SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive) with Honours."

Signature:	
Supervisor:	
Date:	

RAILWAY VEHICLE DYNAMICS AND VIBRATION ANALYSES

LIM CHING SHENG

This thesis is submitted as part of the fulfilment for the bestowal of Bachelor in Mechanical Engineering (Automotive) with Honours

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2013

DECLARATION

"I hereby declare that the work in this report is my own except for the summaries and quotation which have been duly acknowledged."

Signature:	
Author:	
Date:	

Specially dedicated to supervisor and beloved family

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Engr. Dr. Mohd. Azman Bin Abdullah for the supervision, courage throughout the preparation and execution of this Final Year Project for one year. Without his support, this report will not be the same as presented here.

Secondly, I would like to address my appreciation toward Mr. Fauzi Bin Ahmad for the clue on getting the right instrument for the measuring procedure. At the same time, friendly laboratory technicians do help me to get some information toward the instrumentation device.

Besides, seminar panel shall receive their compliment toward their comment and advices on execution of the Final Year Project I and II. Their comment did inspire some idea for the ongoing scheduled activities.

Also thanks to some of the classmates that show their hand during necessary event as to ease the process of preparation for the poster, seminar and others. Not to forget, support from family throughout this preparation of this report is undoubted.

ABSTRACT

Final Year Project is a subject with research and scientific relevant compulsory for the final year student to take part as the fulfilment for the bestowal of degree course in Faculty of Mechanical Engineering, UTeM. Project entitled "Railway vehicle dynamics and vibration analyses" is a meant to study the behaviour of railway vehicle in term of roll and vibrations at three perpendicular axes during curve track. The result of measured vibration will be used to generate ride index formulation. Review on previous study on railway dynamic analysis, optimization of suspension, ride comfort and instrumentation are carried out as to expose fundamental on how the methodology is involved and executed. During experimental gathering, proper instruments and tools are required to obtain the data. Sensors and DAQ are the main components while PC installed with NXT 2.0 and MATLAB is used for the file-build, data logging and further analysis event. Graph is presented for better understanding and observation is made for the analysis. Ride index formulation is based on formula reasoning where the standard deviation of the vibration responses had been used as the boundary for comfort zone.

ABSTRAK

Projek Sarjana Muda merupakan satu subjek yang berunsur kajian ilmiah dan saintifik kepada pelajar tahun akhir dalam proses menperolehi pengijazahan Sarjana Muda di Fakulti Kejuruteraan Mekanikal, UTeM. Tajuk projek bernama "Dinamik kenderaan berlandas dan analisis getaran" bertujuan untuk mendapatkan respons kenderaan berlandas dalam bentuk rebanan pada ketiga-tiga paksi yang berserenjang dan gulingan di landasan yang lengkung. Keputusan respons kenderaan berlandas akan digunakan untuk menperoleh perumusan indeks tunggangan. Perolehan terhadap kajian yang dibuat sebelum ini termasuk bidang analisis dinamik kenderaan berlandas, optimasi terhadap suspensi, keselesaan tunggangan dan instrumentasi memdedah kaedah-kaedah yang boleh diaplikasikan nanti. Semasa eksperimen, pengunaan instrumen dan alat yang betul adalah penting untuk mendapat data yang jitu. Penderia dan system perolehan data merupakan alat yang memainkan peranan penting sememtara komputer bersertakan NXT 2.0 dan MATLAB digunakan untuk pembinaan fail, penyimpanan dan analisa yang seterusnya. Graf akan digunakan untuk memudahkan penonjolan terhadap getaran-getaran yang dianalisa. Perumusan indeks tunggangan dibuat adalah berdasarkan penghujahan formula di mana sisihan piawai dari geratan digunakan sebagai limitasi zon keselesaan.

TABLE OF CONTENTS

CHAPTER	CON	NTENT	PAGE
	DEC	CLARATION	i
	DED	DICATION	ii
	ACF	NOWLEDGEMENT	iii
	ABS	TRACT	iv
	ABS	TRAK	v
	TAB	BLE OF CONTENT	vi
	LIST	Г OF TABLES	ix
	LIST	F OF FIGURES	Х
	LIST	Г OF SYMBOLS	xiv
	LIST	Γ OF APPENDICES	xvii
CHAPTER I	INT	RODUCTION	1
	1.1	Overview	1
	1.2	Problem Statement	2
	1.3	Objectives	3
	1.4	Scope	3
CHAPTER II	LIT	ERATURE REVIEW	4
	2.1	Railway Dynamics	4
	2.2	Bogie	6
	2.3	Suspension	11
	2.4	Railway Dynamics Event Monitoring	13
	2.5	Ride Quality Index	14
	2.6	Instrumentation	16
		2.6.1 LEGO Mindstorms NXT brick	17

		2.6.2	HiTechnic Gyro Sensor	18
		2.6.3	HiTechnic Acceleration Sensor	21
		2.6.4	Data Logging	22
	2.7	Mathe	matical Modelling	23
	2.8	KLIA	Express	25
CHAPTER III	ME	ГНОДС	DLOGY	26
	3.1	Overv	iew	26
	3.2	Experi	iment activity	26
	3.3	Before	e Experiment	27
		3.3.1	Experiment Apparatus Preparation	27
		3.3.2	Calibration	29
		3.3.3	NXT Acceleration and Gyro Sensor	34
			Measurement	
		3.3.4	NXT Data Logging	36
		3.3.5	MATLAB programming	38
		3.3.6	Route Selection	43
	3.4	During	g Experiment	45
		3.4.1	Determination of Centre of Gravity	45
			(CG)	
		3.4.2	Experiment execution	46
		3.4.3	GPS	50
	3.5	MATI	LAB Analyses	51
		3.5.1	Conversion of measured value to actual value	51
	3.6	Movin	g average filtration	55
	3.7	Ride I	ndex Formulation	57
	3.8	Mathe	matical Modelling	58
		3.8.1	Equation of Motion (EOM)	59
		3.8.2	MATLAB simulation	64
CHAPTER IV	RES	SULTS		68

4.1 Experiment 68

		4.1.1	X-axis Acceleration	68
		4.1.2	Y-axis Acceleration	69
		4.1.3	Z-axis Acceleration	71
		4.1.4	Roll Rate	72
	4.2	Statist	ics Data	74
	4.3	Ride I	ndex Formulation	76
	4.4	Mathe	matical Modelling	77
		4.4.1	Sine Wave Input Disturbance	77
		4.4.2	Ramp Input Disturbance	79
		4.4.3	Step Input Disturbance	80
CHAPTER V	DIS	CUSSIC	DN	81
	5.1	Proble	m encountered	81
	5.2	Experi	iment	84
	5.3	Ride I	ndex Formulation	85
	5.4	Mathe	matical Modelling	86
CHAPTER VI	CON	NCLUS	ION	87
	REF	FEREN	CES	89
	BIB	LIOGR	АРНҮ	96
	APP	PENDIC	ES	97

LIST OF TABLES

NO. TITLE

PAGE

2.1	Ride comfort evaluation scale	15
3.1	Sample of GPS data tabulation	50
3.2	Parameter required for conversion of measured value to actual	52
	value	
3.3	Five distinct type of function block involved during integration	55
3.4	Rigid bodies and the respective degree of freedom	60
3.5	Notation used by suspension and respected acting force	60
3.6	Function blocks involved during MATLAB simulation	64
4.1	Statistical value of acceleration from each axis and roll rate	76
5.1	Ranges of data for non-filtered and filtered case	85

LIST OF FIGURES

NO. TITLE

PAGE

1.1	Illustration on carriage six modes of motion	2
1.2	Wheel set profile at (a) straight track and (b) curve track	3
2.1	Schematic air flow around a container on flat car	4
2.2	Kinematic oscillation of wheelset	6
2.3	Top view of nose suspended traction motor	8
2.4	Top view of parallel Cardan drive	8
2.5	Shearing mode (left) and bending mode (right) of bogie's	9
	eigenmode	
2.6	Articulated bogie (left) and coupled single axis running gear	10
	(right)	
2.7	NXT brick	17
2.8	Gyro sensor rotation orientation	18
2.9	MATLAB parameter panel	21
2.10	Acceleration sensor axis of measurement	22
2.11	Cross section view of railway carriage components equipped	24
	with primary and secondary suspension system	
2.12	4-cars train set of KLIA Express	25
3.1	Connecting the sensor (left) with NXT brick (right)	27
3.2	Assembly of acceleration sensor and gyro sensor at NXT brick	28
3.3	Configuration of rechargeable (left) and AA (right) battery	28
3.4	Assembly between NXT and PC installed with MATLAB	29
3.5	Start a new file in NXT 2.0 program	30
3.6	Selecting the Complete palette environment to proceed	30

3.7	NXT-G programming for acceleration sensor measurement – part	31			
	one				
3.8	NXT-G programming for acceleration sensor measurement – part	32			
	two				
3.9	NXT-G programming used for gyro sensor offset value	32			
	measurement				
3.10	NXT-G programming from [30] – part one	33			
3.11	NXT-G programming from [30] – part two	33			
3.12	NXT-G programming from [30] – part three	34			
3.13	NXT-G programming for acceleration sensor and gyro sensor	35			
	measurement – part one				
3.14	NXT-G programming for acceleration sensor and gyro sensor	35			
	measurement – part two				
3.15	Data logging programming – part one	36			
3.16	Data logging programming – part two	37			
3.17	Data logging programming – part three				
3.18	Data logging programming – part four				
3.19	Install support package from Simulink environment 3				
3.20	Lego Mindstorms NXT as target installer selection3				
3.21	Target for Use with LEGO MINDSTORMS NXT Hardware	40			
	library				
3.22	MATLAB programming for acceleration and roll moment	41			
	measurement				
3.23	Acceleration Block parameter configuration	41			
3.24	Gyro Sensor Block parameter configuration				
3.25	Scope parameter configuration on axes number 4				
3.26	Google Maps interface	44			
3.27	Papago X8 interface	44			
3.28	The high-lighted line indicates the railway track profile	45			
3.29	Position of sensor for an ordinary loaded carriage	46			
3.30	Second carriage of the KLIA Express train set	46			
3.31	Sensor positioning during experiment	47			
3.32	Sensor positioning during experiment (zoomed)	47			

3.33	Run the "mdl" file during experiment	48
3.34	Enable external mode when prompted to	48
3.35	"I am running" shown during executing MATLAB "mdl" file	49
3.36	Real time vibration behaviour preview at Scope block	49
3.37	Papago X8 R6300T	50
3.38	MATLAB Simulink	51
3.39	"Blank script" is created to start generate programming	52
3.40	Conversion for acceleration in x-axis	53
3.41	Conversion for acceleration in y-axis	53
3.42	Conversion for acceleration in z-axis	54
3.43	Conversion for roll rate	54
3.44	Scatter with only Markers" function	55
3.45	"Two Period Moving average" function	56
3.46	"Moving Average" function with period of ten	57
3.47	"Data Statistics" from "Tools" tab	58
3.48	Schematic diagram of developed ride model	59
3.49	Integration of car body bounce responses	64
3.50	Force members of front right secondary suspension	65
3.51	Car body bounce resulted from distinct directed force	65
3.52	Mask parameters from the developed subsystem – part one	66
3.53	Mask parameters from the developed subsystem – part two	67
4.1	Unfiltered x-axis acceleration in MATLAB	68
4.2	Unfiltered x-axis acceleration in Excel	69
4.3	Filtered result of x-axis acceleration in Excel	69
4.4	Unfiltered y-axis acceleration in MATLAB	70
4.5	Unfiltered y-axis acceleration in Excel	70
4.6	Filtered result of y-axis acceleration in Excel	71
4.7	Unfiltered z-axis acceleration in MATLAB	71
4.8	Unfiltered z-axis acceleration in Excel	72
4.9	Filtered result of z-axis acceleration in Excel	72
4.10	Unfiltered roll rate in MATLAB	73
4.11	Unfiltered roll rate in Excel	73
4.12	Filtered roll rate in Excel	74

4.13	Statistics data for x-axis acceleration	74
4.14	Statistics data for y-axis acceleration	75
4.15	Statistics data for z-axis acceleration	75
4.16	Statistics data for roll rate	76
4.17	Corrugated wavelength disturbance against car body bounce	78
4.18	Long wavelength disturbance against car body bounce	78
4.19	Positive ramp against car body bounce	79
4.20	Negative ramp input against car body bounce	79
4.21	Positive step disturbance against car body bounce	80
4.22	Negative step input against car body bounce	80
5.1	Error message due to Gyro Sensor Block	82
5.2	MEX file error message	82
5.3	Error message shown at MATLAB R2012a	83

xiii

LIST OF SYMBOLS

DOF	Degree of Freedom
a_x	Longitudinal acceleration
Ø	Roll
a_y	Lateral acceleration
θ	Pitch
arphi	Yaw
DAQ	Data acquisition system
mm	millimetre
MATLAB	Matrix Laboratory
%	Percent
F_R	Rolling resistance force
т	Mass
g	Gravity constant
f _r	Rolling resistance coefficient
С	Constant
v	Speed of train
Hz	Hertz
ISO	International Standard Organization
K_{px}	Primary longitudinal suspension stiffness
ARMS	Autonomous ride monitoring system
FRA	Federal Railroad Association
CRE	Centre for Railway Engineering
CQU	Central Queensland University
PK-PK	Peak to peak
RMS	Root mean square
FFT	Fast Fourier Transform

Wz	Sperling's ride index
а	Peak acceleration
f	Frequency
F(f)	Frequency dependent weighting factor
В	Weighing factor
V	Voltage
g	Gravity constant
USB	Universal Serial Bus
AC	Alternating Current
RAM	Random Access Memory
GUI	Graphical User Interface
0	Degree
d_i	Deviation of each measurement
\bar{d}	Mean deviation measurement
g	Gravity constant
m/s^2	Meter per second squared
ÿ	Acceleration
ż	Velocity
x	Displacement
С	Damper coefficient
k	Spring stiffness
J	Moment of inertia
$\ddot{ heta}$	Angular acceleration
$\dot{ heta}$	Angular velocity
θ	Angular displacement
СРМ	Cycle per minute
km	kilo meter
km/h	kilo meter per hour
FBD	Free Body Diagram
EOM	Equation of Motion
GPS	Global Positioning System
PC	Personal Computer
KTM	Keretapi Tanah Melayu

ETS	Electric Train Service
LRT	Light Rail Transit
ERL	Express Rail Link
KLIA	Kuala Lumpur International Airport
CG	Centre of Gravity
cm	centi meter
t	Time integral upper limit
t _o	Lower limit
y_o	Initial condition
у	Magnitude at that instant
F	Force
K_p	Primary suspension stiffness
C_p	Primary suspension damping coefficient
K _s	Secondary suspension stiffness
C_s	Secondary suspension damping coefficient
°/s	Degree per second
Α	Measured value
SDK	Suite Development Kit
S	second

LIST OF APPENDICES

NO.TITLEPAGE1Gantt chart FYP I98

2	Gantt chart FYP II	99
-		//

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Commercial railway transportation had the capability to mitigate congestion on other transit system seeing that highway and air travel systems are started to be constrained in many countries due to the early infrastructure designs [1]. In the meantime, there has been a great boost in the railway network to meet the growing demand [2]. Railway transportation will be a suitable selection for substituting airplane for long journey travel after the depletion of fossil fuel in the coming few decades. Current research and development on railway transport is striving for improved riding comfort, higher speed, cost reduction, safety and first-rated punctuality [3].

The railway vehicle running along a track is one of the worldwide interested engineering studies [4]. Track configuration in terms of profile and gradient had work as the input disturbance toward the car body while bogie and suspension function as the transmitting medium. Study on mode of motion or also known as degree of freedom (DOF) as shown in **Figure 1.1** is imperative to attain excellent manipulation on railway vehicle control.

Longitudinal acceleration, a_x is the motion variable that directs toward where the railway vehicle is heading. Roll, \emptyset (radian) is the angle difference between the carriage and reference plane at this axis. Lateral acceleration, a_y is the motion variable occurring from the side of the railway vehicle whereby a rotating angle at

Figure 1.1: Illustration on carriage six modes of motion [4]

1.2 PROBLEM STATEMENT

There is change in carriage velocity and moving direction when a commercial railway vehicle is subjected to a curve from a certain velocity. At that instant, it experiences significant roll, lateral acceleration and longitudinal acceleration.

Kicked in lateral (centripetal) force with the inherent longitudinal momentum of the railway vehicle excites resultant force acted towards the railway vehicle itself, minimizing the wheel-rail contact during flange up-climb event as shown in **Figure 1.2** and causes arduous ride and handling. Roll happens when there is lateral weight shift at the wheel [5]. These modes of motions eventually transmitted to the car body

and passengers (loads). In fact, excessive momentum during cornering ascends the risk of derailment catastrophes and passenger's ill-comfort.

Figure 1.2: Wheel set profile at (a) straight track and (b) curve track [4]

1.3 OBJECTIVES

The objective of this thesis is to determine the dynamic performance of commercial railway vehicle in term of roll and acceleration in three respected axis during cornering. Subsequently, it is aims to come out with the ride index formulation of commercial railway vehicle at the straight track and curve track.

1.4 SCOPE

For the start up, experiment data on commercial railway carriage's rolling and acceleration responses are collected by using data acquisition system (DAQ) during straight track and curve track. The selected railway line shall be intercity type along with the utilization of standard gauge track (1435 mm width). The collected data is analysed with MATLAB's functions to obtain its dynamics trend at the curve.

CHAPTER II

LITERATURE REVIEW

2.1 RAILWAY DYNAMICS

When a railway vehicle is moving, air resistance and rolling resistance are the two inherent existed components that oppose the tractive force regardless of track profile and condition. Air resistance for an empty wagon train is higher than a fully loaded train due to turbulent circulation of air occur in the empty wagon. Improper arrangement of goods at the flat car induced air drag phenomenon as shown in **Figure 2.1**, concentrating the load at the centre will brought up to 25% reduction of air resistance. However, rolling resistance for empty train is lower than a loaded train as weight is a function of rolling resistance as shown in Equation 1. The general formula for rolling resistance shown is applied with the condition of no slip and skid between wheel-rail interactions. Slips normally happen at the driving wheels during acceleration and skid during braking [6].

Figure 2.1: Schematic air flow around a container on flat car [6]

Where

$$f_r = C_0 + C_1 \left(\frac{v}{v_0}\right) + C_2 \left(\frac{v}{v_0}\right)^2 \tag{2}$$

 f_r is the rolling resistance coefficient in % C_0 , C_1 and C_2 are constant in % v is the speed of train in m/s v_0 is 27.78 m/s (or equivalent to 100 km/h)

On straight track, wheelset run in centralized position, both the flanges from the left and right wheel stay at the same distant from the rail track ideally. Wheel rail contact time and magnitude indeed contributed disturbance toward car body. For bending track, wheelset will move laterally opposite to the bending direction. Wheelset coning configuration provides higher resulted linear velocity at the outer wheel as to turn the carriage in its vertical axis. Parenthetically, low conicity is crucial for high speed running yet it constrains the curving performance. Wheel tread gradient (wheel conicity) of 1:40 was used in Shinkansen as to minimize the effect of lateral oscillation without compromising issue of unbalance wheel wear [7]. Severe worn wheelset and small difference of rolling radius promote reduction in selfsteering ability [8].

Hunting is the effect of lateral translation and yaw rotation of wheelset and bogie as shown in **Figure 2.2**, largely made by the coupled creep forces and mutual geometry of wheel and rail profiles [9]. Hunting phenomenon can be observed when bogie oscillates severely in lateral direction, causing passenger discomfort, track impact and derailment cases.

(1)