Swiss Ranger camera	20	
2.13	Sample data returned from Swiss Ranger camera		21
2.14	The robot follows human using camera	22	
2.15	The schema of the image of LED obtained from camera mounted on	22	
	the robot		
2.16	Determination of the path for human following. The position	23	
	of the human is recorded at a moderate interval		
2.17	Light-emitting device used in the project		24
2.18	Principles of angle measurement using two ultrasonic receivers	24	
	Light-emitting device used in the project		
2.19	Position detection of a specific object using the ultrasonic transponder	25	
2.20	Ultrasonic sensor on the robot	25	
2.21	The timing of transmission and reception of the pulses in the double	26	
	pulse coding		
2.22	Experimental setup for the target position tracking using		26
	the ultrasonic transponder		

2.23	A single reading from the ultrasonic range finder		
2.24	The second reading from the ultrasonic range finder overlapping	29	
	the first		
2.25	Test setup for ROAMER	30	
2.26	Path of ROAMER in the test runs	30	
2.27	Stainless Steel Products	32	
2.28	Acrylic Product	32	
2.29	Aluminium structure of Robot	33	
2.30	Carbon Fiber Plate	34	
2.31	Teflon products	35	
2.32	Stepper motor	36	
2.33	Servo motor	37	
2.34	Brushless motor	38	
2.35	Infrared sensor	39	
2.36	Ultrasonic Sensor	40	
2.37	Solid Work design	42	
2.38	Catia DS V5 Software	43	
2.39	MPLab Programming Software	44	
2.40	Micro Compiler Software	45	
2.41	Proteus PCB Express Software	46	
2.42	Rechargeable batteries	47	
3.1	Project Schedule; Gantt chart for PSM I	49	
3.2	Project Schedule; Gantt chart for PSM II	50	
3.3	Project flow chart	51	
3.4	Catia DS V5 logo; Mechanical design	56	
3.5	PCB Express software; Electrical design	57	
3.6	Micro Compiler Software; Programming	57	
3.7	PICkit 2; programmer ICSP interface	58	
3.8	Bending machine	59	
3.9	Laser cutting machine	60	
3.10	Cutting machine	60	
3.11	Drill machine	61	
3.12	Solder iron	62	

3.13	Human Following Mobile Robot design	65
4.1	Structure of Human Following Mobile Robot	72
4.2	Control Board (AR40B)	73
4.3	Connection from power source port to 12V battery	74
4.4	AR40B Schematic Diagram	75
4.5	PIC16F877A at AR40B controller	76
4.6	PIC16877A 40-Pin PDIP	77
4.7	Basic command by using Micro C Compiler	78
4.8	MD30B board system	80
4.9	MD30B board layout	81
4.10	MD30B board in robot prototype	82
4.11	Connection of brush port to motor driver	82
4.12	ES-15 (V2) Ultrasonic Sensor	83
4.13	The connection of ES-15 (V2) Ultrasonic Sensor	84
4.14	Infrared Sensor (Receiver)	85
4.15	The connection between receiver and AR40B controller	85
4.16	The connection between receiver and AR40B controller	86
4.17	Infrared sensor (Transmitter)	87
4.18	Prototype operation flow chart	88
5.1	Robot move in linear motion	90
5.2	Robot detect the obstacle	90
5.3	Robot avoid the obstacles	91
5.4	Robot detection area	91
5.5	Commands signals graph (distance versus voltage)	92
5.6	Receiver detect the signal from transmitter	93
5.7	Robot follows the human	94
5.8	Distance of IR sensor	94
5.9	IR sensor graph; voltage efficiency versus distance	95
6.1	Ultrasonic range finder	
	103	

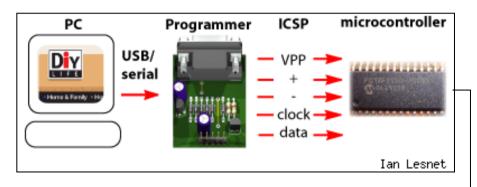
LIST OF ABBREVIATIONS

PIC	-	Microcontroller
AVGs	-	Automated Guided Vehicles
PWM	-	Pulse-Width Modulated
IR Sensor	-	Infrared sensor
SVM	-	Support Vector Machine
RvCAD	-	Robot Vision CAD
HRI	-	Human Robot Interaction
LED	-	Light Emitting Device
ROAMER	-	Obstacle Avoiding Mobile Exploration Robot
PTFE	-	Polytetrafluoroethylene
IDE	-	Integrated Development Environment
DDS	-	Dunfield Development Systems

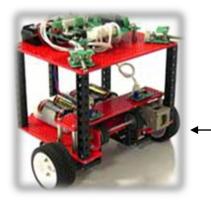
CHAPTER 1 INTRODUCTION

1.1 Background

Nowadays in manufacturing field, robot development has focused on robotic engineering. Robots gradually made their way into factories for dangerous repetitive accurate tasks (automobile assembly), handling hazardous wastes in the nuclear industries, great dexterity and precision (computer chip assembly) and delivery robots. The robots were designed to provide functionality or very useful.


Robot is a computer-controlled machine that is programmed to move, manipulate objects, and accomplish work while interacting with its environment. Robots are able to perform repetitive tasks more quickly, cheaply, and accurately than humans. The word robot has been used since to refer to a machine that performs work to assist people or work that humans find difficult or undesirable. (Capek, 1921)

Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots have some degree of autonomy. Different robots can be autonomous in different ways. A high degree of autonomy is particularly desirable in fields such as space exploration, cleaning floors, mowing lawns, and waste water treatment. (Capek, 1921)


Some modern factory robots are "autonomous" within the strict confines of their direct environment. It may not be that every degree of freedom exists in their surrounding environment but the factory robot's workplace is challenging and can often contain chaotic, unpredicted variables. The exact orientation and position of the

next object of work and (in the more advanced factories) even the type of object and the required task must be determined. This can vary unpredictably (at least from the robot's point of view). One important area of robotics research is to enable the robot to cope with its environment whether this is on land, underwater, in the air, underground, or in space.

In a development of robot, it is have a wide variety of measuring devices to collecting data from manufacturing process for used in feedback control. Basically, there are the main devices to measuring the robot activities like sensor and transducer. The figures below show the steps to develop a robot. It is start from develop the structure and electrical part. Then, for the programming part, computer is used with the interface to program the microcontroller by follow the tasks of the robot.

a) Computer for microcontroller programming

b) Mobile Robot

Figure 1.1 Idea of the project

1.2 Robot Technology

Robot is a virtual or mechanical artificial agent. In practice, it is usually an electromechanical machine which is guided by computer or electronic programming, and is thus able to do tasks on its own. Another common characteristic is that by its appearance or movements, a robot often conveys a sense that it has intent or agency of its own.

A robot can be controlled by a human operator, sometimes from a great distance. But most robots are controlled by computer, and fall into either of two categories: -

- a) An autonomous robot acts as a stand-alone system, complete with its own computer (called the controller).
- b) Insect robots work in fleets ranging in number from a few to thousands, with all fleet members under the supervision of a single controller. The term insect arises from the similarity of the system to a colony of insects, where the individuals are simple but the fleet as a whole can be sophisticated.

1.2.1 History of Robot

The word 'robotics' comes from "Runaround", a short story published in 1942 by Isaac Asimov. One of the first robots Asimov wrote about was a robo-therapist. A Massachusetts Institute of Technology Professor, Joseph Weizenbaum, wrote the Eliza program in 1966, a modern counterpart to Asimov's fictional character. Weizenbaum initially programmed Eliza with 240 lines of code to simulate a psychotherapist. The program answered questions with questions.

Asimov created the four laws of robot behavior, cyber laws all robots had to obey and a fundamental part of positronic robotic engineering. The Isaac Asimov FAQ states, "Asimov claimed that the laws were originated by John W. Campbell in a conversation they had on December 23, 1940. Campbell in turn maintained that he picked them out of Asimov's stories and discussions, and that his role was merely to

state them explicitly. The first story to explicitly state the three laws was "Runaround", which appeared in the March 1942 issue of "Astounding Science Fiction". Unlike the Three Laws, however, the Zeroth Law is not a fundamental part of positronic robotic engineering, is not part of all positronic robots, and, in fact, requires a very sophisticated robot to even accept it." (Capek, 1921)

a) Law Zeros

A robot may not injure humanity, or, through inaction, allow humanity to come to harm.

b) Law One

A robot may not injure a human being, or, through inaction, allow a human being to come to harm, unless this would violate a higher order law.

c) Law Two

A robot must obey orders given it by human beings, except where such orders would conflict with a higher order law.

d) Law Three

A robot must protect its own existence as long as such protection does not conflict with a higher order law.

1.3 Problem Statement

The idea to invents and develops the Human Following Mobile Robot begin when some of the challenges come to mind at the golf course. Today, golf player need a caddy to carry-off the golf sticks. The same cases like in the hospital where the doctor are bring files and tools to the operation room or from operation room to the office. Sometimes they need an assistant to help them. It is not flexible. By using robots, it can replace the role of human. Robots are able to perform repetitive tasks more quickly, cheaply, and accurately than humans. In order to follow and get the human walking, robots should know the position of target person. The robots should

also estimate the next position of the person in order to move without delay follow

the human. To realize this, human and robots need to be in close proximity to each other as much as possible. Moreover, it is necessary for their interactions to occur naturally. It is desirable for a robot to carry out human following, as one of the human affinitive movements. The human following robot requires several techniques such as the recognition of the target human, the recognition of the environment around the robot, and the control strategy for following human stably. In this research, an intelligent environment is used in order to achieve these goals.

1.4 Objective of the project

The aim of this project is to develop a mobile robot that can follow human.

1.5 Scopes

Project scopes are important in order to develop these projects and it is required to assist and guide the development of the project. The scopes will be covered on design and programming of a mobile robot. Part of design will include the application of Catia DS Software. It is for mechanical structure to select the material should be use. Electrical and electronic part are related in programming where need to develop the interface between programming, electronic circuit and mechanical system. The scopes of this project are:

- a) The designing and developing of mechanical structure will be performed manually by the author criteria.
- b) The system of Human Following Mobile Robot is control by using PIC microcontroller and program the PIC via programming software.
- c) The robot prototype only works on plane surface.
- d) The robot prototype follow human in linear motion.
- e) Sensing obstacles is required in the robot; it depends on the sensor and programming whether to avoid the obstacles or stop when found out the obstacles.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will focuses on data collecting from various resources for this project. It is actually discussing about the past project that similar with this project, the parts of autonomous robot whether from mechanical system, electronic circuit and programming. There are several of hardware related issues will be discusses in this section with involved the development of an actual robot.

Actually, autonomous mobile robot is a generally topic of robot. There are many different types of robots and the classification of such machines can be constructed in various ways. There many categories of robot available depending on its function and ability such as industrial robot, humanoids robot, and special function robot. These robot can be controlled either by human (remote control) or operating autonomously. In this project, a special function autonomous robot is build to complete the tasks given.

2.2 Introduction of Robot

The term of robot comes from a Czech word, *robota*, meaning "forced labor." In other words, the robots eventually overthrow their human creators. Actually, robot can defined as a machine that gathers information about its environment (senses) and uses that information (thinks) to follow instructions to do work (acts). This is the working definition of robots that Robotics exhibit developers used for this exhibit. Today, technology is revolution of rates making the identification of a robot somewhat difficult. However, robotic engineers would probably not say the VCR or thermostat is a robot. In other words, robots are doing more and more. Today's robots are incorporating multiple sensors and are able to use this information to behave autonomously that means, its can making decisions for them based on information that they receive. There is endless variety in the size, shape and jobs of robots. Some robots are used day after day in factories, while others are highly experimental and use artificial intelligence to behave more and more like living creatures, able to act independently in changing environments. Robots are being designed to perform precision surgery, explore space, the ocean and other dangerous areas. (Capek, 1921)

The designs of robots in movies give the impression that robots look and act like humans. The activities in this guide are designed to help those who see the exhibit recognize:-

- a) How everyday activities that humans do are quite complex.
- b) That they can do some things that robots cannot do and vice versa, robots can do some things that they cannot do.
- c) There are many different kinds of robots each specially designed to do particular tasks.
- d) How robots think, sense, and act.