LOCALIZATION AND POSITIONING via Wi-Fi SIGNALS

MOHD IDZWAN BIN OTHMAN

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Telecommunication Electronics) with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > **JUNE 2013**

C Universiti Teknikal Malaysia Melaka

FAKU	UNIVERSTI TEKNIKAL MALAYSIA MELAKA LTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek : LOCAL	IZATION AND POSITIONING via Wi-Fi SIGNALS
Sesi Pengajian : 2/20	12/2013
Saya MOHD IDZWAN BIN mengaku membenarkan Lap syarat-syarat kegunaan sepe	OTHMAN ooran Projek Sarjana Muda ini disimpan di Perpustakaan dengan rti berikut:
1. Laporan adalah hakmili	k Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenark	an membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenark	an membuat salinan laporan ini sebagai bahan pertukaran antara
A Sila tandakan (M) :	gı.
4. Sha tandakan (¥).	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PEN	ULIS) (COP DAN TANDATANGAN PENYELIA)
Tarikh: 10 Jun 2013	Tarikh: 10 Jun 2013

C Universiti Teknikal Malaysia Melaka

DECLARATIONS

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	: MOHD IDZWAN BIN OTHMAN
Date	: 10 th June 2013

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Engineering) With Honours".

Signature:Supervisor's Name: ABD. SHUKUR BIN JA'AFARDate: 10th June 2013

Special thanks to my parents and family, my colleagues and friends, and project supervisor who have been supporting me all the time.

ACKNOWLEDGMENT

First and foremost, praise to Allah the Almighty because without His grace I will not be able to complete this Projek Sarjana Muda and report as well as possible. Here, I wish to express my sincere gratitude to my supervisor, Mr. Abd. Shukur bin Ja'afar for his germinal ideas, invaluable guidance, continuous encouragement and constant support. I also sincerely thanks for the time spent proofreading and correcting my mistakes.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals.

Finally, I also would like to thanks for those who are involved directly and indirectly through out completing the project and report successfully.

ABSTRACT

Global Positioning System (GPS) is widely used as public location and positioning system in locating and localizing geo-location coordinates of user. However, this application signal is limited, not operational, not available and inefficient for indoor environment. Therefore, the purpose of this project is to develop localization and positioning system utilizing Wi-Fi signals. Wireless position estimation is based on distance measurement in determining the coordinates of user. Scene analysis which called fingerprinting technique is chosen in this project with measurement of received signal strength at specific locations. This fingerprint positioning algorithm has two phases to go through which is surveying phase and online phase. The unknown location of user will be located during online phase based on database comparison that has been collected on surveying phase. MATLAB Graphic User Interface was developing as user interface for simulation purpose. Several analysis has been done to determine the accuracy and effectiveness of the positioning error due to numbers of access point and environment traffic condition.

ABSTRAK

Sistem Kedudukan Global (GPS) telah digunakan secara meluas sebagai penunjuk lokasi awam dan sistem kedudukan dalam mencari dan menentu koordinat lokasi geografi pengguna. Walaubagaimanapun, isyarat aplikasi penerima ini adalah terhad, tidak beroperasi, tidak berfungsi dan tidak cekap untuk persekitaran dalaman. Oleh itu, tujuan projek ini adalah untuk membangunkan menentu dan sistem mencari kedudukan menggunakan isyarat Wi-Fi. Anggaran kedudukan tanpa wayar berdasarkan ukuran jarak digunakan dalam menentukan koordinat pengguna. Analisis pemandangan iaitu algoritma *fingerprint* teknik telah dipilih dalam projek ini dengan pengukuran kekuatan isyarat yang diterima. Algoritma kedudukan *fingerprint* ini mempunyai dua fasa yang perlu dilalui iaitu fasa pengukuran dan fasa dalam talian. Lokasi yang tidak diketahui pengguna akan terletak semasa fasa pengukuran. MATLAB Grafik Antara Muka Pengguna dibangunkan sebagai antara pengguna bagi tujuan simulasi. Beberapa analisis telah dilakukan untuk menentukan ketepatan dan keberkesanan kedudukan terhadap jumlah akses pusat dan keadaan lalu lintas persekitaran.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

PROJECT TITLE	i
COMFIRMATION OF STATUS REPORT	ii
DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	XV
LIST OF APPENDICES	xvi

1 INTRODUCTION

1.1	Overview of Technologies	1
1.2	Project Background	5
1.3	Problem Statement	6
1.4	Objectives	6
1.5	Scope of Project	7

2 LITERATURE REVIEW

2.1	Triang	ulation	9
2.2	Trilateration		11
2.3	Scene Analysis		15
	2.3.1	Ekahau Site Survey	20
	2.3.2	VisiWave Site Survey	21
	2.3.3	TamoGraph Site Survey	22
2.4	Compa	arison between Positioning Algoritm	23

3 METHODOLOGY

3.1	Project Methodology		24
	3.1.1	Phase 1 - Planning	25
		3.1.1.1 Data Collection	26
		3.1.1.2 Hardware and software requirements	26
	3.1.2	Phase 2 - Measurement	27
		3.1.2.1 Scene Analysis Technique	28
	3.1.3	Phase 3 - Development	35
		3.1.3.1 Development of Distance Algorithm	35
		3.1.3.2 Development of Graphical User Interface	37
	3.1.4	Phase 4 - Testing	37

4 **RESULT AND DISCUSSION**

4.1	Distan	ce Estimat	tion Algorithm	38
	4.1.1	Location	extimation Calculation	39
	4.1.2	Analysis	s of Algorithm Effectiveness	
		4.1.2.1	Comparison between Numbers of	49

х

Access point

4.1.2.2	Comparison between Numbers of	
	Access Point and Traffic Condition	

5 CONCLUSION AND FUTURE WORKS

5.0	Conclusion	51
5.1	Future Works	52
REF	ERENCES	53
APP	ENDICES	55

LIST OF TABLES

NO	TITLE	PAGE
1.1	Indoor versus outdoor positioning	2
1.2	Indoor Positioning Technologies	3
2.1	Advantages and disadvantages of positioning algorithm	23
3.1	Received Signal Strength color level	30
3.2	Region color description	31
3.3	Received Signal Strength database in dBm	33
3.4	Received Signal in matrix form	34
4.1	Received Signal Strength database in dBm at each Reference Location	40
4.2	Received Signal Strength database Normalized at Access Point 1	41
4.3	Received Signal Strength database between User Normalized and	43
	database values	
4.4	Received Signal Strength at sample location	47
4.5	Location estimation in real time	47
4.6	Comparison between Numbers of Access Point	49
4.7	Comparison between Traffic Conditions	50

xii

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Indoor technologies in dependence on accuracy and coverage	4
1.2	Indoor technologies dependence on accuracy and carrier wavelength	4
1.3	Positioning system block diagram	5
1.4	Flow chart scope of project	8
2.1	Triangulation algorithm in 2D	10
2.2	Graph of relative position error versus target angle	11
2.3	Trilateration positioning algorithms	12
2.4	2D target location by TOA measurement technique	13
2.5	Geometric relationship between target and two APs	14
2.6	Surveying phase	16
2.7	Online phase	16
2.8	Scene analysis system	17
2.9	Offline phase and online phase of scene analysis technique	17
2.10	Database comparison	18
2.11	Wi-Fi contour power (dBm) line coverage	19
2.12	Ekahau Site Survey icon	20
2.13	Ekahau Site Survey window	20
2.14	VisiWave Site Survey icon	21
2.15	VisiWave Site Survey window	21
2.16	TamoGraph Site Survey icon	22
2.17	Tamograph Site Survey window	22
3.1	Design phase	25
3.2	Steps of Methodology	25
3.3	Flow chart of surveying phase	27
3.4	Orientations during taking measurement	28

3.5	Orientations affect on Received Signal Strength	28
3.6	Block B, ground Floor, FKEKK	29
3.7	Surveying phase on coverage area	29
3.8	Data extracted in WordPad	30
3.9	Coverage area	31
3.10	Coverage area plotting point in MATLAB	32
3.11	MATLAB Simulink icon	35
3.12	MATLAB Simulink window	35
3.13	Flow chart of distance algorithm	36
4.1	Theorem Pythagoras area	39
4.2	Coverage area plotting point in matrix	39
4.3	Location estimation area	45
4.4	Scale on the coverage area	46
4.5	Sample location	46
4.6	Location estimation of sample location taken	47
4.7	MATLAB GUI	48
4.8	MATLAB GUI output	48
5.1	Example of ToA location estimation	52

LIST OF ABBREVIATIONS

ABBREVIATION MEANING

GPS	Global Positioning System
RFID	Radio Frequency IDentification
laser	Light Amplification by Stimulated Emission of Radiation
WLAN	Wireless Local Area Network
RSS	Received Signal Strength
AP	Access Point
FKEKK	Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer
PSM	Projek Sarjana Muda
UTeM	Universiti Teknikal Malaysia Melak
RSS	Received Signal Strength
AoA	Angle Of Arrival
2D	Two Dimensions
ToA	Time Of Arrival
TDoA	Time Difference Of Arrival
TOF	Time Of Flight
WLAN	Wireless Local Area Network
UWB	Ultra-Wideband
Wi-Fi	Wireless Fidelity
A-GPS	Assisted Global Positioning System
GNSS	Global Navigation Satellite System
RTLS	Real-time Locating System
ANSI	American National Standards Institute
ISO	International Organization for Standardization
SSID	Service Set Identifier
LBS	Location-based Service

LIST OF APPENDICES

NO	TITLE	PAGE
А	Euclidean distance program	55
В	MATLAB GUI program	57
С	Gantt Chart of project planning	63
D	Poster	64
Е	IEEE report	65

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter will discuss briefly the background of the project that has been chosen. It will also discuss the problem statement, main objective and the scope of the project.

1.1 Overview of Technologies

Positioning system is a technology that is used in locating and tracking user or property. Location, defined as coordinates or places either room, street, building and house. Position, is refer to the distance or location from some area. *Positioning*, usually refers to the process of finding the two-or-three-dimensional coordinates of a terminal but can mean determination of distance or range [1]. A *beacon* is a

continuous or periodic transmission that facilitates timing synchronization or position measurements between terminals. Terminal refers to the either side of the communication link.

Positioning system technologies can be divided into two categories, outdoor and indoor positioning. Table 1.1 [6] shows different between indoor and outdoor positioning.

INDOOR	OUTDOOR		
 WLAN ➤ Client-based system design ➤ Client-assisted system design Sensor Network > Localization with beacons > Localization with moving beacons > Beacon-free localization 	 GPS Requires minimal obstructions Long acquisition times (30s-15min) Has to be synchronous High power consumption and high unit cost A-GPS 		
 UWB ➤ A promising approach for indoor geolocation ➤ Can achieve very accurate short distance estimation 	 A-GPS ➢ Much more accurate: accuracy of 10-50m can be used even for indoor positioning ➢ Improves acquisition time (<10s) ➢ Synchronous or asynchronous ➢ More cost effective than GPS ➢ Little/no hardware changes required in base stations 		

Table 1.1: Indoor versus outdoor positioning [6]

The most popular outdoor positioning system is Global Positioning System (GPS). This system uses satellites to navigate the location of the target or user. The current indoor positioning systems technology is Wi-Fi, RFID (Radio Frequency IDentification), laser (Light Amplification by Stimulated Emission of Radiation), infrared, and ultrasound. Table 1.2 [14]shows the specification of indoor technologies for nowadays. Figure 1.1 and 1.2 [14] show dependency of accuracy to the coverage and carrier wavelength.

Technology	Typical Accuracy	Typical Coverage (m)	Typical Measuring Principle	Typical Application
Cameras	0.1mm - dm	1 – 10	Angle measurements from images	Metrology, robot navigation
Infrared	Cm – m	1 - 5	Thermal imaging, active beacons	People detection, tracking
Tactile & Polar Systems	µm – mm	3 - 2000	Mechanical, interferometry	Automotive, metrology
Sound	cm	2-10	Distances from time of arrival	Hospitals, tracking
WLAN/Wi-Fi	m	20 - 50	Fingerprinting	Pedestrian navigation, LBS
RFID	dm - m	1 – 50	Proximity detection, fingerprinting	Pedestrian navigation
Ultra- Wideband	cm - m	1 – 50	Body reflection, time of arrival	Robotics, automation
High Sensitive GNSS	10 m	ʻglobal'	Parallel correlation, assistant GPS	Location based services
Pseudolites	cm - dm	10 - 1000	Carrier phase ranging	GNSS challenged pit mines
Other Radio Frequencies	m	10 - 1000	Fingerprinting, proximity	Person tracking
Inertial Navigation	1%	10 - 100	Dead reckoning	Pedestrian navigation
Magnetic Systems	mm – cm	1 – 20	Fingerprinting and ranging	Hospitals, mines
Infrastructure Systems	cm - m	building	Fingerprinting, capacitance	Ambient assisted living

Table 1.2: Indoor Positioning Technologies [14]

Figure 1.1: Indoor technologies in dependence on accuracy and coverage [14]

Figure 1.2: Indoor technologies dependence on accuracy and carrier wavelength [14]

4

1.2 Project Background

WLAN (Wireless Local Area Network), Wi-Fi and IEEE 802.11 all means the same [5]. It is an industrial standard that used for wireless data transmission. Wi-Fi used electromagnetic waves in order to transmit data over the airwaves medium. Obviously, they are not designed and deployed for the purpose of positioning. However, measurements of received signal strength (RSS) of the signal transmitted by either access point (AP) imply the location of any mobile user [9].

There are several positioning algorithms that can be used in determining the current position of user like triangulation, trilateration and scene analysis. From the RSS, it can be used to compute to determine the location or coordinate of the user.

Figure 1.3: Positioning system block diagram

Figure 1.3 shows the block diagram of the system. There is a vector power between the user referenceor target to the AP. This vector can be used to determine the distance by using positioning algorithm that will be discuss in Chapter 2, literature review. Then, the position or coordinates of the user will display on MATLAB Graphic User Interface (GUI).

This project using an existing Wi-Fi infrastructure in localizing and positioning even it was never designed to do so. The coverage area of this project was at Block B, Ground Floor, FKEKK (Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer) because of the number of APs located there.

1.3 Problem Statement

Indoor location sensing systems has become very important and popular in recent years [3][8]. They, gradually play an important role in all aspects of people's daily lives including e.g. living assistant, navigation, emergency detection, surveillance or tracking target-of-interest and many other location-based services [4].

Nowadays, WLAN technology can be found in almost every building [5]. It is because an advancement of technology in developing devices like smartphones which can directly connected to the internet. Internet has become a daily needs especially for getting knowledge.

GPS is the most popular positioning system for outdoor environment and plays a dominant role in localization. It can provide precise locations of mobile devices within worldwide coverage.

However, GPS has shadow problem and is not available, not operate and not suitable for indoor environments [9][10][12]. This inefficiency is due to the weakness of signals emitted and their disability to penetrate most building materials [4]. It performance deteriorates in indoor use and in urban environments [1].

1.4 Objectives

The main objectives of this project can be summarized as follows:

- i. To develop a location and positioning simulation estimation using MATLAB software at FKEKK, UTeM.
- ii. To analyze the performance of location estimation based on fingerprint technique.

1.5 Scope of Project

Development of the Localization and Positioning via Wi-Fi signals have chosen after doing research from the books, internet, electronic magazine and other resources due to human demand for indoor positioning system. This project needs no hardware modification for Wi-Fi infrastructure and no cost required.

Localization and Positioning via Wi-Fi signals is an innovation of locating and tracking user or property. The scopes of this project require using of hardware and software for measurement phase and software development for testing phase.

For the first phase of the project development, data collection (offline phase) has been done at Block B, Ground Floor, FKEKK, UTeM. The process of collecting data is called surveying phase where at each point need to collect RSS in determining the distance during online phase. The collected data will used as database for applying the location estimation algorithm in MATLAB software. After completed this phase, GUI will be develop to display the current location and position of the user. Figure 1.4 shows an overall flow chart of the scope of project.

Figure 1.4: Flow chart scope of project