DESIGN AND CHARACTERIZATION OF VERTICAL STRAINED SILICON MOSFET INCORPORATING DIELECTRIC POCKET BY USING TCAD TOOLS

NAZIRAH BINTI MAKHTAR

This Report Is Submitted In Partial Fulfilment of Requirements for the Bachelor Degree of Electronic Engineering (Computer Engineering)

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

JUNE 2013

	FA	KULTI	UN KEJU	NIVER Ruter	STIT RAAN	EKNI Elekt	I KAL MALAYSIA MELAKA IRONIK DAN KEJURUTERAAN KOMPUTER
				bof P	RANG I PROJ	penge EK S	SAHAN STATUS LAPORAN ARJANA MUDA II
	Tajuk Projek :	DESI STRA DIEL	GN A AINEI ECTI	AND (D SIL) RIC P(CHAR ICON OCKE	ACT MOS T BY	ERIZATION OF VERTICAL SFET INCORPORATING 7 USING TCAD TOOLS.
	Sesi Pengajian						
	:	1	2	/	1	3	
Say disi 1.	ya NAZIRAH BINT impan di Perpustakaan Laporan adalah haku	TIMAK n denga nilik U	THTA n syan nivers	R meng rat-syai iti Tek	gaku n rat keg nikal N	nembe junaan Malays	narkan Laporan Projek Sarjana Muda ini seperti berikut: sia Melaka.
2.	Perpustakaan dibena	ırkan m	embu	at salin	an unt	uk tuj	uan pengajian sahaja.
3.	Perpustakaan dibena	ırkan m	embu	at salin	an lap	oran i	ni sebagai bahan pertukaran antara institusi
	pengajian tinggi.						
4.	Sila tandakan ($$)	:					
	SULIT*			*(Meng kepenti RAHS	gandur ingan M IA RAS	igi mak Malaysi SMI 19	dumat yang berdarjah keselamatan atau a seperti yang termaktub di dalam AKTA 72)
	TERHAL	**		**(Mer organis	ngandu sasi/bao	ingi ma lan di r	klumat terhad yang telah ditentukan oleh nana penyelidikan dijalankan)
	TIDAK T	ERHAD					
							Disahkan oleh:
7 J 1	(TANDATAN ALAMAT: LOT 744 KAM JALAN PEROL 16010 KOTA BHARU	IGAN PI PUNG K	ENULIS	5) IG			(COP DAN TANDATANGAN PENYELIA)
I	KELANTAN Turili					T.	

C Universiti Teknikal Malaysia Melaka

"I declare that this thesis is the result of my own work except for quotes as cited in the references".

Signature:Author: NAZIRAH BINTI MAKHTARDate: 11th JUNE 2013

"I declare that I have been reading this thesis in view of our work is sufficient from the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering)".

Signature	:
Supervisor's Name	: MR. ZUL ATFYI FAUZAN BIN MOHAMMED NAPIAH
Date	: 11 th JUNE 2013

Dedicated to my beloved family To my father and mother To my respected lecturer/supervisor To all my friends And thanks to Allah for nurturing me spiritually and helping me see the world in the right perspective.

ACKNOWLEDGEMENT

Alhamdulillah, thank you to Allah for giving the author blessing for health, strengths and earnestness to complete this report despite the challenges faced and emergence of many unwanted circumstances.

The author would like to take this opportunity to convey the highest appreciation to Mr. Zul Atfyi Fauzan bin Mohammed Napiah as supervisor for giving her the chance to work under his supervision and giving full support in all guidance, advice and commitment upon the effort to settle this report also for spending his time and efforts in evaluating the work. The special thanks also to Mr. Muhammad Idzdihar bin Idris as 2nd supervisor for assisting the author to finish this report.

The author would also like to thanks to Industrial Training Committee Faculty of Electronic and Computer University Technical Malaysian Malacca for organizing it systematically and flawlessly.

Thanks to our greatest family for their support and blessing and also to all beloved friends for their helps, support, comment or criticisms.

ABSTRACT

This project is about to design and characterize the Vertical Strained Silicon MOSFET Incorporating Dielectric Pocket (SDP-VMOSFET) by using SILVACO Technology Computer Aided Design (TCAD) tools. SILVACO TCAD tool is a program, which allow for creation, fabrication, and simulation of semiconductor devices. The structure of the vertical MOSFET leads to a double channel width that is increasing the packaging density. The strained silicon MOSFET is introduced to modify the carrier transport properties of silicon in order to enhance transport of both electrons and holes within strained layer. Dielectric pocket is act to control encroachment of the drain doping into the channel and reduce short channel effects (SCE). Overall, SDP-VMOSFET, which is combining Vertical MOSFET, Strained Silicon and Dielectric Pocket can overcome the short channel effect in term of leakage current, threshold voltage roll-off also Drain Induce Barrier Lowering (DIBL). As a result, SDP-VMOSFET produces a better threshold voltage and DIBL compared to related structures. Meanwhile, it gives slightly increased for leakage current compared to Vertical MOSFET Incorporating Dielectric Pocket. The characteristics of the SDP-VMOSFET are analysed in order to optimize the performance of the device and leading to the next generation of IC technology.

ABSTRAK

Projek ini adalah untuk mereka dan mengenal pasti ciri-ciri MOSFET Menegak Terikan Silikon Mengandungi Poket Dielektrik (SDP-VMOSFET) menggunakan perisian SILVACO TCAD. Perisian SILVACO TCAD adalah program yang membolehkan rekacipta, fabrikasi dan simulasi peranti semikonduktor. Struktur MOSFET Menegak membawa kepada saluran yang lebih lebar untuk meningkatkan ketumpatan dalam pembungkusan. MOSFET Terikan Silicon diperkenalkan untuk mengubahsuai ciri-ciri pengangkutan pembawa silicon dalam usaha untuk meningkatkan pengangkutan kedua-dua elektron dan lubang di dalam terikan lapisan. Pocket Dielektrik pula bertindak untuk mengawal pencerobohan ke dalam saluran dan mengurangkan Kesan Saluran Pendek (SCE). Secara kesuluruhannya, SDP-VMOSFET, hasil gabungan MOSFET menegak, Terikan Silikon dan Poket Dielektrik boleh mengatasi SCE seperti kebocoran arus, voltan ambang dan juga Drain Induce Barrier Lowering (DIBL). Keputusannya, SDP-VMOSFET menghasilkan nilai voltan ambang dan DIBL yang lebih baik banding struktur yang berkaitan. Ciri-ciri SDP-VMOSFET dianalisis untuk mengoptimumkan prestasi peranti dan seterusnya membawa kepada generasi IC teknologi yang mendatang.

TABLE OF CONTENT

CHAPTER TITLE

PAGE

PROJECT TITLE	i
STATUS CONFIRMATION REPORT FORM	ii
AUTHOR'S DECLARATION	iii
SUPERVISOR'S DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENT	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvii
LIST OF APPENDIXES	xviii

I INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Project	3
	1.4.1 Introduction to TCAD	4
	1.4.2 ATHENA	4
	1.4.3 ATLAS	4
	1.4.4 DevEdit	5
1.5	Methodology	5
1.6	Project Structure Overview	6

II LITERATURE REVIEW

2.1	Conventional MOSFET	7
2.2	Vertical MOSFET	9
	2.2.1 Advantages of Vertical MOSFET:	11
	2.2.2 Disadvantages of Vertical MOSFET:	11
2.3	Dielectric pocket	12
2.4	Strained Silicon, SiGe (Silicon Germanium)	13
2.5	Short Channel Effects (SCE)	14
	2.5.1 Threshold Voltage (V _{TH})	15
	2.5.2 Leakage Current (I _{OFF})	16
	2.5.3 Active Current (I _{ON})	16
	2.5.4 Drain-Induced Barrier Lowering (DIBL) and Punchthro	ugh
		- 17

III METHODOLOGY

3.1	Summary of Project Flows	18
3.2	Introduction to SILVACO TCAD Tools	21
3.3	Creating Vertical Strained Silicon MOSFET Incorporating Dielectric Pocket Structure Using DevEdit	22
3.4	Creating Vertical Strained Silicon MOSFET Incorporating Dielectric Pocket Structure Using ATHENA	45
3.5	Device Simulation Using ATLAS	60

IV RESULT AND DISCUSSIONS

4.1	Vertic	cal Strained Silicon MOSFET Incorporating Dielectric	
	Pocke	et (SDP-VMOSFET) Structure by Using DevEdit.	66
	4.11	Vertical MOSFET	66
	4.1.3	Vertical Strained Silicon MOSFET	70
	4.1.4	Vertical MOSFET Incorporating Dielectric Pocket	73
	4.1.5	Vertical Strained Silicon MOSFET Incorporating Diele	ectric

1

		Pocket		76
		4.1.5.1 4.1.5.2	Comparison of Vertical MOSFET, Vertical Strained Silicon MOSFET and Vertical MOS Incorporating Dielectric Pocket Comparison of Vertical Strained Silicon MO Incorporating Dielectric Pocket for various ch length	FET 79 SFET nannel 82
	4 1	M (* 10)		
	4.1	Vertical Straine	d Silicon MOSFET Incorporating Dielectric	
		Pocket (SDP-V	MOSFET) Structure by Using ATHENA	84
V	CON	NCLUSION AN	D RECOMMENDATION	
	5.1	Conclusion		87
	5.2	Recommendation	on	88
REFERENC	ES			89
APPENDIX A	4			91
APPENDIX I	3			93
APPENDIX (С			96

LIST OF TABLES

NO	TITLE	PAGE
4.1	Threshold Voltage for various structures	79
4.2	Threshold Voltage of SDP-VMOSFET for various	82
	Channel length	

LIST OF FIGURES

NO TITLE

PAGE

1.1	Figure Scope of Project Work	3
1.2	Flow Chart of the Project	5
2.1	Conventional MOSFET	8
2.2	Vertical MOSFET	10
2.3	Vertical MOSFET incorporating Dielectric Pocket	13
2.4	Threshold Voltage	16
2.5	Leakage Current	16
2.6	Drain Induced Barrier Lowering	17
3.1	Methodology of the Project	20
3.2	Resize Work Area	22
3.3	Resized Area	23
3.4	Drawing the Region	24
3.5	Setting the Base Impurity	25
3.6	The Silicon Region	25
3.7	Adding a Silicon Oxide Region	26
3.8	Silicon Oxide Region	27
3.9	Adding Source Electrode	28
3.10	Setting the Base Impurity	29
3.11	Source Electrode Region	29
3.12	Adding Drain Electrode	30

3.13	Setting the Base Impurity	31
3.14	Drain Electrode Region	31
3.15	Substrate Electrode Panel	32
3.16	Adding Gate Electrode	32
3.17	Setting the Base Impurity	33
3.18	The Polysilicon Gate Region	34
3.19	Adding the Silicon Germanium Region	34
3.20	The Silicon Germanium Region	35
3.21	Add Impurity	36
3.22	User Add Impurity	37
3.23	Adding Impurity	38
3.24	User Added Impurity	39
3.25	Adding the Dielectric Pocket Region	40
3.26	Dielectric Pocket Region	40
3.27	Refinement on Quantities	41
3.28	Mesh Parameter	42
3.29	Mesh Example	42
3.30	SDP-VMOSFET Structure	43
3.31	SDP-VMOSFET with Mesh	44
3.32	SDP-VMOSFET with Net Doping	44
3.33	SDP-VMOSFET with Mesh and Net Doping	45
3.34	Creating Non-Uniform Grid in 0.39 μ m by 0.67 μ m Simulation Area	46
3.35	Initial Triangular Grid	47
3.36	Codes for Etching	47
3.37	Etching the Silicon	48
3.38	Etching to Locate Dielectric Pocket	48
3.39	Silicon Deposit and Etching	49
3.40	Conformal Deposition of Oxide Layer	49
3.41	Etching of Oxide Layer	50
3.42	Codes for Depositing SiGe, Depositing Silicon, Gate Oxidation and	51
	Threshold Voltage Adjust Implant	

3.43	Conformal Deposition of Silicon Germanium Layer	51
3.44	Conformal Deposition of Silicon Layer	52
3.45	Deposition of Oxide Layer	52
3.46	Codes for Deposition of Polysilicon	53
3.47	Conformal Deposition of Polysilicon Layer	53
3.48	Code for Etching of Polysilicon	54
3.49	Etching of Polysilicon Structure	54
3.50	Codes for Performing Oxidation and Doping Of the Polysilicon	54
3.51	Net Doping Contour Plot after Polysilicon Implantation Step	55
3.52	Codes for Spacer Oxide Deposition	55
3.53	Structure of Spacer Oxide Deposition	56
3.54	Source and Drain Annealing	56
3.55	Codes for Handling and Metallization Part	57
3.56	Half of the SDP-VMOSFET	57
3.57	Net Doping Of the Half SDP-VMOSFET	58
3.58	Codes for Mirror the Structure and Declare the Electrode	58
3.59	Structure of Full SDP-VMOSFET	59
3.60	Net Doping For the Full SDP-VMOSFET	59
3.61	Codes to Load the .str File from DevEdit or ATHENA	60
3.62	Code for the Recombination Model	61
3.63	Codes for Specifying the Contact Characteristic and Interface Properties	61
3.64	Codes for the Method Statement	62
3.65	codes to obtain I _D -V _G curve	63
3.66	I_D - V_G curve for $V_D = 0.1 V$	63
3.67	I_D - V_G curve for $V_D = 1.0$ V	64
3.68	Codes to Obtain I _D -V _D curve	64
3.69	Overlay of I _D -V _D curve	65
4.1	Vertical MOSFET Structure	67
4.2	The Threshold Voltage for 90 nm Vertical MOSFET Structure	68
4.3	The Leakage Current and Active Current for 90 nm Vertical MOSFET	69
	Structure	

4.4	The DIBL for 90 nm Vertical MOSFET Structure	70
4.5	Vertical MOSFET with SiGe Structure	71
4.6	The Threshold Voltage for 90 nm Vertical Strained Silicon MOSFET	71
	Structure	
4.7	The Leakage Current and Active Current For 90 Nm Vertical Strained	72
	Silicon MOSFET Structure	
4.8	The DIBL for 90 nm Vertical Strained Silicon MOSFET Structure	72
4.9	Vertical MOSFET Incorporating Dielectric Pocket	73
4.10	The Threshold Voltage for 90 Nm Vertical MOSFET Incorporating	74
	Dielectric Pocket Structure	
4.11	The Leakage Current and Active Current for 90 nm Vertical MOSFET	74
	Incorporating Dielectric Pocket Structure	
4.12	The DIBL for 90 nm Vertical MOSFET Incorporating Dielectric Pocket	75
	Structure	
4.13	SDP-VMOSFET Structure	76
4.14	The Threshold Voltage for 90 nm SDP-VMOSFET Structure	77
4.15	The Leakage Current and Active Current for 90 Nm SDP-VMOSFET	77
	Structure	
4.16	The DIBL for 90 nm SDP-VMOSFET Structure	78
4.17	Various Structure of Vertical MOSFET	79
4.18	Log I _D -V _G Curve for Various Structures	80
4.19	I _D -V _D Curve for Various Structures	81
4.20	ID-VG Curve for Various Channel Length	82
4.21	Log I _D -V _G Curve for Various Channel Length	83
4.22	I _D -V _D Curve for Various Channel Length	84
4.23	Structure of SDP-VMOSFET	85
4.24	The Threshold Voltage for SDP-VMOSFET Structure	85
4.25	The Leakage Current and Active Current for SDP-VMOSFET Structure	86
4.26	The DIBL for SDP-VMOSFET Structure	86

LIST OF ABBREVIATIONS

SDP-VMOSFET	-	Vertical Strained Silicon MOSFET Incorporating Dielectric
		Pocket
MOSFET	-	Metal-Oxide Semiconductor Field Effect Transistor
TCAD	-	Technology Computer Aid Design
SiGe	-	Silicon Germanium
DIBL	-	Drain-Induced Barrier Lowering
SCE	-	Short Channel Effects
FET	-	Field Effect Transistor
FILOX	-	Fillet local oxidation
ID	-	Drain Leakage
I_{off}	-	Leakage Current
Lg	-	Channel Length
t _{Ox}	-	Oxide Thickness
V _{DS}	-	Drain-Source Voltage
V _{GS}	-	Gate-Source Voltage
V_{TH}	-	Threshold Voltage
HDD	-	Highly Doped Junctions
IC	-	Integrated Circuit

LIST OF APPENDIXES

NO	TITLE	PAGE
А	Example for ATLAS Device Analysing SDP-VMOSFET structure	
	from DevEdit	89
В	Example for Creating SDP-VMOSFET using ATHENA	91
С	Example for ATLAS Device Analysing SDP-VMOSFET structure	
	from ATHENA	94

CHAPTER I

INTRODUCTION

1.1 Background

The metal oxide semiconductor field effect transistor (MOSFET) is a transistor used for amplifying or switching electronic signals. The MOSFET consist of fourterminal device with source (S), gate (G), drain (D), and body (B) terminals. The MOSFET has common transistor in both digital and analogue circuits. The relatively small size of the MOSFET causes thousands of devices that can be fabricated into a single integrated circuit design.

Moore's law is the observation that over the history of computing hardware, the number of transistors on integrated circuits doubles approximately every two years. The period often quoted as 18 months is due to Intel executive David House, who predicted that period for a doubling in chip performance. The law is named after Intel co-founder Gordon E. Moore, who described the trend in his 1965 paper. In 1958 until

1965, the paper noted that the number of components in integrated circuits had doubled every year from the invention of the integrated circuit and predicted that the trend would continue for at least ten years. His prediction has proven to be uncannily accurate, in part because the law is now used in the semiconductor industry to guide long-term planning and to set targets for research and development [1].

Nowadays, research is focused on obtaining higher speed, low power consumption and low cost devices as the MOSFET undergoes scaling down of the size. Due to this specifications, possible solutions and new devices structure like Vertical Strained Silicon MOSFET Incorporating Dielectric Pocket has been discovered.

1.2 Problem Statement

An integrated circuit (IC) consist of passive and active components including transistor, diode, capacitor and resistor. Since the transistor could be made much smaller so that it was much more convenient to use. As a result, the transistor became the main amplifying devices in almost all electronic devices. The recent development of MOSFET has reached the progress that channel length goes shorter into nanometre scale.

Scaled MOSFETs must simultaneously satisfy following performances requirement such as suppression of the short-channel effect, small threshold voltage and increasing packaging density. As a result the improvement of MOSFET, Vertical Strained Silicon MOSFET Incorporating Dielectric Pocket has been created to satisfy this requirement.

1.3 Objectives

The objectives of this project are:

- (i) To design SDP-VMOSFET device by using TCAD tools (ATHENA, DevEdit and ATLAS).
- (ii) To characterize the current-voltage of SDP-VMOSFET.
- (iii) To compare the performance of SDP-VMOSFET with other MOSFET devices.

1.4 Scope of Project

Today much of the development of semiconductor devices and processes is done by computer modelling. The approach is called TCAD (Technology-Computer Aided Design). Use of TCAD tools reduce the development cost and shorten the development time. In a teaching environment, TCAD tools present unique possibilities in term of visualization of processing steps, description of the physical changes and understanding of the interrelation of the process variables as shown in Figure 1.1. Modelling of processes provides a way to interactively explore the fabrication process and study the effects of process. This tool will help to understand the semiconductor physics.

DevEdit

Structure files

Runtime Output

ATHENA

ATLAS Device Log Files

Tonyplot

Solution Files

Command File

Deckbuild

Figure 1.1: Figure Scope of Project Work

1.4.1 Introduction to TCAD

TCAD (Technology Computer Aided Design) is a branch of electronic design automation that models semiconductor fabrication and semiconductor device operation. The modelling of the fabrication is termed Process TCAD, while the modelling of the device operation is termed Device TCAD. Included are the modelling of process steps (such as diffusion and ion implantation) and modelling of the behaviour of the electrical devices based on fundamental physics.

1.4.2 ATHENA

ATHENA is a group of process simulation products that enables process and integration engineers to develop and optimize semiconductor manufacturing processes. ATHENA provides a platform for simulating ion implantation, diffusion, etching, deposition, lithography, oxidation, and silicidation of semiconductor materials.

1.4.3 ATLAS

ATLAS is a group of device simulation products enables device technology engineers to simulate the electrical, optical, and thermal behaviour of semiconductor devices. It provides a physics-based, modular, and extensible platform to analyse DC, AC, and time domain responses for all semiconductor based technologies in 2 and 3 dimensions. DevEdit can be used to either create a device from scratch or to remesh or edit an existing device. DevEdit creates standard Silvaco structures that are easily integrated into Silvaco 2D or 3D simulators and other support tools.

1.5 Methodology

Start

Determine title, objectives, problem statement and scope of the project

Conduct literature study and collect the relevant information

Learn SILVACO TCAD tools (DevEdit, ATHENA and ATLAS)

Design the structure of vertical strained silicon incorporating with dielectric pocket (DevEdit &ATHENA)

Device simulation (ATLAS)

Improvement and optimization

Comparison analysis

No

Accept

Yes

Analysis

End

Figure 1.2: Flow Chart of the Project

🔘 Universiti Teknikal Malaysia Melaka

1.6 **Project Structure Overview**

This thesis consists of five chapters. The first chapter provides an introduction to this project to readers. This includes the objectives and importance of this project. The second chapter contains theories and information about other relevant researches conducted by research institutes and universities around the world.

The research activities and methods employed in this project will be discussed in detail in Chapter III. This chapter shows the flow of this project from the very beginning of the data collection until the acceptable results. It also introduced the TCAD tools to readers. Step by step explanations on the development of the Vertical Strained Silicon MOSFET Incorporating Dielectric Pocket device structure are provided for extra information and knowledge.

Chapter IV shows the results that obtained from the process simulation of the device structure using the ATLAS tools. The data and results from the process are analysed and discussed in this chapter. The effects of the tested parameters are discussed and opinions are brought forward in this chapter. Comparison of various structures which is Vertical MOSFET, Vertical Strained Silicon MOSFET and Vertical MOSFET Incorporating Dielectric Pocket are also discussed.

Finally, Chapter V is the conclusion for this project and incorporates the overview of the results in this project. More importantly, this chapter compares the results analysis with the objectives of this research in order to determine the achievement of this research. Some suggestions to improve the MOSFET are discussed in this chapter for future improvement.