UNIVERSAL REMOTE CONTROL FOR HOME APPLIANCE WITH SMARTPHONE

KANG WEI SHENG

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Computer Engineering)

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > JUNE 2013

"I hereby declare that this report is the result of my own work expect for quotes as cited in the references."

Signature	:
Author's Name	: KANG WEI SHENG
Date	:

"I hereby declare that I have read this project report and in my own opinion this project report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honours."

Signature	:
Supervisor's Name	: DR. SOO YEW GUAN
Date	:

Dedicated to my beloved family especially my parent, lecturers and all of my friends

v

ACKNOWLEDGEMENT

First of all, I would like to express my greatest gratitude and sincere thanks to my final year project supervisor, Dr. Soo Yew Guan for his guidance and assists to complete my final year project. He does give me a lot of advices and guide me to the correct path of completing my project.

Next, I would like to express my thankfulness for who have assisted and guided me during the development and research of this final year project. Especially thanks for those who had provided the useful information and consultancy during commencement of this particular project.

Last but not least, I would like to appreciate and thanks to all my family members for their continuous encouragement and financial support. They had always give me all of the support during completion of my final year project.

ABSTRAK

Kini, setiap perkakas rumah menyediakan alat kawalan jauh sendiri dan kebanyakannya alat kawalan jauh menggunakan medium inframerah untuk menghantar isyarat. Setiap jauh hanya boleh mengawal hanya satu jenis perkakas dan biasanya terdapat pelbagai jenis alat kawalan jauh di dalam rumah. Dengan adanya pelbagai jenis kawalan jauh, ia mewujudkan masalah pembaziran ruang dan masalah buat pengguna untuk memcari kawalan jauh yang betul. Kawalan jauh normal semasa tidak memberikan pandangan yang jelas untuk pengguna dalam persekitaran yang gelap. Kawalan jauh universal yang dapat mengawal peralatan rumah dengan menggunakan telefon pintar dalam kawasan liputan tanpa wayar melalui media tanpa wayar harus dihasilkan, bagi menyelesaikan masalah-masalah yang dibentangkan. Skop yang terdapat dalam projek ini adalah aplikasi telefon pintar, konfigurasi Wi-Fi, dan unit pemancar IR. Unit pemancar IR yang digunakan untuk memproses data yang diterima dari telefon pintar dan menjana isyarat arahan bagi IR LED untuk menghantar isyarat. Wi-Fi konfigurasi adalah penetapan yang membolehkan komunikasi antara telefon pintar dan IR unit pemancar. Aplikasi telefon pintar menyediakan penetapan Wi-Fi dan dua susun atur jauh bagi pengguna untuk mengawal dan menyambung kepada unit pemancar IR melalui media tanpa wayar. Projek ini adalah gabungan pelbagai jenis kawalan jauh dan ia memperbaiki beberapa ciri-ciri seperti telefon pintar sebagai pengawal dengan menyambung telefon pintar dan perkakasan melalui media tanpa wayar. Projek ini menyediakan pengguna untuk mengawal lebih jauh sekurang-kurangnya 60 meter. Objektif projek ini telah tercapai.

ABSTRACT

Nowadays, each appliance provides its own remote control and the remote mostly using infrared medium to transmit signal. Each remote just can control for the only type of appliance and normally there are various types of remote in the house. With the various type of remote that provided, it creates problems of wasting space and make user hunting for the right remote. The current normal remote does not provide a clear view for user in dark surrounding. To solve the problems that state above, a universal remote control has to design which able to control home appliances using smart phone within the wireless coverage area via wireless medium. The scope consists in this project are smartphone apps, Wi-Fi configuration, and IR transmitter unit. IR transmitter unit used to process the received data from smartphone and generate command signal for IR LED to transmit. Wi-Fi configuration is a setting that allows communication between smartphone and IR transmitter unit. Smartphone apps provides Wi-Fi setting and two remote layout for user to control and connect to IR transmitter unit via wireless medium. This project is the combination of various types of remote control and it improve some features such as smart phone as controller with connect the smart phone and hardware via wireless medium. This project provides user to control over a long distance at least 60 meters. The objectives of the project have been achieved.

TABLE OF CONTENTS

CHAPTER TITLE

Page

PROJECT TITLE	i
CONFIRMATION REPORT STATUS	ii
DECLARATION	iii
SUPERVISOR CONFIRMATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRAK (MALAY VERSION)	vii
ABSTRACT (ENGLISH VERSION)	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATION	xvi
LIST OF APPENDIX	xiii

INTRODUCTION

Ι

1.1	Overview	1
1.2	Objective	2
1.3	Problem Statement	2
1.4	Scope of Work	3
1.5	Project Important	4

II LITERATURE REVIEW

2.1	Infrared light		7
2.2	Remote	Control Protocol	8
	2.2.1	NEC protocol	8
	2.2.2	The Philips RC-5protocol	10
	2.2.3	The Simi-NEC protocol	11
	2.2.4	Sony Type Remote Control	11
2.3	Electron	nics Component	13
	2.3.1	Microcontroller	13
	2.3.2	IR Diode	14
	2.3.3	Wi-Fi Module	14
2.4	Program	nming Languages	16
	2.4.1	C Language	16
	2.4.2	Assembler	16
	2.4.3	BASIC Language	17
2.5	Android	Operating System	17
2.6	Wireless	Communication	18
	2.6.1	Radio Frequency	19

III RESEARCH METHODOLOGY

3.1	Methodology		23
	3.1.1	General Flow Chart	24
	3.1.2	Details Flow Chart for Project	25

5

	3.1.3	Flow of Project Work	26
3.2	Hardwar	e and Software requirements	26
	3.2.1	Android Development	27
	3.2.2	Xbee Wi-Fi Setting	27
	3.2.3	IR Transmitter Unit	29
	3.2.4	IR coding for Remote Control	30

IV RESULT AND DISCUSSION

4.1	Result		32
	4.1.1	Programming Algorithm	35
4.2	Operati	ng Procedure	39
4.3	Data Ar	nalysis	41
	4.3.1	IR Signal Analysis	41
	4.3.2	Wireless Signal Analysis	44
4.4	Discuss	ion	45
4.5	Schema	tic Diagram	46
4.6	SWOT	Analysis	47
	4.6.1	Strengths	47
	4.6.2	Weaknesses	48
	4.6.3	Opportunities	48
	4.6.4	Threats	49

V CONCLUSION AND FUTURE WORKS

5.1	Conclusion	50
5.2	Future Works	52

REFERENCES	53
APPENDIX A	55
APPENDIX B	57
APPENDIX C	60

LIST OF TABLES

TABLE TITLE

PAGE

2.1	Pin assign of Xbee-Wi-Fi for UART communication	15
2.2	Table of frequency spectrum	19
4.1	Analysis of IR transmission signal	44
4.2	Analysis of Wi-Fi communication range	45
4.3	SWOT analysis	47

LIST OF FIGURES

FIGURE	TITLE

PAGE

1.1	Flow of the project work	4
2.1	Light spectrum showing the wavelengths of different light	7
2.2	NEC Protocol	8
2.3	The modulation of the logic '0' and' l' for NEC protocol	9
2.4	The modulation of leader code for NEC protocol	9
2.5	The custom code for NEC protocol	9
2.6	The data code for NEC protocol	10
2.7	The RC-5 protocol	10
2.8	Detail of logic "1" and logic "0" for RC-5 Protocol	11
2.9	Format of the Sony type signal	12
2.10	Format logic "0" and logic "1" Sony type signal	12
2.11	Product Dimension of PIR sensor	12
2.12	System Data Flow Diagram in UART	15
2.13	Network communication	18
3.1	Overall Project Methodology	24
3.2	Project Flow Chart	25
3.3	Flow of project work	26
3.4	Setting for serial communication	28
3.5	Com test or Query modem	28

3.6	Information of network setting.	29
3.7	Schematic diagram of IR decoder	30
3.8	PICKIT logic tools	31
3.9	IR encoder circuit with PICKIT 2	31
4.1	Side view(back) of my project	33
4.2	Ultrasonic Sensor Product Layout	33
4.3	Layout of the application	34
4.4	Layout of the DVD control	34
4.5	Layout of TV control	35
4.6	Android remote program flow(main page)	36
4.7	Android remote program flow(TV or DVD module page)	37
4.8	PIC program flow	38
4.9	Setting of Wi-Fi module	39
4.10	Setting on remote application	40
4.11	Apps show server not available	40
4.12	Remote signal for button ON (Sony form IR transmitter	42
4.13	signal)	42
	Remote signal for button volume up (Sony from IR	
4.14	transmitter signal)	43
4.15	Remote signal for button ON (LG from IR transmitter signal)	46
4.16	Schematic diagram for microcontroller board	46
	Layout for microcontroller board	

LIST OF ABREVIATION

OS	-	Operating System
IR	-	Infrared
UART	-	Universal Asynchronous Receiver/Transmitter
RF	-	Radio Frequency
PCB	-	Printed circuit board
DVD	-	Digital Video Disc
TV	-	Television
LED	-	Light emitting diode
Wi-Fi	-	Wireless Fidelity
PIC	-	Peripheral Interface Control
IP	-	Internet Protocol
ТСР	-	Transmission Control Protocol
UDP	-	User Datagram Protocol
ISM	-	Industrial, Scientific, & Medical radio frequency band
XML	-	Extensible Markup Language
RAD	-	Rapid Application Development
IDE	-	Integrated Development Environment
MS	-	MicroSoft
UI	-	User Interface
SPI	-	Serial Peripheral Interface
IDE	-	Integrated Development Environment

- XML Extensible Markup Language
- RAD Rapid Application Development
- APK Android application package file

LIST OF APPENDIX

NO	TITLE	PAGE
А	Android Apps Coding(Main Page)	55
В	Android Apps Coding(DVD Page)	57
С	Android Apps Coding(TV Page)	60

CHAPTER I

INTRODUCTION

1.1 Overview

The infrared remote control has the performance of the high signal to noise ratio, reliable transmission of information, and untouchable, strong anti-interference, low power and cost. Therefore infrared remote control is widely used in home appliances. More or less, it also as the highlight on sale. Nowadays, each appliance provides its own remote control and the number of appliance provides multi services or complex function increases. So, user has to familiar with the operations and the different features of many remote controls. Besides that, formats of infrared remote control protocol used are different between the different companies' production, the consequence from this is that an infrared remote control device must be fit for the home appliances. As a result, combine all of these remote control become the only controller called as universal remote control is a convenience way for user to operate.

To interact with various devices or home appliances, the devices that have the greatest chance of successful become universal remote control is Smart Phone. Smart Phone is an emerging mobile phone technology that supports Java program execution and provides wireless connectivity. The Smart Phone can act as a universal remote control for interaction with embedded systems located in its proximity. To support proximity-aware interactions, both the Smart Phone and the embedded systems with which the user interacts must have short-range wireless communication capabilities.[1]

1.2 Objective

The main objectives of this project are:

- To design and develop a prototype of universal remote control which can control home electronic appliances using smart phone via wireless medium.
- To develop a prototype of remote control which can control the device from anywhere in the house.

1.3 Problem Statement

Nowadays, infrared remote control is widely used in home appliances. At present, each appliance will provide its own remote control. Difference manufacture will apply different format of infrared protocols into their infrared remote control. As a result, an infrared remote control only can control the model and brand of device (but some can apply more models of the same brand). In a house, there are many home appliances like television, DVD player, Astro player, air-condition and so on. Meaning that, there should has more than one remote in the house. With those remote controls, it will create some problem to user. First, users have to hunt for the right remote control to operate the home appliance. It will take time to hunt for the remote control. Second, with the many remote controls, it will make table look messy and wasting space to put all these remote controls. Sometime the remote control cannot send the signal to the device, mostly user will think it caused by low batteries of the remote control and normally user will change the batteries. However, it may cause by the loss connection of the batteries or others small problem are not relate to battery. So it will be resource wastage. Difference manufactures design the different pattern of remote control, the battery used also different. Some of them use double A batteries, and some of them use triple A batteries. It will confuse the user which type of battery to buy. At last, in dark surrounding of environment, it will make the user hard to find the right button of the remote control

1.4 Scope of Work

This project consists of software and hardware. The scope can separate into three parts and there are design of smart phone application, wireless configuration and Infrared transmitter unit. Smart phone application in this project will focus on Android operation system. It is because Android OS is one of reason the large smart phone usage in phone market and the important reason is Android OS is open source. This application will provide two models of home appliances from different manufacturer for user to choose the device that want to control.

In order control the home appliance, the remote control command has to figure out. Encode the remote control command is also one of the important part of this project. After encode the remote command, the command have to program into PIC.

This app will connect with IR transmitter unit through wireless module that store in the IR transmitter unit. The signal will transmits through wireless transmission medium. In order to let hardware able to communicate through wireless, wireless network has to set up to allow the wireless connection. IR transmitter unit is used to process the signal from smart phone and send to the home appliances that want to control through infrared transmission medium.

5. In dark surrounding, user able to see the control button clearly with the screen light.

1.6 Report Outline

For this project, the smart phone application used to send signal to infrared transmitter unit through wireless module. Wireless module is the hardware that communicates between smart phone and infrared transmitter unit using wireless medium. Microcontroller is used as controller for wireless module and process the received signal from smart phone and send signal to output (infrared LED). This project makes the smart phone as controller mean everyone has their personal controller instead of a remote control that have to share each other. Meaning that, the problem hunting for remote control will solve. This project provides user a simple way to control any home appliances with their smart phone. The smart of the project is can control different electronics appliances from anywhere in the house. Other than that in dark surrounding, user able to see the button to control clearly by the screen that provide in smart phone.

CHAPTER II

LITERATURE REVIEW

In order to produce a working remote control, a basic understanding of the technology behind such devices must first be ensured. More specifically, this understanding concerns communication between remote controls and their respective equipment, as well as the electronic components that make it all work.

This chapter describe about the different format of infrared signal from different manufacture, how remote controls utilize microcontrollers, infrared LED for universal remote control, programming language that used in different software and other additional information which is related to this project. Since the product communicate with a smartphone via wireless medium, so wireless network and Wi-Fi module will be described.

