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ABSTRACT 

 

 

 

` It is important to identify the static and dynamic characteristic of temperature 

transducer in order to get a precise measurement in temperature calibration. Most of 

the previous studies in temperature calibration system only focus on static 

characteristic of the transducer. While the diameter of temperature probe does not 

affect the steady state temperature, it is important factor when considering the dynamic 

characteristic of the transducer. Different sizes probe diameter may alter the time 

response of the systems due to different loading error. When dealing with dynamic 

analysis of temperature transducer, it is necessary to design a measurement system that 

having as small as possible time constant to reduce the error cause by the dynamic 

characteristic of the system. This dynamic characteristic of temperature transducer is 

studied using an automated temperature calibration system. An automated calibration 

system is different from manual temperature calibration by utilizing computer 

interface in calibration process. LabVIEW is used to develop the computer interface 

that control the calibration parameters precisely and display the result. From the 

calibration result obtain, the uncertainty analysis of the measured data is carried out 

including the population of mean and variant of the data. 
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ABTRAK 

 

 

 

Adalah penting untuk mengenal pasti ciri-ciri statik dan dinamik transduser 

suhu untuk mendapatkan ukuran yang tepat dalam penentukuran suhu. Kebanyakan 

kajian sebelumnya dalam sistem penentukuran suhu hanya memberi tumpuan kepada 

ciri-ciri statik penderia. Walaupun diameter pengukur suhu tidak menjejaskan suhu 

keadaan mantap, ia adalah faktor penting apabila mempertimbangkan ciri-ciri dinamik 

transduser. Diameter pengukur yang berbeza boleh mengubah masa tindak balas 

sistem kerana ralat muatan yang berbeza. Apabila berurusan dengan analisis dinamik 

transduser suhu, adalah perlu untuk mereka bentuk sistem pengukuran yang 

mempunyai sekecil mungkin pemalar masa untuk mengurangkan ralat yang 

disebabkan oleh ciri-ciri dinamik sistem. Ciri-ciri dinamik transduser suhu dikaji 

menggunakan penentukuran suhu sistem automatik. Satu sistem penentukuran 

automatik adalah berbeza dari penentukuran suhu manual kerana menggunakan antara 

muka komputer dalam proses penentukuran. LabVIEW digunakan untuk 

membangunkan antara muka komputer yang mengawal parameter penentukuran 

dengan tepat dan memaparkan keputusannya. Dari hasil penentukuran yang diperolehi, 

analisis ketidakpastian data yang diukur dijalankan termasuk populasi purata dan 

taburan data.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 OBJECTIVE 

 

Those objectives evaluated are to assist and complete this study: 

  

 To measure and analyze the transient response of temperature probe 

characteristic. 

 To study the effect of loading error due to the change of probe diameter for 

PRT and Thermocouple probes. 

 

 

1.2 PROBLEM STATEMENT 

 

Temperature transducers range from different types of diameters made of PRTs, 

Thermistors, Thermocouple and infrared thermometers. Each of this probes has 

different characteristics due to the types of sensors and diameters of the probes. Most 

of the calibration system only focus on the steady - state temperature characteristics 

but the change of probe diameters also may alter the dynamic response of the 

transducer. Therefore, it is necessary to measure the effect of these factor in order to 

obtain precise measurement in temperature calibration. 

 

 



2 

 

1.3 SCOPE OF STUDY 

 

The scope of this study has been identified. The thermocouple itself can be 

treated as first order system and serve to demonstrate the application of first order 

dynamic analysis. The probe characteristics will be measured using an automated 

temperature calibrator to estimate the time constant, 𝜏 for the temperature probes. The 

effect of using different diameter of temperature probe also will be studied to measure 

the effect of probe diameter on the temperature calibration. At the end of the study, the 

uncertainty analysis will be carried out including the population of mean and variant 

of the data. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 PREVIOUS STUDIES ON TEMPERATURE CALIBRATION 

. 

 Temperature calibration has been focused in industries as an indicator to maintain 

the quality of products especially in steel and food processing industries.  Therefore, many 

studies on temperature calibration were conducted by previous researchers such as 

Mark D. Bethea, Bruce N. Rosenthal, Janko Drnovisek, Jovan B Djkovski, Igor Pusnik, 

Tanasko Tasic, Jie Chen, Xuejun Hu, Lixin Xu for thermocouples (TC), Platinum 

Resistive Thermometers (PRT) and thermistors. 

An automated calibration system has been started by Bethea and Rosenthal 

(1992) which developed an automated thermocouple calibration system for use in the 

Microgravity Materials Science Laboratory (MMSL) at the NASA LeRC. There is 

capable of calibrating a large number of thermocouples simultaneously up to 60 

thermocouples. On the other hand it also reduce the calibration time significantly while 

maintaining accuracy of ±0.7 ℃.  

The method of automated temperature calibration systems using PC based 

controller systems also applied by Drnovisek et al. (1999) in their research, that 

emphasize  the reliability of measurements, repeatability and minimization of various 

influences, which are likely the cause of gross measurements errors, as basic 

requirements for performance of the work in every precision calibration laboratory. 

However, the automation calibration systems require a suitable hardware and software 

which might be very costly due to their performance and quality. 
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 Recently, a new thermocouple auto-calibration system then have been develop 

by Chen et al. (2008) by applying fuzzy-PID controller based system. It can improve 

the accuracy and eliminate the self-oscillation of the system. This control module is 

developed using LabVIEW that capable to control the calibration temperatures 

precisely and also to manage data and display the result.  

 

 

2.2 STATIC AND DYNAMIC CHARACTERISTIC OF TEMPERATURE 

TRANSDUCER 

 

 

2.2.1 Static Characteristic of Temperature transducer 

 

 Every equipment and transducer has their own static characteristics consist of 

accuracy, resolution, and sensitivity. The characteristics probably change due to the 

aging or thermal stress in applications. 

 

 

2.2.1.1  Accuracy 

 

Accuracy is defined as the closeness of agreement between a measured value 

and the true value. It is a quantified in terms of measurement error, i.e. the difference 

between the measured value and the true value. Thus the accuracy of a laboratory 

standard PRT is the closeness of the reading to the true value of temperature. This 

brings us back to the problem, of how to establish the true value of a variable. The true 

value of temperature often referred to primary standard which is International 

Temperature Scale of 1990 (ITS-90). (Bentley, 2005) 

Generally, manufacturer specifications of accuracy describe residual 

uncertainty that exists when a device has been properly adjusted and calibrated and is 

used in specified manner. Accuracy specifications generally include residual 

systematic and random errors in the measuring systems itself.  
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Figure 2.1: Accuracy as a percentage of full scale 

(Source: Wheeler, Ganji, 2010) 

 

As shown in Figure 2.1, a typical measuring device with an accuracy of ±5% 

of full scale, at reading below full scale, the percent of uncertainty in the reading will 

be greater than 5%. At reading towards the lower end of the range, the percent 

uncertainty might be completely unsatisfactory. This problem with high uncertainty at 

the low end of the range is a major concern in selecting a measuring system. To 

minimize uncertainty, the experimenter should select measuring systems so that 

important readings will fall in the middle to upper portions of the range. 

 

 

2.2.1.2  Resolution 

 

 Some elements are characterised by the output increasing in a series of discrete 

steps or jumps in response to a continuous increase in input (Figure 2.2). Resolution is 

defined as the largest change in input that can occur without any corresponding change 

in output. 


