IMPROVEMENTS OF WHEEL NUTS REMOVER

NURFARAHIN BINTI SULAIMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

SUPERVISOR'S DECLARATION

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the 'Final Year Project' as required."

Signature	:	
Author	:	ENGR. DR. MOHD AZMAN BIN ABDULLAH
Date	:	28 th of June 2013

IMPROVEMENTS OF WHEEL NUTS REMOVER

Nurfarahin binti Sulaiman

This report is submitted in fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering (Design and Innovation)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

June 2013

DECLARATION

"I hereby declare that the project is based on my original work except for quotations and citations which have been duly acknowledged."

Signature	:	
Author	:	NURFARAHIN BINTI SULAIMAN
Date	:	28 th of June 2013

Special for Beloved Parents

Sulaiman bin Osman

Rasiah binti Baba

Beloved siblings

Relatives and friends

ACKNOWLEDGEMENT

Alhamdulillah, first and foremost I would like to thank Allah The Almighty who gave me the courage and immense strength to perceive through all sorts of difficulties until this research work was completed. The hardship that I have experienced will never be forgotten.

Secondly, I would like extend my gratitude to both of my parents, Mr Sulaiman bin Osman and Mrs Rasiah binti Baba for empowering their blessings throughout this project. I would also like to thank my relative, Adam Akif Nicholas who was always enthusiastic and motivated me to complete my dissertation.

I would like to thank specially my supervisor, Engr. Dr. Mohd Azman bin Abdullah who encouraged me and never hesitated to help me out during my study. I wish to express my warm and sincere gratitude towards him who encouraged and guided me throughout my research study.

I immensely thank all of my friends who were always there to lend me their hands. They have been of great help in providing the unlimited guidance, help and support and their assistance is highly appreciated.

ABSTRACT

During the globalization era on the 21st century, transportation has become one of the most important needs in human's life. Almost every family has got at least one car to travel from one place to another. With the increased technology and the living standard, number of cars on the road each day has also been increased. This means that the needs and facilities for the repairing of the vehicles are also important. Car maintenance is of the major factor in keeping the life span of the car. Therefore, car manufacturers will equip the wheel nuts removing tools and a car jack for tire replacement in emergency case. The wheel nuts remover is design to help the users during the removal or loosen of the wheel nuts before tire replacement activity. The existing wheel nuts remover has been designed to remove all the four nuts together at a time. But, it is too heavy and the weight has reached up to 9.5 kg which is not convenience for the users to remove to wheel nuts. Therefore, a research has been done on the improvements of the existing wheel nuts remover in terms of the design, material used and also the weight of the wheel nuts remover. During the studies, 100 PCD wheel nuts size has been identified to be the most popular types of wheel nuts used by Malaysian's car. In this research, the wheel nuts remover has been designed by using the commercial CAD software with the 100 PCD wheel nuts size as reference. Life cycle analysis has also been done in this research to quantitatively assess the environmental impact of a product throughout its entire lifecycle.

ABSTRAK

Dalam era globalisasi pada abad ke-21, pengangkutan telah menjadi salah satu keperluan yang penting dalam kehidupan manusia. Hampir setiap keluarga mempunyai sekurang-kurangnya satu kereta untuk bergerak dari satu tempat ke satu tempat yang lain. Dengan peningkatan teknologi dan taraf hidup, bilangan kereta di jalan raya juga telah meningkat setiap hari. Ini bermakna, keperluan dan kemudahan untuk membaiki kenderaan juga penting. Penyelenggaraan kereta adalah satu faktor utama dalam mengekalkan jangka hayat kereta. Oleh itu, pengeluar kereta akan melengkapkan alat pembuka nat roda dan jack kereta untuk penggantian tayar dalam kes kecemasan. Pembuka nat roda telah direkabentuk untuk membantu pengguna semasa membuka atau melonggarkan nat roda sebelum aktiviti penggantian tayar. Pembuka nat roda yang sedia ada telah direka untuk membuka keempat-empat nut roda pada satu masa yang sama. Walaubagaimanapun, pembuka nut tayar yang sedia ada adalah terlalu berat sehingga mencecah 9.5 kg dan sukar bagi pengguna untuk membuka nut roda. Oleh itu, satu kajian telah dilakukan dalam penambahbaikan pembuka nat roda yang sedia ada dari segi reka bentuk, bahan yang digunakan dan juga berat pembuka nat roda tersebut. Semasa kajian, saiz 100 PCD nat roda telah dikenal pasti sebagai jenis nat roda yang paling banyak digunakan pada kereta-kereta di Malaysia. Dalam kajian ini, pembuka nat roda telah direkabentuk dengan menggunakan perisian CAD komersial dengan berpandukan saiz 100 PCD nat roda sebagai rujukan. Analisis kitaran hidup juga telah dilakukan dalam kajian ini untuk menilai secara kuantitatif tentang kesan produk terhadap alam sekitar sepanjang keseluruhan kitaran hayat produk tersebut.

TABLE OF CONTENTS

CHAPTER	CON	ITENTS	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGEMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	Γ OF TABLES	xi
	LIST	Γ OF FIGURES	xiii
	LIST	FOF SYMBOLS	xvi
	LIST	FOFAPPENDICES	xvii
	LIST	FOF ABBREVIATION	xviii
CHAPTER	1 INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	2
	1.3	Objectives	2
	1.4	Scope	2
CHAPTER	2 LITI	ERATURE REVIEW	3
	2.1	Introduction	3
	2.2	Wheel Nuts Remover	3
		2.2.1 Socket Wrench	4
		2.2.2 Ratchet	5

C Universiti Teknikal Malaysia Melaka

	2.2.3	Cross Wrench, L Socket Wrench, Rim Wrench	7
	2.2.4	Impact Wrench	9
2.3	Wheel	Technical Information	10
	2.3.1	Bolt Pattern	10
	2.3.2	Pitch Circle Diameter	12
	2.3.3	Offset	14
	2.3.4	Wheel Backspace	16
	2.3.5	Tyre Size	17
	2.3.6	Centre Bore	18
2.4	Safe U	Jse of Hand Tools	22
2.5	Gear		25
	2.5.1	Helical Gear	26
	2.5.2	Worm Gear	26
	2.5.3	Spur Gear	27
	2.5.4	Bevel Gear	28
2.6	Gears	Terminology	29
	2.6.1	Pitch Circle	33
	2.6.2	Pitch Point	33
	2.6.3	Pitch Diameter, DP	34
	2.6.4	Number of Teeth, N	34
	2.6.5	Circular Pitch	34
	2.6.6	Base Circle	34
	2.6.7	Base Diameter	34
	2.6.8	Face Width, F	35
	2.6.9	Addendum, a	35
	2.6.10	Dedendum, b	35
	2.6.11	Whole Depth, ht	35
	2.6.12	Diametral Pitch, Pd	36
	2.6.13	Module, m	36
	2.6.14	Clearance, c	36
	2.6.15	Pressure Angle, Ø	37

2.7	Basis	of Gear Material	37
2.8	Gas M	fetal Arc Welding (MIG)	39
	2.8.1	Usage	40
	2.8.2	Advantages	41
CHAPTER 3 MET	HODO	LOGY	42
3.1	Introd	uction	42
3.2	Gantt	Chart	42
3.3	Flow	Chart	44
3.4	House	e of Quality	45
3.5	Morpl	nological Chart	51
3.6	Conce	eptual Design	52
	3.6.1	Types of Design	53
	3.6.2	Weighted Decision Matrix	56
	3.6.3	CAD Drawings	62
CHAPTER 4 ANA	LYSIS		83
4.1	Gear l	Ratio, MG	83
4.2	Torqu	е,т	84
	4.2.1	Torque Calculation Method I	86
	4.2.2	Torque Calculation Method II	87
	4.2.3	Torque Calculation Method III	88
	4.2.4	Torque Calculation Method IV	89
	4.2.5	Torque Calculation Method V	90
	4.2.6	Torque Calculation Method VI	91
4.3	Desig	n Analysis	92
	4.3.1	Driver Gear Analysis on Single Acting Force	94
	4.3.2	Driven Gear Analysis on Single Acting Force	96
	4.3.3	Driver Gear Analysis on Double Acting Force	98
	4.3.4	Sample of Simulation Analysis	100
4.4	Stress	es and Safety Factor	104
	4.4.1	Theoretical Results	106
	4.4.2	Analytical Results	112

	4.5	Post Analysis 11		
		4.5.1	Manufacturing Region	117
		4.5.2	Use Region	117
		4.5.3	Air Acidification	118
		4.5.4	Carbon Footprint	120
		4.5.5	Total Energy Consumed	122
		4.5.6	Water Eutrophication	124
CHAPTER 5	DISCU	JSSION	J	126
:	5.1	Introdu	iction	126
:	5.2	Directi	on of Gear Rotation	126
:	5.3	Estima	ted Cost	127
:	5.4	Weight		128
:	5.5	Produc	t Concept	128
:	5.6	Usage	with an Air Gun	129
CHAPTER 6	CONC	LUSIC	N AND RECOMMENDATION	130
	6.1	Conclu	sion	130
	6.2	Recom	mendation	131
		6.2.1	Cost and Weight Reduction	131
		6.2.2	Electric Motor Integration	132
		6.2.3	Power Transmission, Types of Gear and Gear Ratio	133
	REFE	RENCI	ES	134
	APPENDICES 14			140

LIST OF TABLES

NO.	TITLES	PAGE
2.1	Pitch Circle Diameter and the Bolt Arrangements	12
2.2	Offset	14
2.3	Gear Materials Criterion	38
3.1	Gantt Chart	43
3.2	House of Quality	48
3.3	Morphological Chart	51
3.4	Weighted Decision Matrix	58
3.5	Evaluation Scheme for Design Alternatives or Objectives	61
4.1	Torque Reading	85
4.2	Analysis Properties from Driver Gear Analysis on Single Actin	ng
	Force	94
4.3	Analysis Results from Driver Gear Analysis on Single Acting	
	Force	95
4.4	Analysis Properties from Driven Gear Analysis on Single Acti	ng
	Force	96
4.5	Analysis Results from Driven Gear Analysis on Single Acting	
	Force	97
4.6	Analysis Properties from Driver Gear Analysis on Double Act	ing
	Force	98
4.7	Analysis Results from Driver Gear Analysis on Double Acting	
	Force	99
4.8	Analysis Properties	101

4.9	Analysis Results	102
4.10	Value of Yield Strength for Each Material	105
4.11	Theoretical Stresses for Different Face Width	107
4.12	Theoretical Safety Factor Based on Normal Stress	109
4.13	Theoretical Safety Factor Based on Shear Stress	111
4.14	Analytical Results Based on the Simulation Analysis	113
4.15	Material Properties for Each Part	114
4.16	Total Mass Reduction for Different Types of Material	116
4.17	Air Acidification Analysis	119
4.18	Carbon Footprint Analysis	121
4.19	Total Energy Consumed Analysis	123
4.20	Water Eutrophication Analysis	125
5.1	The Estimated Cost of Each Component	127

xii

LIST OF FIGURES

NO.	TITLES	PAGE
2.1	Socket Wrench	4
2.2	Different Sizes of Socket Wrench	5
2.3	Ratchet Mechanism	7
2.4	Cross Wrench	8
2.5	L Socket Wrench	8
2.6	Rim Wrench	9
2.7	Impact Wrench	9
2.8	Wheel Specifications	11
2.9	Bolt Pattern with Four Wheel Nuts	11
2.10	Multi-Lug Socket Tool Pattern	13
2.11	Wheel Backspace	16
2.12	2", 3" and 4" Wheel Backspace	17
2.13	Tyre Identification	18
2.14	Centre Bore Position	19
2.15	Hub Centric	19
2.16	Wheels with Hub Centric and Lug Centric	20
2.17	Hub Centric Ring	20
2.18	Lug Centric	21
2.19	Wheel Nut Head Position According to the Types of Nut	21
2.20	The Center of Gravity of the Vehicle	24
2.21	Helical Gear	26
2.22	Worm Gear	27

2.23	Spur Gear	28
2.24	Bevel Gear	29
2.25	Basic Terminology of Spur Gears	30
2.26	Terminology Definition for Spur Gears	31
2.27	Gear Tooth Size	32
2.28	Ordinary Gear Train	33
2.29	Gas Metal Arc Welding Installation	39
2.30	Gas metal arc welding	40
3.1	Flow Chart	44
3.2	Kano Diagram	46
3.3	Design 1	53
3.4	Design 2	54
3.5	Design 3	55
3.6	Weighting Factor	57
3.7	Socket Wrench	62
3.8	CAD Drawings of Socket Wrench	63
3.9	Casing	64
3.10	CAD Drawings of Top Casing	65
3.11	CAD Drawings of Bottom Casing	66
3.12	Gliding tube	67
3.13	CAD Drawings of Large Gliding Tube	68
3.14	CAD Drawings of Small Gliding Tube	69
3.15	Shaft of Driver Gear	70
3.16	CAD Drawings for Driver Gear Shaft	71
3.17	Shaft of Driven Gear	72
3.18	CAD Drawings for Driven Gear Shaft	73
3.19	Driver Gear	74
3.20	CAD Drawings of Driver Gear	75
3.21	Driven Gear	76
3.22	CAD Drawings of Driven Gear	77
3.23	Assembly Part of Socket Wrench Extension, Driven Gear Shaft,	

	Driven Gear and Gliding Tube	78
3.24	Assembly Part of Driver Gear Shaft, Driver Gear and Gliding Tube	e79
3.25	Gears Arrangement	80
3.26	Product Assembly from View 1	81
3.27	Product Assembly from View 2	81
3.28	Product Assembly from View 3	82
4.1	Wheel Nuts Torque Readings	84
4.2	Torque Calculation Method I	86
4.3	Torque Calculation Method II	87
4.4	Torque Calculation Method III	88
4.5	Torque Calculation Method IV	89
4.6	Torque Calculation Method V	90
4.7	Torque Calculation Method VI	91
4.8	Direction of Force	93
4.9	Driver Gear	100
4.10	Von Misses Stress	103
6.1	Material Density versus Price	132

XV

LIST OF SYMBOLS

D _b	=	Base Diameter
Dp	=	Pitch Diameter
h _t	=	Whole Depth
M _G	=	Gear Ratio
P _d	=	Diametral Pitch
Ø	=	Pressure Angle
a	=	Addendum
b	=	Dedendum
c	=	Clearance
F	=	Face Width
F	=	Force
m	=	Module
N	=	Number of Teeth
Р	=	Circular Pitch
τ	=	Torque

LIST OF APPENDICES

NO.	TITLES	PAGE	
A (1)	Simulation Steps by Using SolidWorks 2012	140	

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

CAD	=	Computer Aided Design
CAE	=	Computer Aided Engineering
CG	=	Centre of Gravity
CO_2	=	Carbon Dioxide
CTQ CRs	=	Critical To Quality Customer Requirements
DC	=	Direct Current
EP	=	Electrode Positive
FWD	=	Front Wheel Drive
FYP	=	Final Year Project
GWP	=	Global Warming Potential
LCA	=	Life Cycle Assessment
MIG	=	Metal Inert Gas
MJ	=	Mega Joules
Ν	=	Nitrogen
PCD	=	Pitch Circle Diameter
PED	=	Primary Energy Demand
PO_4	=	Phosphate
RWD	=	Rear Wheel Drive
SO_2	=	Sulphur Dioxide

CHAPTER 1

INTRODUCTION

1.1 Introduction

Acquiring a car is now considered as one needs, compared to the past where it was considered a luxury. Vehicles are vital in today's fast-paced community. Without these vehicles for transportation, business will never grow, whereas the client demands will scarcely meet. Nowadays, more vehicles are manufactured to satisfy the increasing demand people and businesses from all around world (Corpeducar, 2010).

Every automobile owner occasionally go extra miles which give their automobile maintenance so desperately need. Since cars play a significant role in our life, it is extremely necessary for us to constantly and frequently maintain our cars and keeps them in a proper form that they may implement to our standards (Vishnu, 2012).

Whenever there is any problem happens on the car tyre, the wheel nuts might need to remove before changing the tyre. Virtually every car now has an L-shaped wrench and a car jack supplied by the car manufacturer. But it causes inconvenience to the users because it requires a lot of energy to remove each of the wheel nuts. According to Abd Rahim (2007), great care should be taken not to strip out the lug wrench socket. If the end of the lug wrench bent sleeve is not attached to the proper lug nuts, excessive force can damage the nut or socket.

For this Final Year Project, the wheel nuts remover is designed with 100 pitch circle diameter (PCD). The device operates with the use of a gear system that will minimize the force needed to remove all the four nuts at a time. In Malaysia, the 100 PCD wheel nuts size is widely used. Therefore, the 100 PCD wheel nuts size is used as a reference for this project.

1.2 Problem Statement

The existing wheel nuts remover is too heavy and it is not convenience to be a portable wheel nuts remover. It is hard to be used because of the heavy weight. It cannot perform well to remove the car wheel nuts and some of the wheel nuts remover cannot remove all the four nuts at a time. Therefore, it is a problem to remove the wheel nuts when the equipment is not convenience to perform work. With all of the problems stated, it is vital to design a wheel nuts remover that only requires a small energy but can remove all the wheel nuts easily and the weight should also be appropriate so that it does not contribute to the difficulty in removing the wheel nuts.

1.3 Objectives

The main objective of this Final Year Project is to improve the existing wheel nuts remover in terms of the weight of the product. Besides, this project is carried out to improve the existing wheel nuts remover in terms of the design and also the material used for this product.

1.4 Scope

The scope of this Final Year Project is to design a 100 PCD wheel nuts remover by using the commercial CAD software. Besides, the scope is to analyse the CAD model by using the CAE software.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this project, the 100 PCD wheel nuts size is used as a reference. A new research and study should be done towards the previous researches regarding this topic, so that improvements can be made toward the wheel nuts remover. Research have been done on the tools needed in removing the wheel nuts, types of wheel nuts, wheels specification, types of gears, basic gears calculation and also the specification of material that is going to be used.

2.2 Wheel Nuts Remover

A wheel nuts remover is used to open and tighten the nuts on a car wheel. Wheel nuts serve to hold the tire on the axle so that the wheel rims are in a tight situation. The rod of a wheel nuts remover must be strong enough so that the consumers can easily tighten and loosen the nuts on the wheel due to the torque produced. Usually, most of the manufacturers will equip the vehicles with the wheel nuts remover as one of the important equipments. There are various types of wheel nuts remover in the market. Examples wheel nut remover available in the market at present are the impact wrench, cross wrench or L and also the socket wrench. Each wrench is used according to the size of the nuts on the wheel.

2.2.1 Socket Wrench

Socket wrench is a wrench where the heads of the socket can be changed according to the sizing needed that will be used to open different bolts or fasteners. The most common form is known as the ratchet teeth that consist of a built-in unidirectional mechanism. Therefore, it can be turned around with the help of the rear movement and it is also can be used in a limited space. **Figure 2.1** and **Figure 2.2** shows the examples of socket wrench.

Figure 2.1: Socket Wrench (Pioneers, 2012)

