BIO-COMPOSITE KENAF FIBRES FOR PALLET PRODUCT

MOHD YUHAZRI BIN YAAKOB

FAKULTI KEJURUTERAAN PEMBUATAN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2011

BIO-COMPOSITE KENAF FIBRES FOR PALLET PRODUCT

MOHD YUHAZRI BIN YAAKOB

RESEARCH VOTE NO: FRGS/2007/FKP (2) – F0027

FAKULTI KEJURUTERAAN PEMBUATAN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2011

ABSTRACT

Bio-composite is a material formed by resin as a matrix and a reinforcement of natural fiber. The objectives of this research are to determine the impact of chemical treatment on mechanical properties and water absorption of bio-composite kenaf fiber. The long bast kenaf fibers were treated by chemical method using sodium hydroxide (NaOH) to improve fiber properties. The effects of the modification on fibers have been analyzed using scanning electron microscopy (SEM). Morphological analyses proved that sodium hydroxide have effective to remove impurities on the fiber surface. By using vacuum infusion process (VIP), the bio-composite kenaf fibers panel is produced. Vacuum infusion method offers benefits over hand lay-up method due to the better fiber to resin ratio and resulting in stronger. In this study, mechanical tests were performed to evaluate the effect of chemical treatment on the mechanical properties of bio-composite kenaf fiber. It has been found that the alkalization treatment has improved the mechanical properties of the composites. The mechanical properties of kenaf/polyester composites were found to increase with increase in concentration of NaOH. Otherwise, it decrease when immerse time is up from 12 to 24 hours. The tensile and flexural strength was achieved as high as 90.81 MPa and 93.35 MPa, respectively. In spite of its high tensile and flexural properties, kenaf polyester composites treated with 9 percent NaOH for 12 hours demonstrated relatively low impact strength. As better impact properties are demonstrated by high strain to failure value, it is believed that too high concentration of NaOH possibly lower the fiber strain to failure value. The ability of water absorption among the composite also have been analyzed in this study. The percentage of moisture uptake proven that fiber treatment have effected on the water absorption of the composites. Lastly, it has been summarize that chemical treatment on kenaf fibers as well as manufacturing process played important role to fabricate a good mechanical properties of composites.

ACKNOWLEDGEMENT

1 wish to express my sincere appreciation to my all my research partner for the guidance, critics and friendship.

I am also indebted to Ministry of Science, Technology and Innovation (MOSTI) for funding. My Universiti Teknikal Malaysia Melaka (UTeM) also deserves special thanks for their assistance in supplying the relevant literatures and equipments.

Thank to my postgraduate students and also final year students who have provided assistance at various occasions. I am grateful to all my family members.

TABLE OF CONTENTS

СНАРТЕ	R	TOPIC	PAGE
	ABSTRACT		i
	ACKNOWL	EDGEMENT	ii
	TABLE OF	CONTENTS	iii
	LIST OF TA	BLES	vii
	LIST OF FIG	GURES	viii
	LIST OF AB	BRAVIATIONS	xii
	LIST OF SY	MBOLS	xiv
	LIST OF AP	PPENDICES	xvi
1	INTRODUC	TION	
	1.0 Backg	round	i
	1.1 Staten	nent of the Purpose	3
	1.2 Hypot	heses	3
	1.3 Objec	tives	4
	1.4 Resea	rch Scopes Area	4
	1.5 Ration	nal of Research	5

iii

1.6	Problem Statement

2

3

LITH	CRATURE REVIEW	
2.0	Background	9
2.1	Introduction of Composites	9
2.2	Polymer Matrix Composites	12
	2.2.1 Thermoplastics	12
	2.2.2 Thermosetting	13
	2.2.3 Biological plastics	14
	2.2.4 Elastomers	15
2.3	Natural Fiber Composites	15
2.4	Chemical Modification	22
2.5	Composites Processing	26
	2.5.1 Hand Lay-up	27
	2.5.2 Vacuum Infusion Process	28
2.6	Composite Properties	29
	2.6.1 Property Comparison of Composites	31

5

RESEARCH METHODOLOGY

3.0	Introduction	32
3.1	Process Flowcharts	33
3.2	Raw Materials	34
3.3	Fiber treatment	34

iv

3.4	Bio-co	omposites Processes	35
	3.4.1	Vacuum Infusion Process Methods	36
	3.4.2	Benefits of Vacuum Infusion	40
3,5	Fiber	Characterization	42
3.6	Mech	anical Properties	43
	3.6.1	Procedures of Tensile Test	43
		3.6.1.1 Tensile Strength Test Methods	44
		3.6.1.2 Theoretical of Tensile Test	45
	3.6.2	Procedures of Flexural Test	46
		3.6.2.1 Flexural Test Methods	47
		3.6.2.2 Theoretical of Flexural Test	48
	3.6.3	Procedures of Izod impact test	49
		3.6.3.1 Izod Impact Test Methods	51
		3.6.3.2 Theoretical of Pendulum Test	52
3.7	Water	Absorption Test	52

RESULTS AND DISCUSSION

4

4	.0	Introd	uction	54
4	1.	Morph	nological of Fiber Surfaces	54
4	.2	Tensil	e Properties	58
		4.2.1	Morphological of Tensile Fracture Surface	64
		4.2.2	Comparison of Tensile Properties Between Resin	
			Infusion and Hand Lay-Up Method	68

v

C Universiti Teknikal Malaysia Melaka

1.1

	4.3	Flexural Properties	71
	4.4	Impact Properties	76
	4.5	Water Absorption Test	78
5	CON	CLUSION	
	5.0	Introduction	80
	5.1	Conclusions	80
6	REC	OMMENDATIONS FOR FUTURE WORK	

DEFENSION	07
REFERENCES	87

APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of properties for fibre reinforced composites	31
3.1	The chemical solution of the treatment	35
3.2	Qualities of vacuum infusion process	41
4.1	Tensile properties of kenaf/polyester composites	61
4.2	Flexural properties of kenaf/polyeste r composites	73

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Pictures of kenaf field	2
1.2	Kenaf flower and leave	2
1.3	Kenaf bast and core	2
1.4	The bicycle frame is made of glass-carbon reinforced epoxy	6
2.1	Composites reinforcement form	11
2.2	Hand lay-up process	28
2.3	Cross section view of resin infusion process setup	28
2.4	Illustrations of four stages of deformation of fibres, matrix and	
	composite	30
3.1	Research methodology	32
3.2	Process flowcharts showing the applied fabrication route of	
	kenaf/polyester composites	33
3.3	The flow lines of resin	36
3.4	The general sequence of vacuum infusion process	37
3.5	The configuration of vacuum infusion set-up	37
3.6	a, sealant tape, b, spiral tube, c, resin inlet/outlet tube	38
3.7	a, silicon mold release agent, b, long bast kenaf fibers	39
	viii	

3.8	a, peel ply, b, distribution media, c, vacuum bag	39
3.9	a, resin trap, b, vacuum pump	39
3.10	Process of composite fabrication by vacuum infusion	40
3.11	Mechanical testing	43
3.12	Universal Testing Machine model AG-I Shimadzu	44
3.13	Geometry of specimen for tensile strength test according to	
	ASTM D638 – 01	45
3.14	Flexural testing machine model Instron 5585	47
3.15	Allowable range of loading nose and support	48
3.16	Izod impact test specimen and its position in the anvil	50
3.17	Impact tester machine model IT 30	50
3.18	Geometry of specimen for izod impact test	51
3.19	The specimens immerse in water for 24 hours	53
4.1	SEM micrograph of untreated kenaf fiber	55
4.2	SEM micrograph of treated kenaf fiber with 3 percent NaOH	
	for 12 hours	55
4.3	SEM micrograph of treated kenaf fiber with 3 percent NaOH	
	for 24 hours	56
4.4	SEM micrograph of treated kenaf fiber with 6 percent NaOH	
	for 12 hours	56
4.5	SEM micrograph of treated kenaf fiber with 6 percent NaOH	
	for 24 hours	57
4.6	SEM micrograph of treated kenaf fiber with 9 percent NaOH	

	for 12 hours	57
4.7	Stress-strain curve for sample T3 which was treated with	
	6 percent NaOH for 12 hours	60
4.8	Stress-strain curve for sample UT which was untreated	60
4.9	Tensile strength of kenaf/polyester composites	61
4.10	Tensile modulus of kenaf/polyester composites	63
4.11	SEM micrograph of tensile fracture, a, sample KP-UT,	
	b, sample KP-T1	65
4.12	SEM migrograph of tensile fracture, a, sample KP-T2,	
	b, sample KP-T3	65
4.13	SEM migrograph of tensile fracture, a, sample KP-T4,	
	b, sample KP-T5	66
4.14	Fracture specimens of kenaf/polyester composite with difference	
	fabricated method, a, Hand lay-up, b, Vacuum infusion	68
4.15	Comparison of tensile strength of kenaf/polyester composites	
	between vacuum infusion and hand lay-up method	69
4.16	Comparison of tensile modulus of kenaf/polyester composites	
	between vacuum infusion and hand lay-up method	70
4.17	Graph load-extension for sample KP-T5 which was treated	
	with 9 percent NaOH for 12 hours	72
4.18	Graph load-extension for sample KP-UT which was untreated	72
4.19	Flexural strength of kenaf/polyester composites	73
4.20	Fracture specimen of flexural test for sample KP-T5	74

4.21	Flexural modulus of kenaf/polyester composites	75	
4.22	Impact strength of kenaf/polyester composites	76	
4.23	Fracture specimen of izod impact test for sample KP-T3	77	
4.24	Percentage of water absorption for kenaf/polyester composites	78	
5.1	Kenaf/polyester composite products; a, table, b, football sin guard,		
	c, window furniture, d, book rack and e, floor tile	84	

LIST OF ABBREVIATIONS

ABS		Acrylonitrile Butadiene Styrene
AC	4	Acidic Chloride
AO	ϵ	Ammonium Oxelate
ASTM	18	American Society for Testing of Materials
CCC	~	Carbon/carbon Composite
СМС	3	Ceramic Matrix Composite
FI-TR	\mathbf{r}_{i}	Fourier Transform Infra Red
FRP	19	Fiber Reinforced Polymer
GPa	-2	Giga Pascal
hr	~	Hour
kGy	-	Kilogray
kJ	-	Kilo Joule
LDPE	-	Low-density Polyethylene
MAPP	÷.	Maleic Anhydride Grafted Polypropelene
MARDI	-	Malaysia Research and Development Institute
МЕКР	÷	Methyl Ethyl Ketone Peroxide
mm	4	Millimeter

xii

MMC	-	Metal Matrix Composite
MPa	-	Mega Pascal
N	Ξ.	Newton
NaOH		Sodium Hydroxide
PET	-	Polyethylene Terephthalate
РНВ	-	Polyhydroxybutyrate
PLLA		Poly-L-lactic Acid
PMC	1	Polymer Matrix Composite
PP	-	Polypropylene
RFI	-	Resin Film Infusion
RIP	-	Resin Infusion Process
RTM		Resin Transfer Molding
s	а.	Second
SEM	-	Scanning Electron Microscopy
SH	2	Sodium Hydroxide
UTM	-	Universal Testing Machine
VIP	4	Vacuum Infusion Process
WAXS	Q.,	Wide-angle X-ray Scattering

xiii

LIST OF SYMBOLS

b	4	Width of the sample
dS/de	-	Slope of the stress versus strain curve
E abs	÷	Energy absorbed during impact
EI	•	Initial Energy
E_k	÷	Kinetic Energy
E _p	÷	Potential Energy
E _r	÷	Energy after rupture
Ε	•	Young's Modulus
E_b	÷	Flexural Modulus
E_t	-	Young's Modulus in tension
g	÷	Gravity
h	÷	Height or thickness of the sample
L	2	Length of the sample
lo	-	Initial gage length
m	÷	Initial slope of the load versus deflection curve
Р	-	Load
S	3	Stress
V	÷	Velocity

xiv

- W_a -Initial Work W_b -Work after rapture%-Percentage
- Δl Extension

LIST OF APPENDICES

APPENDIX

TITLE

А	Certificates of Achievement for Kenaf Products
В	Proceeding Paper and Certificate of Conference
С	List of Materials & Equipments and Theirs Functions
D	Stress Strain Curve for Tensile Test
E	Testing Samples

xvi

CHAPTER 1

INTRODUCTION

1.0 Background

Kenaf is a warm annual crop. It is a member of hibiscus family (Hibiscus cannabinus L) and related to cotton and jute. Kenaf is originally native in Africa. For the last 200 years, India has produced and used kenaf. In the United States, kenaf was introduced as material for the war effort during World War II. Then in 1950s, the US researchers have found that kenaf was an excellent cellulose fiber source for pulping of paper products (Webber et al., 2002).

Kenaf plant is growing to more than 3 m tall within 4-5 month. The stems are 2.5-3.5 cm diameter and consisting of two parts, an outer fibrous bark and an inner woody core (Zhang, T., 2003). Raw kenaf fiber obtained from the outer fibrous bark is a bundle of lignocelluloses fibers. The core is the spongy tissue inner the bark of the plant. Figure 1.1-1.3 shows the kenaf plant and its intersection.

Figure 1.1 Pictures of kenaf field

Figure 1.2 Kenaf flower and leave

Figure 1.3 Kenaf bast and core

Kenaf has been used to produce twine, rope and sackcloth for thousands of years (Webber et. al., 2002). Because of its biodegradability and environmental protection, the usage of kenaf has increased recently. It has found more application. In some countries, kenaf is used as the substitute for wood to produce pulp and paper. Nowadays, there are various new applications for kenaf including automotive industry, packaging, building materials, absorbents and animal feeds (Zhang, T., 2003).

1.1 Statement of the Purpose

The purpose of the research is to investigate the effect of fiber treatment on the mechanical properties such as tensile, flexural and impact properties and water absorption of kenaf/polyester composite.

1.2 Hypotheses

- Increasing either the concentration of NaOH or treatment time will weaken the kenaf fiber.
- ii. Varying the manufacturing method will affect the mechanical properties of composite.

1.3 Objectives

- To study the effect of alkalization treatment on the surface characteristic of kenaf fibers.
- To study and develop the composite between kenaf fibers and polyester resin using normal process.
- iii. To determine and analyze the effect of fiber treatment on the mechanical properties and water absorption of kenaf/polyester composites.

1.4 Research Scopes Area

The following states the research scopes area;

- Research on natural fibers based on literature survey and identify suitable matrix that can well adhere to selected fibers.
- ii. Identify and propose the process of natural fibers treatment.
- Study on the manufacturing process that capable to produce high performance composite materials.
- iv. Develop natural fiber reinforced composite by the selected method.
- v. Obtain the mechanical properties and the percentage of water absorption from the composite produced.

The rational of the research is as stated below;

- i. Utilize natural resource of kenaf fibers.
- Offer cheaper and environmental friendly, an alternative to replace synthetic fiber and wood-based products in many applications.

1.6 Problem Statement

Composite materials offer many exceptional properties that are difficult or impossible to match with traditional materials such as steel, aluminum, and wood. Previously, composites made of glass and carbon fibers replaced many metal applications by supplying the benefits of low cost and high strength properties. Synthetic fiber composite is very well known for its strength and rigidity. For an example, the bicycle frame made from glass-carbon composites are offer high strength and lightweight. However, disadvantage of synthetic fibers is expensive to get the raw materials. Therefore, an amount of attention has been given to the fabrication and properties of bio-composites.

Figure 1.4 The bicycle frame is made of glass-carbon reinforced epoxy (Copyright © 1996-98 Torben Lenau).

A biocomposite can be defined as combination of biofibers and biopolymers. There is a problem of adhesive in using the hydrophilic nature of the biofibers with the hydrophobic polymer matrix (Sharifah et al., 2004). However, previous work has been done to improve the adhesion between biofiber and polymer matrix by using coupling agent and chemical modification.

Nowadays, natural fibers form an interesting option for the most widely applied fiber in the composite technology. There is a challenge to replace the synthetic fibers. Many studies on natural fiber have been done such as kenaf, bagasse, jute, ramie, hemp and oil palm. The advantages of natural fiber composites are renewable, environmental friendly, low cost, low density, flexibility of usage and biodegradability (Karnani et al., 1997 and Yousif et al.,