DEVELOPMENT OF FOUR WHEEL STEERING FOR VEHICLE HANDLING ENHANCEMENT

LAI QILI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SUPERVISOR DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report in sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive)."

Signature:	
Supervisor:	
Date:	

DEVELOPMENT OF FOUR WHEEL STEERING FOR VEHICLE HANDLING ENHANCEMENT

LAI QILI

This report is submitted in partial fulfillment of the requirements for the award of a Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2013**

DECLARATION

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature:	
Author:	
Date:	

Special thanks to my parents and my supervisor

ACKNOWLEDGEMENT

Special thank for my Final Year Project supervisor, Mr Amrik Singh for guiding me and giving a lot of beneficial ideas for me to complete my Final Year Project. Thank also for my both Final Year Project panel Engr Dr Mohd Azman Bin Abdullah and Mr Hilmi Bin Amirudin for giving me some ideas and comments during my Final Year Project Presentation which help me a lot in improvement of my Final Year Project Report. Besides that, I would also want to thank my course mate, friends from other faculty and other university for helping in finding the related material as well as journals as my reference for my Final Year Project. I would also want to thank my parents for giving me moral support and financial support when I was doing my Final Year Project.

Finally, I would also want to wish my appreciation to all of my lecturer and staffs of UTeM for giving a chance to complete such a valuable Final Year Project which will help me a lot in the future. At last, I would like to thank again for all those who spent their valuable time for helping me to complete this Final Year Project.

ABSTRAK

kenderaan pacuan empat roda juga dikenali sebagai kenderaan pacuan semua roda yang digunakan untuk meningkatkan pengendalian stereng dan meningkatkan kestabilan kenderaan. Dalam projek ini, kesilapan kadar rewang dan kesilapan sudut slip sisi kenderaan 4WS yang dikaji. Apabila kenderaan 2WS menjalani selekoh tajam atau lorong berubah pada kelajuan tinggi, ia akan mempunyai kecenderungan untuk berlaku understeer dan oversteer. Dengan adaptasi sistem stereng empat roda, ia akan mengurangkan kesilapan kadar rewang dan sudut slip sisi kenderaan dan mengurangkan masalah oversteer dan understeer. Objektif projek ini adalah untuk membangunkan model dinamik kenderaan dan membangunkan strategi kawalan stereng aktif empat roda. Skop projek ini termasuk pembangunan model matematik dan Matlab/SIMULINK untuk mewakili kelakuan dinamik kenderaan dalam arah membujur, pengesahan model kenderaan disahkan dengan perisian dinamik dan pembangunan aktif kenderaan pacuan empat roda untuk penambahbaikan pengendalian kenderaan. Model basikal 2 DOF dibangunkan, pengesahan dilakukan ke atas model kenderaan dengan CarSim dengan dua ujian iaitu ujian perubahan lorong dan ujian stereng step. Pengawal PID dan pengawal logik fuzzy dibangunkan dalam model kenderaan, dan simulasi dilakukan untuk membuat perbandingan. Ia mendapati bahawa kedua-dua pengawal P dan pengawal logik fuzzy dapat mengurangkan kadar rewang dan sudut slip sisi kenderaan semasa membelok. Pengawal P melakukan lebih baik daripada pengawal logik fuzzy dalam mengawal input tunggal manakala pengawal logik kabur prestasinya lebih baik dari segi mengawal dua input pada masa yang sama. Hasil telah membuktikan keupayaannya untuk mengurangkan sudut slip sisi kenderaan dan kesilapan kadar rewang dan dengan itu mengurangkan kecenderungan untuk berlaku understeer dan oversteer.

ABSTRACT

Four wheel steering is also known as all wheel which is used to improve handling and improve the vehicle stability. In this project, the yaw rate error and vehicle side slip angle error of a 4WS vehicle are been studied. When a 2WS vehicle undergoes sharp cornering or lane changing at high speed, it will have the tendency to occur understeer and oversteer. With adaption of four wheel steering system, it will reduce the yaw rate error and vehicle side slip angle error thus reducing the oversteer and understeer problems. The objectives of this project are to develop vehicle dynamics model and develop active four wheel steering control strategy. The scope of this project includes development of the mathematical model and Matlab/SIMULINK to represent dynamic behavior of the vehicle in longitudinal direction, validation of vehicle model with validated vehicle dynamics software and development of active four wheel steering for vehicle handling improvement. 2 DOF bicycle model was developed, validation was done on the vehicle model with CarSim with double lane change test and step steer test. PID controller and the fuzzy logic controller were developed in the vehicle model, and simulation was done to do comparison. It is found out that both P controller and fuzzy logical controller can able to reduce the yaw rate and the vehicle side slip angle of the vehicle during cornering. P controller performs better than fuzzy logic controller in term of controlling single input while fuzzy logic controller perform better in term of controlling two inputs at the same time. The developed has proven the its capability to reduce the vehicle side slip angle and yaw rate errors and hence reduced the tendency to understeer and oversteer.

TABLE OF CONTENTS

CHAPTER	TITLI	Ξ	PAGE
	DECI	ΑΡΑΤΙΟΝ	::
	DECL		
	DEDI		111
	ACKN	IOWLEDGEMENT	1V
	ABST	RAK	V
	ABST	RACT	vi
	TABL	E OF CONTENTS	vii
	LIST	OF TABLES	Х
	LIST	OF FIGURES	xi
	LIST	OF SYMBOLS	xiv
	LIST	OF APPENDICES	xvii
	LIST	OF ABBREVIATIONS	xviii
CHAPTER I	INTR	ODUCTION	1
	1.1	Overview	1
	1.2	Problem Statements	3
	1.3	Objectives	3
	1.4	Scopes	4
	1.5	Thesis Outlines	4
CHAPTER II	LITEI	RATURE REVIEW	6
	2.1	Introduction	6
	2.2	Vehicle Modeling	9
		2.2.1 Vehicle Modeling Assumption	10

PA	GE
----	----

viii

	3.2	Develo	pment 2 Dof Mathematical Equations	36
	3.1	Flow o	f Project	35
CHAPTER III	METH	ODOLO	DGY	35
		Structu	re	33
	2.12	The Or	peration Four Wheel Steering Control	
	2.11	Operati	ion of Fuzzy Logic Controller	31
	2.10	Vehicle	e Stability Control System	30
		Assess	ment	27
	2.9	Vehicle	e Dynamics Test for Vehicle Handling	
		2.8.3	Neutral Steer	27
		2.8.2	Oversteer	26
		2.8.1	Understeer	26
	2.8	Unders	teer Gradient	25
		2.7.5	Linear Tire Model	25
		2.7.4	Calspan Tire Model	22
		2.7.3	Magic Tire Model	21
		2.7.2	Dugoff Tire Model	20
	<i></i> 1	2.7.1	Fiala Tire Model	20
	2.7	Tire M	odel	19
	2.5	Slin Ar	nole	10
	2. 4 2.5	Longit	udinal Slin	10
	2.5 2.4	Tire Fo		13
	22	Z.Z.O	Model Validation	14 1 <i>5</i>
		2.2.7	Simulation Software	13
		2.2.6	8 Dot Handling Model	13
		2.2.5	 Dof Handling Model 2 Dof Handling Model 	12
		2.2.4	5 Dof Vehicle Model	12
		2.2.3	4 Dof Vehicle Model	12
		2.2.2	Lateral Bicycle Model	11

CHAPTER TITLE

		3.2.1	Derivation of 2 Dof Bicycle Model	37
	3.3	Develop	pment of Matlab/SIMULINK Model	39
	3.4	Validat	ion of 2 Dof Bicycle Model	40
	3.5	Control	ler Design	45
CHAPTER IV	RESUL	.TS ANI	DDISCUSSIONS	52
	4.1	P Contr	oller	52
		4.1.1	Step Steer Test Results for P Controller	53
		4.1.2	Double Lane Change Test Results for P	
			Controller	54
	4.2	Fuzzy I	Logic Controller	56
		4.2.1	Step Steer Test Results for Fuzzy Logic	
			Test	56
		4.2.2	Double Lane Change Test Results for	
			Fuzzy Logic Test	58
CHAPTER V	CONC	LUSION	AND RECOMENDATIONS	60
	5.1	Conclus	sion	60
	5.2	Future l	Recommendation	61
	REFER	RENCE		62
	APPEN	DICES		67

LIST OF TABLES

NO	TITLE	PAGE

2.1	Dimension of the length section for double lane change test	
	(Source: Department for Transport, Energy and Infrastructure,	
	2006)	28
2.2	Dimension of the length section for double lane change test	
	(Source: Department for Transport, Energy and Infrastructure,	
	2006)	28
2.3	Components in 4WS vehicle	33
3.1	Parameters of the vehicle model	24
3.2	P value for vehicle side slip angle for step steer test	46
3.3	P value for yaw rate for step steer test	46
3.4	Fuzzy logic controller rules	50
3.5	Tuning range for the inputs and output of fuzzy logic control	51

LIST OF FIGURES

NO TITLE

1.1	The configuration of the wheel during high speed turning	2
1.2	The configuration of wheel during low speed turning	2
2.1	Side slip angle of 2WS	
	(Source: Irie and Kuroki, 1990)	7
2.2	Comparison of yaw rate for the active steer system and the	
	conventional system	
	(Source: Zhang and Tong, 2011)	8
2.3	Comparison of the avoidance manoeuvre with a vehicle with	
	2WS (conventional steering) and 4WS	
	(Source: Brabec et al., 2004)	8
2.4	The coordinate system defined by SAE	
	(Source: Miliken, 1995)	10
2.5	2 DOF bicycle model	
	(Source: Yin and Chen, 2008)	11
2.6	The contact patch of tire	
	(Source: Rajamani, 2012)	17
2.7	Moments and the forces from the tire	
	(Source: Rajamani, 2012)	18
2.8	Formation of the longitudinal slip ratio	
	(Source: Rajamani, 2012)	19
2.9	Tire slip angle	19
2.10	Example of graph of lateral force versus tire load	25

2.11	Basic understeer gradient plot	
	(Source: Edwards, 2008)	26
2.12	Placement of cones for marking the lane change	28
2.13	Graph of steering wheel angle versus lateral acceleration	
	(Source: Chen et al., 2010)	29
2.14	Summary of the overall fuzzy logic controller	
	(Source: Marzuki, 2011)	32
2.15	Control structure of 4WS vehicle	
	(Source: Liubakka, 1995)	34
3.1	Flow chart of the project	36
3.2	Free body diagram top view vehicle	37
3.3	Input and output of 2 DOF bicycle model	40
3.4	CarSim graphical user interface	40
3.5	Plots in CarSim	41
3.6	Input of front road wheel angle for double lane change test	42
3.7	Input of front road wheel angle for step steer test	42
3.8	Validation of vehicle side slip angle for step steer test	43
3.9	Validation of yaw rate for step steer test	43
3.10	Validation of vehicle side slip angle for double lane change	
	test	43
3.11	Validation of yaw rate for double lane change test	44
3.12	PID controller structure for vehicle side slip angle of double	
	lane change test	45
3.13	PID controller structure for yaw rate of double lane change	
	test	46
3.14	Fuzzy logic controller structure for step steer test	47
3.15	The inputs for the fuzzy logical controller	48
3.16	Setting the memberships function	48
3.17	Selection of type of type of memberships function	49

3.18	The memberships function for yaw rate error	49
3.19	The memberships function for vehicle side slip angle	49
3.20	The memberships function for rear road wheel angle	50
4.1	Graph of vehicle side slip angle for P Controller and passive	
	model for step steer test	54
4.2	Graph of yaw rate for P Controller and passive model for step	
	steer test	54
4.3	Graph of vehicle side slip angle for P controller and passive	
	model for double lane change test	55
4.4	Graph of yaw rate for P controller and passive model for	
	double lane change test	55
4.5	Graph of comparison of fuzzy logic controller with other	
	controller for vehicle side slip angle versus time (step steer	
	test)	57
4.6	Graph of comparison of fuzzy logic controller with other	
	controller for yaw rate versus time (step steer test)	58
4.7	Graph of comparison of fuzzy logic controller with other	
	controller for vehicle side slip angle versus time (double lane	
	change test)	59
4.8	Graph of comparison of fuzzy logic controller with other	
	controller for yaw rate versus time (double lane change test)	59

LIST OF SYMBOLS

ω	=	Angular Velocity of Wheel, rad/s
R_{w}	=	Tire Size, m
$V_{_{wx}}$	=	Longitudinal Velocity of Wheel, m/s
σ	=	Total Slip
σ_{y}	=	Lateral Slip
σ_{x}	=	Longitudinal Slip
F_{z}	=	Tire Normal Force, N
$\sigma_{\scriptscriptstyle m}$	=	Total Slip where sliding occurs in Fiala Tire Model
α	=	Tire Slip Angle, rad
μ	=	Coefficient of Friction of Tire
F_{x}	=	Longitudinal Tire Force, N
F_{y}	=	Lateral Tire Force, N
В	=	Stiffness Factor
С	=	Shape Factor
D	=	Peak Factor
Ε	=	Curvature Factor
S_h	=	Horizontal Shift, m
S_{v}	=	Vertical Shift, m
X	=	Slip Input Variable
Y	=	Output Variable
M_{x}	=	Overturning Moment, Nm
M _y	=	Rolling Resistance Moment, Nm
M_{z}	=	Aligning Moment, Nm

$C_{lpha f}$	=	Cornering Stiffness of Front Tire, Ns/rad
$C_{\alpha r}$	=	Cornering Stiffness of Rear Tire, Ns/rad
M_{T}	=	Total Mass of Car, kg
$\dot{V_x}$	=	Longitudinal Acceleration of Car, m/s^2
V_y	=	Lateral Velocity of Car, m/s
V_{x}	=	Longitudinal Velocity of Car, m/s
ψ̈́	=	Yaw Rate, <i>rad/s</i>
${\delta}_{\scriptscriptstyle f}$	=	Front Steering Angle, rad
δ_{r}	=	Rear Steering Angle, rad
F_{yr}	=	Lateral Force of Rear Tire, N
$F_{_{y\!f}}$	=	Lateral Force of Front Tire, N
ψ̈́	=	Yaw Rate, <i>rad/s</i>
F_{xrl}	=	Longitudinal Force of Rear Left Tire, N
$F_{x\!fr}$	=	Longitudinal Force of Front Right Tire, N
$F_{\it xfl}$	=	Longitudinal Force of Front Left Tire, N
F _{xrr}	=	Longitudinal Force of Rear Right Tire, N
$F_{_{yrl}}$	=	Lateral Force of Rear Left Tire, N
$F_{\scriptscriptstyle y\!f\!r}$	=	Lateral Force of Front Right Tire, N
F_{yrr}	=	Lateral Force of Rear Right Tire, N
$F_{_{y\!f\!l}}$	=	Lateral Force of Front Left Tire, N
M_{ψ}	=	Moment of the Yaw Motion, $kgms^{-1}$
I_{ψ}	=	Inertia of Yaw Motion, rad/s
Ψ̈́	=	Yaw Acceleration, rad/s^2
W	=	Track Width of Car, <i>m</i>
$\dot{V_y}$	=	Lateral Acceleration of Car, ms^{-2}
L_r	=	Distance of Sprung Mass Centre of Gravity from the Rear Axle, m
L_{f}	=	Distance of Sprung Mass Centre of Gravity from the Front Axle, m

$lpha_{_f}$	=	Slip Angle of Front Tire, rad
α_r	=	Slip Angle of Rear Tire, rad
e_{ψ}	=	Yaw Rate Error, <i>rad/s</i>
e_{β}	=	Vehicle Side Slip Angle Error, rad
K_{p}	=	Proportional Gain of PID controller
K_i	=	Integral Gain of PID controller
K_{d}	=	Derivative Gain of PID controller
$\dot{\psi}_{\scriptscriptstyle des}$	=	Desired Yaw Rate, rad/s
$\dot{oldsymbol{eta}}_{\scriptscriptstyle des}$	=	Desired Vehicle Side Slip Angle, rad

LIST OF APPENDICES

NO TITLE

Δ	2 DOE SIMULINK Model	67
Π	2 DOI SINICLIAR Model	07
В	Slip Angle of SIMULINK Model	68
С	Handling of SIMULINK Model	69
D	Yaw Acceleration of SIMULINK Model	70
Е	Lateral Acceleration of SIMULINK Model	71
F	Gantt chart for PSM 1	72
G	Gantt chart for PSM 2	73

xvii

LIST OF ABBREVIATIONS

DOF	Degree of Freedom
4WS	Four Wheel Steering
FYP	Final Year Project
LVDT	Linear Variable Differential Transformer
LTI	Linear Time Invariant
SISO	Single Input and Single Output
PID	Proportional Integral Derivative
2WS	Two Wheel Steering
UTeM	Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.1 OVERVIEW

The demand of the improving the vehicle handling of vehicle, stability has been motivating the researcher to go deep in the research vehicle handling by development of driver assistance system such as active braking, active steering and active suspension. Among all of the vehicle subsystem, the steering system has the great effect on the vehicle handling. The four wheel steering as well as the steer by wire is the most recent research that most of the researcher involving in.

Four wheel steering is also known as all wheel steering which the rear wheel can be steered actively during turning maneuvers. The four wheel steering is different with the four wheel drive as in the four wheel drive all the wheels are powered while in the four wheels steering its function is to improve handling and helps the vehicle to make tighter turns. In 1907, a patent was made in Japan for a four wheel steering (4WS) system in which front and rear wheel steering mechanisms were connected by means of a shaft (Irie and Kuroki, 1990).

When comparing 4WS and 2WS, 4WS offers following advantages that are superior cornering stability, the steering responsiveness and precision improvement, rapid lane changing manoevers improvement and reducing the turning radius at low speed (Hiller and Coombes, 2004). Active four wheel operate with the front wheel do the most of the steering whereby the turning of the rear wheel is limited to the half around 5 to 6 degree turning during the opposite direction turn (Knowles, 2002). When vehicle is in high speed and need to move sideways, both of the front and the rear wheels will turn in the same direction (Cao et al., 2010) which the wheels are called positive-phase steering, where a quick side movement can be made. When the vehicle speed is about 96 km/h and the steering wheel is turn at 100 °, the rear wheel will turn about 1 ° in the same direction of the front wheels yet if at this speed the steering wheel is turned 500 ° then the rear wheel will turn 1 ° opposite direction to the front wheels. When it is in low speed and need to turn a sharp turn, the rear wheels will turn in the opposite direction with about 5 °- 6 ° of the front wheels (Knowles, 2002). Figure 1.1 and Figure 1.2 shows that the configuration of the wheel of a four wheel steering when it is in high speed and when it is in low speed.

Figure 1.1: The configuration of the wheel during high speed turning

Figure 1.2: The configuration of wheel during low speed turning

2

1.2 PROBLEM STATEMENTS

When a two wheel steering vehicle undergoes sharp corner and lane change during high speed, the turning radius of steering perform less than supposed steering turning radius, this occur because of the slide forces that act on the vehicle pushing the front of the vehicle into the corner and rotates the vehicle to the corner due to the slip angle which will eventually lead to understeer. Another possibility will occur is that when the vehicle undergoes a sharp corner with high speed, the turning radius of the vehicle perform more than suppose steering turning radius whereby it is due to the unbalance occur because of the shifting of the centre of gravity which will lead to oversteer (O'Hara, 2005).

One of the methods to reduce the possibility for the vehicle to understeer and oversteer is by using active four wheel steering as proposed in this project. With the adaption of four wheel steering system, the turning radius could be reduced and the yaw rate error and vehicle side slip angle error will be reduced as well as increasing the grip of tire on the road since both of the tire is pointed in the same direction, with this it can prevent the unbalance occur due to the slide forces or shifting of the center of gravity which will lead to understeer and oversteer (Gilles, 2004).

1.3 OBJECTIVES

The objectives of this project are:

- 1. To develop vehicle dynamics model.
- 2. To develop active four wheel steering control strategy.

1.4 SCOPES

The scopes of this project are as follow:

- 1. Development of the mathematical model and Matlab/SIMULINK to represent dynamic behavior of the vehicle in longitudinal direction.
- 2. Validation of vehicle model with validated vehicle dynamics software.
- 3. Development of active four wheel steering for vehicle handling improvement.

1.5 THESIS OUTLINES

In Chapter I, overview of the project is done where the introduction of the 4WS vehicle and the operation of the 4WS vehicle are briefly explained in this chapter. The advantages and disadvantages of the 4WS vehicle as well as the operation of the 4WS during high speed or slow speed are also explained in this chapter. Objective, scope and problems statement are defined in this chapter.

In Chapter II, study on the literature review on the current research on journal paper was done. Information such as types of degree of freedom used in the vehicle modeling, type of controller used in the 4WS vehicle, simulation software that been used for simulation of the vehicle model, validation method for the vehicle model, type of test for the 4WS car, types of tire model that been used for the study for the 4WS car is covered in this chapter.

In Chapter III, the research method that used for this project is fully explained in this chapter. Development of 2 DOF bicycle model mathematical model, derivation of 2 DOF bicycle model, development of the Matlab/SIMULINK model and the validation process of the 2 DOF bicycle model with double lane change test and step steer test with 120 km/h as well as finding the parameters for the Matlab/SIMULINK in CarSim are covered in this chapter. The method of tuning for the both controller such as PID controller and fuzzy logic controller are also covered in this chapter.

In Chapter IV, the simulation is done for 2 DOF bicycle model using double lane change test and step steer test. The results in this chapter consist of effect of yaw