ANALYSIS OF BENDING AND STRAIGHT WAVEGUIDE USING MATLAB AND GRAPHICAL USER INTERFACE (GUI)

NOOR FATIN BINTI AB ABAS

This report submitted in partial fulfilment on the requirements for the award of Bachelor in Electronic Engineering (Telecommunication Electronics) with Honours

Faculty of Electronics and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2013

C Universiti Teknikal Malaysia Melaka

HINALAYSIA MAR PRA	UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek :	ANALYSIS OF BENDING AND STRAIGHT WAVEGUIDE USING MATLAB AND GRAPHICAL USER INTERFACE (GUI)
Sesi Pengajian :	1 2 / 1 3
 Saya NOOR FATIN F disimpan di Perpustakaa 1. Laporan adalah hak 2. Perpustakaan diber 3. Perpustakaan diber pengajian tinggi. 4. Sila tandakan (↓) 	SINTI AB ABAS mengaku membenarkan Laporan Projek Sarjana Muda ini n dengan syarat-syarat kegunaan seperti berikut: milik Universiti Teknikal Malaysia Melaka. arkan membuat salinan untuk tujuan pengajian sahaja. arkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	HAD
	Disahkan oleh:
(TANDATAI	IGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

DECLARATION

I hereby, declared this reported entitled "Analysis of Bending and Straight Waveguide Using Matlab and Graphical User Interface (GUI)" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NOOR FATIN BINTI AB ABAS
Date	:	

DEDICATION

"In the Name of ALLAH, the most Beneficent, the Most Merciful"

Special Dedication to my parents

(Mr. Ab Abas Bin Mohd Salleh and Madam Rafiah Binti Rafii)

To my supervisor Engr. Mohd Muzafar Bin Ismail

My family and my friends

Thank you for all your care, support and believe in me.

APPROVAL

This report is submitted to the Faculty of Electronics and Computer Engineering of UteM as a partial fulfilment of the requirements for the Degree of Bachelor in Electronic Engineering (Telecommunication Electronics)

.....

ENGR. MOHD MUZAFAR BIN ISMAIL

(Official Stamp of Supervisor)

ACKNOWLEDGEMENT

Alhamdulillah....Praise to ALLAH S.W.T....

Apart from this effort, this study entitled "Analysis of Bending and Straight waveguide using MATLAB and Graphical User Interface (GUI)" is successfully done within the time given. I would like to take this opportunity to express my gratitude to the people who have given their support in accomplishing this thesis. First and foremost Engr. Mohamad Muzafar Bin Ismail for his continues support, helpful advice, valuable guidance and contribution throughout completion of this thesis. He has also been abundantly helpful and has assistd me in numerous ways. This thesis could not have been done without him who not only served as my supervisor but alsp encouraged and guide me by giving his best effort.

My sincere thanks go to all my friends, who helped me directly and indirectly in completing this thesis and also for their contribution, inspirations and supports during doing this thesis. Finally, yet importantly, I would like to express my indebtedness and heartfelt thanks to my beloved parents for their blessings, love and sacrifice throughtout my life. I acknowledge the sincerity of my family who consistently encouraged me to carry on my studies until this level. I cannot find the appropriate words that could properly describe my appreciation for their devition, support and faith in my ability to attain my goals.

ABSTRACT

Analysis of Bending and Straight waveguide modelling is very useful nowadays for it hard to find software that provides mathematical simulation for optical waveguide. This project targeted on modelling Bending and Straight waveguide as the main component in optical devices. The analysis and modelling is important and give extra attention before it can be practically used. The purpose of simulation is to obtain the electric field profile and effective refractive index, peff of the waveguide that varies according to input parameters such as dimension of waveguide structure, refractive index of material and operated wavelength. Matlab and Graphical User Interface (GUI) applied in developing this simulation program using the Matlab R2012a software. GUI will come from the Matlab program, where a window with an editable text field or graphical figures will be used. After inputs and simulation has been simulated, the window will pop out, indicates the output result. The design of the user interface and the functionality of the application will be the final part of the process. This may benefit the user on analytical approximation solutions, time and cost. The objective of this project is to develop simulation software for an optical waveguide structure using GUI. It also to analyst an optical waveguide by using applications from Matlab in order to make analysis work easy and as well as for educational study on computer analysis and design. The obtained result will then be compared with the existing analysis using another method. The factors that contribute to the accuracy of simulated result obtained is agreeable with theory.

ABSTRAK

Analisis Lenturan dan lurus model pandu gelombang sangat berguna pada masa kini kerana ia sukar untuk mencari perisian yang menyediakan simulasi matematik untuk pandu gelombang optik. Projek ini disasarkan pada model pandu gelombang lentur dan lurus sebagai komponen utama dalam alat-alat optik. Analisis dan model adalah penting dan memberi perhatian tambahan sebelum ia boleh digunakan. Tujuan simulasi adalah untuk mendapatkan profil medan elektrik dan indeks biasan yang berkesan, n_{eff} waveguide yang berbeza-beza mengikut parameter input seperti dimensi struktur pandu gelombang, indeks biasan bahan dan gelombang yang dikendalikan. Matlab dan Graphical User Interface (GUI) digunakan dalam membangunkan program simulasi ini menggunakan perisian Matlab R2012a. GUI datang dari program Matlab, di mana tingkap dengan medan teks disunting atau angka grafik akan digunakan. Selepas masukan dan simulasi dimasukkan, tetingkap akan dipaparkan, menunjukkan hasil keluaran. Reka bentuk antara muka pengguna dan fungsi permohonan itu akan menjadi bahagian proses terakhir. Ini boleh memberi manfaat kepada pengguna untuk menyelesaikan masalah dari segi analisis, masa dan kos. Objektif projek ini adalah untuk membangunkan perisian simulasi untuk struktur pandu gelombang optik menggunakan GUI. Ia juga untuk menganalisis pandu gelombang optik dengan menggunakan perisian daripada Matlab untuk membuat analisis yang mudah serta kajian pendidikan mengenai analisis komputer dan reka bentuk. Keputusan yang diperolehi akan dibandingkan dengan analisis yang sedia ada dengan menggunakan kaedah yang lain. Faktor-faktor yang menyumbang kepada ketepatan hasil simulasi dipersetujui dengan teori.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	APPI	ROVAL	iv
	ACK	NOWLEDGEMENT	V
	ABS	ГКАСТ	vi
	ABS	ГКАК	vii
	TAB	LE OF CONTENTS	viii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	OF SYMBOLS	XX
	LIST	OF APPENDICES	xxii
1	INTE	RODUCTION	
	1.1	Background of Project	1
	1.2	Objectives	2
	1.3	Scope of the work	2
	1.4	Problem Statement	2
	1.5	Significant of the work	6
	1.6	Methodology	6
2	LITE	CRATURE REVIEW	
	2.1	Introduction	11
	2.2	Bending waveguide	11
	2.3	Buried waveguide	13
	2.4	Ridge waveguide	14

2.5	Types	of waveguide	15
2.6	Metho	ods on Modeling and Analysis of Bending	
	Wave	guide	16
MAT	ГНЕМА	TICAL ANALYSIS	
3.1	Overv	iew of Numerical Method	18
3.2	Finite	Difference Method	19
МАТ	FLAR A	ND GUI DEVELOPMENT	
A 1	Overv	view of MATLAB Software	25
7.1	4 1 1	Pasia MATLAR Software	25
	4.1.1		25
	4.1.2	Simulation Software	26
4.2	Basic	Graphical User Interface (GUI) features	29
	4.2.1	User of GUIDE	29
	4.2.2	GUI concept for this project	29
RES	ULT, Al	NALYSIS AND DISCUSSION	
5.1	Calcu	lation result and Bending Waveguide	
	Figure	e presentation	58
	5.1.1	Analysis of Effective Refractive Index, n_{eff} ,	
		Normalized Propagation Constant, b, Device	
		Length Waveguide and Normalized Power 62	

- 5.2 Calculation result and Buried Waveguide figure presentation 63 5.2.1 Analysis of Effective Refractive Index,

n_{eff} and Normalized Propagation Constant, b 75

5.3 Calculation result and Ridge Waveguide figure

🔘 Universiti Teknikal Malaysia Melaka

3

4

5

presentation		78
5.3.1	Analysis of Effective Refractive Index,	
	n _{eff} and Normalized Propagation	
	Constant, b in term of thickness, t	83
5.3.1	Analysis of Effective Refractive Index,	
	n _{eff} and Normalized Propagation	
	Constant, b in term of width, w	86

6 CONCLUSION AND RECOMMENDATION

6.1	Conclusion	101
6.2	Recommendation	102

REFERENCES	104
APPENDIX A: Bending Simulation Code	106
APPENDIX B: Buried Simulation Code	116
APPENDIX C: Ridge Simulation Code	124

LIST OF TABLES

NO	TABLE	PAGE
1.1	Comparison with previous work	3
1.2	Comparison of numerical methods	5
5.1	Result of various of input parameter thickness	76
5.2	Comparison with different structure when t varied	85
5.3	Comparison with width difference	98

xi

LIST OF FIGURES

NO	FIGURE	PAGE
1.1	Overview of project design	7
1.2	Overview of flowchart project	8
1.3	Gantt Chart for PSM 1	9
1.4	Gantt Chart for PSM 2	10
2.1	The bend waveguide and its coordinate system	12
2.2	Propagation of the fundamental bend mode in a bend waveguide	12
2.3	Buried waveguide for integrated circuitry	13
2.4	Ridge channel waveguide	14
2.5	Ridge channel waveguide structure	15
3.1	Finite difference mesh for modeling of a waveguide	20
3.2	Locating noddes (a) on the center of a mesh cell, or (b) on the mesh point	nts 20
3.3	Straight and bend waveguides	21
3.4	Finite Difference solution pattern – division of solution into grid points	24
4.1	Flow chart of how MATLAB work	27
4.2	Flow chart of the programming process	28
4.3	Overview plan for GUI project	30
4.4	Front page of GUI project	31
4.5	Main page of GUI project	31
4.6	Menu page of calculation	32
4.7	Bending waveguide simulation page	32
4.8	Bending waveguide simulation page 2	33
4.9	Buried waveguide simulation page	33
4.10	Ridge waveguide simulation page	34
4.11	Menu page of Analysis on Optical Waveguide	34

4.12	Analysis page for Buried and Ridge waveguide (Effective Index, n_{eff}	
	and Normalized Propagation Constant, b)	35
4.13	Effective Index Analysis page for Buried waveguide	35
4.14	Effective Refractive Index, n_{eff} vs Thickness for Buried waveguide	36
4.15	Normalized Propagation Analysis page for Buried waveguide	36
4.16	Normalized propagation Constant, b vs Thickness graph for Buried	
	Waveguide	37
4.17	Effective Refractive Index Analyis page for Ridge waveguide	37
4.18	Effective Refractive Index, n_{eff} vs Thickness graph for Ridge waveguide	38
4.19	Effective Refractive Index, n_{eff} vs Width graph for Ridge waveguide	38
4.20	Normalized Propagation, b Analysis page for ridge waveguide	39
4.21	Normalized Propagation Constant, b vs Thickness graph for Ridge	
	Waveguide	39
4.22	Analysis page for Bending waveguide (Effective Index, n_{eff} , Normalized	
	Propagation Constant, b, Device Length Waveguide, L, and	
	Normalized Power)	40
4.23	Effective Index, n_{eff} Analysis page for Bending waveguide	40
4.24	Comparison between Effective Refractive (n_{eff}) vs Various Radius	
	Curvature (<i>Rc</i>) graph	41
4.25	Normalized Propagation, b Analysis page for Bending waveguide	41
4.26	Comparison between Normalized Propagation Constant (b) vs Various	
	Radius Curvature (Rc) graph	42
4.27	Comparison Length Offset between Device Length Waveguide vs	
	Various Radius Curvature (Rc) graph	42
4.28	Comparison Core Dimension between Normalized Power vs Various	
	Radius Curvature (Rc) graph	43
4.29	Refractive Index 3D Structure page for Straight and Bend waveguide	43

C Universiti Teknikal Malaysia Melaka

4.30	Menu page for Refractive Index 3D structure for Straight waveguide	44
4.31	Refractive Index Profile at core equals to (a) $1.53\mu m$, (b) $2.0\mu m$, and	
	(c) 3.0µm	45
4.32	Menu page for Refractive Index 3D structure for Bending waveguide	46
4.33	Refractive Index Profile at core equals to (a) $1.53\mu m$, (b) $2.0\mu m$, and (c)	
	3.0µm	47
4.34	Menu page of Application of Optical waveguide	48
4.35	Mathematical equation page of mathematical solving	48
4.36	Finite Difference Method page of mathematical solving	49
4.37	Material page of application in Optical waveguide	49
4.38	Page of Buried Waveguide Optical Devices Applications	50
4.39	PIN Photodiode data sheet page of Buried waveguide	50
4.40	Fiber Spec Dicon data sheet page of Buried waveguide	51
4.41	Optical Fiber data sheet page of Buried waveguide	51
4.42	APD Preamplifier data sheet page of Buried waveguide	52
4.43	Laser Diode data sheet page of Buried waveguide	52
4.44	Fabrication data sheet page of Buried waveguide	53
4.45	Page of Ridge Waveguide optical Devices Applications	53
4.46	AWG data sheet page of Ridge waveguide	54
4.47	DRBW data sheet page of Ridge waveguide	54
4.48	Coaxial Adapter data sheet page of Ridge waveguide	55
4.49	Power Termination data sheet page of Ridge waveguide	55
4.50	Laser Diode data sheet page of Ridge wavguide	56
4.51	Introduction to Fiber Optic video	56
4.52	Optics and Communication video	57
5.1(a)	The result of effective index, n_{eff} Normalized Propagation Constant, b	59

5.1(b)	The figure of Normalized Power and E-Field Contour Plot output from	
	calculation section	59
5.2	Effective Rfractive Index, n_{eff} vs Thickness graph	60
5.3	Effective Refractive (n_{eff}) vs Various Radius Curvature (Rc) graph	60
5.4	Normalized Propagation Constant, (b) vs Various Radius Curvature (Rc)	
	Graph	61
5.5	Length Offset between Device Length Waveguide vs Various Radius	
	Curvature (<i>Rc</i>) graph	61
5.6	Core Dimension between Normalized Power vs Various Radius	
	Curvature (<i>Rc</i>) graph	62
5.7(a)	The result of effective index, neff and normalized propagation, b at 2x2	
	Waveguide	64
5.7(b)	The figure of Refractive Index Profile, E-field Profile and E-Field	
	Contour Plot output at waveguide 2x2 from calculation section	64
5.8(a)	The result of effective index, neff and normalized propagation, b at	
	2.5x2.5 waveguide	65
5.8(b)	The figure of Refractive Index Profile, E-field Profile and E-Field	
	Contour Plot output at waveguide 2.5x2.5 from calculation section	65
5.9(a)	The result of effective index, neff and normalized propagation, b at 3x3	
	Waveguide	66
5.9(b)	The figure of Refractive Index Profile, E-field Profile and E-Field	
	Contour Plot output at waveguide 3x3 from calculation section	66
5.10(a)) The result of effective index, neff and normalized propagation, b at	
	3.5x3.5 waveguide	67
5.10(b))The figure of Refractive Index Profile, E-field Profile and E-Field	
	Contour Plot output at waveguide 3.5x3.5 from calculation section	67

5.11(a) The result of effective index, neff and normalized propagation, b at $4x4$	
Waveguide	68
5.11(b) The figure of Refractive Index Profile, E-field Profile and E-Field	
Contour Plot output at waveguide 4x4 from calculation section	68
5.12(a) The result of effective index, neff and normalized propagation, b at	
4.5x4.5 waveguide	69
5.12(b) The figure of Refractive Index Profile, E-field Profile and E-Field	
Contour Plot output at waveguide 4.5x4.5 from calculation section	69
5.13(a) The result of effective index, neff and normalized propagation, b at 5x5	
Waveguide	70
5.13(b) The figure of Refractive Index Profile, E-field Profile and E-Field	
Contour Plot output at waveguide 5x5 from calculation section 5.14(a)	70
5.14(a) The result of effective index, neff and normalized propagation, b at	
5.5x5.5 waveguide	71
5.14(b) The figure of Refractive Index Profile, E-field Profile and E-Field	
Contour Plot output at waveguide 5.5x5.5 from calculation section	71
5.15(a) The result of effective index, neff and normalized propagation, b at 6x6	
Waveguide	72
5.15(b) The figure of Refractive Index Profile, E-field Profile and E-Field	
Contour Plot output at waveguide 6x6 from calculation section	72
5.16(a) The result of effective index, neff and normalized propagation, b at	
6.5x6.5 waveguide	73
5.16(b) The figure of Refractive Index Profile, E-field Profile and E-Field	
Contour Plot output at waveguide 6.5x6.5 from calculation section	73
5.17(a) The result of effective index, neff and normalized propagation, b at	
7x7 waveguide	74

xvi

5.17(b) The figure of Refractive Index Profile, E-field Profile and E-Field		
Contour Plot output at waveguide 7x7 from calculation section	74	
5.18(a) Effective Refractive Index, n_{eff} Graph	77	
5.18(b) Normalized propagation Constant, b Graph	77	
5.19(a) The result of Effective Refractive Index, n _{eff} and Normalized propagation		
Contant, b at $t = 0 \mu m$	78	
5.19(b) The figure of Refractive Index profile, E-field profile and E-field		
contour plot output at waveguide $t = 0.0 \ \mu m$	79	
5.20(a) The result of Effective Refractive Index, n_{eff} and Normalized propagation		
Contant, b at t = $0.2 \ \mu m$	79	
5.20(b) The figure of Refractive Index profile, E-field profile and E-field		
contour plot output at waveguide $t = 0.2 \ \mu m$	80	
5.21(a) The result of Effective Refractive Index, n_{eff} and Normalized propagation		
Contant, b at $t = 0.4 \ \mu m$	80	
5.21(b) The figure of Refractive Index profile, E-field profile and E-field		
contour plot output at waveguide $t = 0.4 \ \mu m$	81	
5.22(a) The result of Effective Refractive Index, n_{eff} and Normalized propagation		
Contant, b at t = $0.6 \ \mu m$	81	
5.22(b) The figure of Refractive Index profile, E-field profile and E-field		
contour plot output at waveguide $t = 0.6 \ \mu m$	82	
5.23(a) The result of Effective Refractive Index, n_{eff} and Normalized propagation		
Contant, b at t = $0.8 \ \mu m$	82	
5.23(b) The figure of Refractive Index profile, E-field profile and E-field		
contour plot output at waveguide $t = 0.8 \ \mu m$	83	
5.24 Ridge waveguide structure	84	
5.25(a) Effective Refractive Index, n_{eff} with a differences of thickness, t	85	
5.25(b) Normalized propagation constant, b with a differences of thickness, t	86	

5.26(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 2.0 \ \mu m$	87
5.26(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 2.0 \ \mu m$ from calculation section	87
5.27(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 2.5 \ \mu m$	88
5.27(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 2.5 \ \mu m$ from calculation section	88
5.28(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 3.0 \ \mu m$	89
5.28(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 3.0 \ \mu m$ from calculation section	89
5.29(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at w = $3.5 \ \mu m$	90
5.29(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 3.5 \ \mu m$ from calculation section	90
5.30(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at w = 4.0 μ m 5.30(b) The figure of Refractive Index Profile, E-field Profile and E-field	91
Contour Plot output at waveguide $w = 4.0 \ \mu m$ from calculation section	91
5.31(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 4.5 \ \mu m$	92
5.31(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 4.5 \ \mu m$ from calculation section	92
5.32(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 5.0 \ \mu m$	93
5.32(b) The figure of Refractive Index Profile, E-field Profile and E-field	

Contour Plot output at waveguide $w = 5.0 \ \mu m$ from calculation section	93
5.33(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 5.5 \ \mu m$	94
5.33(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 5.5 \mu m$ from calculation section	94
5.34(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 6.0 \ \mu m$	95
5.34(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 6.0 \mu m$ from calculation section	95
5.35(a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at w = $6.5 \ \mu m$	96
5.35(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 6.5 \mu m$ from calculation section	96
5.376a) The result of Effective Refractive Index, n_{eff} and Normalized Propagation	
Constant, b at $w = 7.0 \ \mu m$	97
5.36(b) The figure of Refractive Index Profile, E-field Profile and E-field	
Contour Plot output at waveguide $w = 7.0 \mu m$ from calculation section	97
5.37(a) Effective Refractive Index, n_{eff} with the various input of width, w	99
5.37(b) Normalized propagation Constant, b with the various input of width, w	99

LIST OF SYMBOLS

b	-	Normalized propagation constant
c	-	Speed of light; Phase velocity [m/s]
В	-	Magnetic flux-intensity complex amplitude [Wb/m ²]
d	-	Differential
div	-	Divergence
D	-	Electric flux density [C/m ²]
Е	-	Electric field [V/m]
F	-	Force [kgms ⁻²]
Н	-	Magnetic-field complex amplitude [A/m]
Н	-	Magnetic field [A/m]
j	-	$(-1)^{1/2}$ integer
J	-	Electric current density [A/m ²]
ko	-	Free space propagation constant [rad/m]
1	-	Length [m]
m	-	Number of modes
М	-	Magnetization density [A/m]
n	-	Refractive Index
ng	-	Refractive Index of guiding layer
n _s	-	Refractive Index of substrate layer
n _c	-	Refractive Index of cladding layer
NA	-	Numerical Aperture
р	-	Electric polarization density [C/m ²]
Q	-	Electric Charge [C]
Т	-	Time [s]
β	-	Propagation constant [rad/m]

3	-	Electric permittivity of a medium [F/m]
E ₀	-	Electric permittivity of a free space [F/m]
ε _r	-	relative dielectric constant of the material [F/m]
θ	-	Angle
θ_{c}	-	Critical angle
λ	-	Wavelength [m]
λ_{o}	-	Free space wavelength [m]
μ	-	magnetic permeability [H/m]
μ_{o}	-	magnetic permeability of free space [H/m]
∇	-	Gradient operator
∇.	-	Divergence operator
$\nabla \times$	-	Curl operator

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Bending Simulation Code	106
В	Buried Simulation Code	116
С	Ridge Simulation Code	124

CHAPTER 1

INTRODUCTION

1.1 Background of Project

Over the past few years, the bending waveguides was introduced in radar equipment. As we all know, the installation of bending waveguides is very difficult and expensive to produce. Then it becomes a proof, as the power increases, the speed of the aircraft and missile applications made that would have enhanced the bending technique. First, to reduce transmission losses, a new method to generate internal corners that meet close tolerance cross section. Second, a faster method to bending can be found. Lastly, a smaller bend radius, the closer spacing of compound bends and bends adjacent swaged section and twisted to be made to meet the demands of the new design. To make bending waveguides has a reasonable uniformity of production, improvement and innovation specifically done for statistical quality can be realized [1].

In this sophisticated technologies, lasers and fibers are the key components of optical communication systems and it is given a big impact among the public. Telecommunications has shown that it plays an important role in the modern world. Bending waveguides are made from material structures that have a core region which has higher index of refraction than the surrounding regions [2]. The fabrication and analysis of bending waveguides constitute the most basic knowledge needed for understanding and designing guided-wave components.