DESIGN OF SHALLOW SOURCE / DRAIN EXTENSION (SDE) PROFILES IN IMPROVING SHORT CHANNEL EFFECT (SCE_s) IN NANOSCALE DEVICES

MOHD HAFIZ BIN SULAIMAN

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Electronic Engineering (Computer Engineering)

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM)

> > JUNE 2013

HISTORY AND		IVERSTI TEKNIKAL MALAYSIA MELAKA ruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : Sesi : Pengajian :		HALLOW SOURCE / DRAIN EXTENSION (SDE) PROFILES IN HORT CHANNEL EFFECT (SCE _s) IN NANOSCALE DEVICES
Saya mengaku membena syarat kegunaan sep 1. Laporan adalah 2. Perpustakaan d	perti berikut: 1 hakmilik Univer libenarkan membr	N SULAIMAN (HURUF BESAR) ojek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- rsiti Teknikal Malaysia Melaka. uat salinan untuk tujuan pengajian sahaja. uat salinan laporan ini sebagai bahan pertukaran antara institusi
J. Felpustakaan d pengajian tingg4. Sila tandakan (gi.	uat sannan iaporan nii sebagai banan pertukaran antara institusi
SUI	LIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TE	RHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TID	OAK TERHAD	
		Disahkan oleh:
BLOK TAMA KEPA	ATANGAN PENULI X D4-1-24, AN SERI MEGA YAN RIDGE, XAN RIDGE, KOTA KINABA	2,
Tarikh:		Tarikh:

ii

C Universiti Teknikal M	lalaysia Melaka
-------------------------	-----------------

I declare that this thesis entitled "Design of Shallow Source/Drain Extension (SDE) Profiles In Improving Short Channel Effect (SCE_S) In Nanoscale Devices" is the result of my own original writing except the quotation and summaries that cited clearly in the references.

Signature	:
Name	: MOHD HAFIZ BIN SULAIMAN
Date	: 5 JUNE 2013

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Bachelor of Electronic Engineering (Computer Engineering)"

Signature	:
Name	: DR. ANIS SUHAILA BINTI MOHD ZAIN
Date	: 13 JUNE 2013

This thesis is special dedicated to

My beloved family for their supports and guide me throughout my academic career v

ACKNOWLEDGEMENT

In the name of ALLAH, Lord of the Universe, and Peace and Prayers be upon His Final Prophet and Messenger. With the help from the numerous individuals, this thesis has successfully been done.

First and foremost, I would like to take this opportunity to express my appreciation and gratitude to my supervisor, Dr. Anis Suhaila Binti Mohd Zain for the guidance and enthusiasm given throughout the progress of this project.

My appreciation also goes to my family who has been so supportive mentally and financially throughout this project and also providing me the opportunity to study in UTeM and provide support in terms of spirit and financial. I would not been able to further my studies to this level without them.

Nevertheless, my great appreciation dedicated to Mr. Zul Atfyi Fauzan bin Mohammed Napiah, Dr. Fauziyah binti Salehuddin and technicians lab for sharing their knowledge regarding Silvaco software. Besides, my heartily gratitude and appreciation to Ayuni Fateeha Binti Muda for her moral support, encouragement and providing his valuable time and effort during my research so that the project would succeed.

Lastly, I would like to thank to my friends, all members of Electronic and Computer Engineering Faculty and those whom involve directly or indirectly with this project. There is no such meaningful word than..... Thank You So Much.

ABSTRACT

In this era globalization, the technology of world is growth fast especially in electronic revolution. The companies compete with each other to invent the new devices that can be multitasking and many applications. The engineers become smart to design the chip with small sizes. Besides, the architecture of the chip must be concern for the better performance of the electronic devices. One of the solutions is to design of shallow source/drain extension (SDE) alternative to the conventional devices so that the performance are improved. In order to increase the mobility and the speed of the electronic devices, semiconductor technology researchers face the limitations such as short channel effect in MOSFET device as it is unavoidable in scaling. The aim of this project is to improve the short channel effect in nanoscale devices. Technology Computer Aided Design (TCAD) tool from Silvaco's International® was used to design and simulate the structure designed in this project. Silvaco's DEVEDIT software was used to design the structure of MOSFET according to the steps, while Silvaco's ATLAS software was used to simulate the structure to obtain the output graph. The output graph and result analysis such as graph for transfer curves (I $_{D}$ –V $_{GS})$ and graph for subthreshold curves (log $I_D - V_{GS}$) were obtain to compare the scaling the junction depth between the standard International Technology Roadmap Semiconductor (ITRS) structure with shallow source/drain extension (SDE) structure. Results analyzed in this project show the design of shallower junction depth structure improved the short channel effect for devices. Finally, this conventional NMOS has lower resistance and lower power consumption.

ABSTRAK

Dalam era globalisasi kini, teknologi dunia semakin berkembang pesat terutama dalam revolusi elektronik. Kebanyakan syarikat bersaing antara satu sama lain untuk mencipta suatu alat peranti elektronik yang baru yang boleh melakukan pelbagai kerja dan mempunyai banyak aplikasi. Jurutera-jurutera semakin bijak dalam mereka bentuk cip bersaiz kecil. Selain itu, seni bina cip mestilah diberi perhatian untuk meningkatkan prestasi alat-alat elektronik. Salah satu cara penyelesaiannya adalah dengan mereka bentuk sumber/cerat yang cetek pada alat elektronik konvensional supaya prestasi alat tersebut meningkat. Dalam peningkatan mobiliti dan kelajuan alat elektronik, penyelidik teknologi semikonduktor berdepan dengan masalah seperti kesan saluran pendek dalam alat elektronik MOSFET kerana ia tidak dapat dielakkan dalam skala. Projek ini bertujuan untuk memperbaiki kesan saluran pendek dalam alat elektronik berskala nano. Technology Computer Aided Design (TCAD) tool dari Silvaco's International® telah digunakan untuk mereka bentuk dan mensimulasi reka bentuk yang telah di bina dalm projek ini. Perisian Silvaco's DEVEDIT telah digunakan dalam mereka bentuk binaan MOSFET berdasarkan langkah-langkah manakala perisian Silvaco's ATLAS telah digunakan untuk mensimulasi reka bentuk untuk mendapatkan keluaran graf. Keluaran graf dan analisis keputusan seperti graf bagi lengkungan pemindahan (I_D –V_{GS}) dan graf bagi lengkungan subthreshold (log I_D -V_{GS}) dikenalpasti untuk perbandingan skala kedalaman simpang antara reka bentuk standard International Technology Roadmap Semiconductor (ITRS) dengan reka bentuk sumber/cerat yang cetek. Analisis keputusan dalam projek ini menunjukkan reka bentuk kedalaman simpang yang cetek dapat memperbaiki kesan saluran pendek untuk alat elektronik. Oleh itu, konvensional NMOS mempunyai rintangan dan penggunaan kuasa yang rendah.

TABLE OF CONTENT

PAGE

PROJECT TITLE	i
REPORT STATUS VERIFICATION FORM	ii
DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLE	xiii
LIST OF FIGURE	xiv
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	xix
LIST OF APPENDICES	XX

I INTRODUCTION

1.0 Introduction	1.0	Introduction		1
------------------	-----	--------------	--	---

1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Project	3
1.5	Summary of Work	3
1.6	Project Outline	4

II LITERATURE REVIEW

2.1	Short	Channel Effect (SCE _s)	5
	2.1.1	Off-state leakage current	7
	2.1.2	VT roll-off	7
2.2	Shallo	w Source/Drain Extension (SDE)	8
	2.2.1	Shallow Junction Formation	9

III METHODOLOGY

3.1	Overview Methodology	14
3.2	Methodology Flowchart	18
3.3	DEVEDIT – Design Device Structure	19
	3.3.1 Step by Step on Process Simulation	19
3.4	ATLAS – Device Simulation Framework	30
3.5	Device Characterisation using ATLAS Simulation	31

IV RESULTS AND DISCUSSION

4.1	Electrical Characteristics	32
4.2	Design of Project	33
4.3	Overall Parameters for Standard Structure	
	MOSFET (ITRS)	39
4.4	Parameter of Junction Depth, Xj for Shallow	
	Source/Drain Extension (SDE) structure	40
4.5	Graph Transfer Curves $I_{\rm D}$ against $V_{\rm GS}$ for	
	Standard Structure (ITRS)	42
	4.5.1 Drain Voltage 0.7V for Gate Length	
	24nm, 16nm and 9.8nm	42
	4.5.2 Drain Voltage 50mV for Gate Length	
	24nm, 16nm and 9.8nm	45
4.6	Graph Transfer Curves $I_{\rm D}$ against $V_{\rm GS}$ for	
	Shallow Source/Drain Extension (SDE)	
	Profiles Structure	48
	4.6.1 Drain Voltage 0.7V for Gate Length	
	24nm, 16nm and 9.8nm	48
	4.6.2 Drain Voltage 50mV for Gate Length	
	24nm, 16nm and 9.8nm	51
4.7	Graph Subtreshold Curves Log I_D against V_{GS}	
	with 50mV and 0.7V Drain Voltages for Standard	l
	Structure (ITRS)	54
4.8	Graph Subtreshold Curves Log I_D against V_{GS}	
	with 50mV and 0.7V drain voltages for	
	Source/Drain Extension (SDE) Profiles Structure	57

4.9	Comparison the V_{TH} value between three	
	Gate Lengths for Standard Structure (ITRS)	
	with Shallow Source/Drain Extension (SDE)	
	Profiles	60
4.10	The Overall Results from Graph for Output	
	Data for Standard Structure (ITRS)	61
4.11	The Overall Results from Graph for Output	
	Data for Shallow Source/Drain Extension (SDE)	
	Profiles Structure	62

V CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	63
5.2	Recommendations	65

REFERENCES	66
APPENDIX A	68
APPENDIX B	70
APPENDIX C	72
APPENDIX D	74
APPENDIX E	76
APPENDIX F	78

LIST OF TABLES

PAGE

2.1	Scale of the depth source/drain within the years	10
3.1	Schedule for PSM I	16
3.2	Schedule for PSM 2	17
4.1	Parameter scale for gate length, $L_G = 24$ nm	33
4.2	Parameter scale for gate length, $L_G = 16nm$	35
4.3	Parameter scale for gate length, $L_G = 9.8$ nm	37
4.4	Overall parameter of standard structure (ITRS)	
	with gate length 24nm, 16nm and 9.8nm	39
4.5	Design of junction depth for shallow source/drain (SDE)	
	structure for gate length 24nm, 16nm and 9.8nm	40
4.6	Overall Output data for standard structure (ITRS)	61
4.7	Overall Output data for source/drain extension (SDE)	
	profiles structure	62

LIST OF FIGURES

FIGURE TITLE PAGE

2.1	Short channel and long channel	6
2.2	Short channel effect in MOSFET	6
2.3	Depletion of the space charge	7
2.4	Graph of V _{TH} versus channel length	8
2.5	Differences depth of source/drain MOSFET	9
2.6	SDE extension and depth shallow junction	9
2.7	SIA roadmap for junction depth	10
2.8	Shallow 30.0 nm SDE formed by a low energy implant and rapid thermal anneal	10
2.9	Potential contours for two devices biased in an off-state condition (a) 30 nm shallow junction and (b) 150 nm deep junction	11
2.10	Components of external resistance	12
2.11	ID _{SAT} versus SDE depth	13
2.12	Simulation data quantifying R_{EXT} and L_{MET} versus	
	junction depth	13
3.1	Methodology Flowchart	18
3.2	DEVEDIT command terminal	20
3.3	Resize work area	20

3.4	Silicon base region	21
3.5	Silicon region	21
3.6	Adding a silicon oxide region	22
3.7	Selecting the set base impurities for silicon oxide region	22
3.8	Silicon Oxide region	23
3.9	Adding the source region	23
3.10	Adding the drain region	24
3.11	Source and drain region	24
3.12	Adding a gate region	25
3.13	Selecting set base impurities for gate region	25
3.14	Gate region	26
3.15	Adding impurities for source region	27
3.16	Impurities for source region	27
3.17	Impurities for drain region	28
3.18	Mesh build	29
3.19	Saving commands	29
3.20	Saving structure	30
3.21	Order of Statement in ATLAS simulation	31
4.1	MOSFET design with 24nm gate length	34
4.2	Contour structure with junction depth for	
	24nm gate length MOSFET design	34
4.3	24nm gate length MOSFET design with mesh	35
4.4	MOSFET design with 16nm gate length	36
4.5	Contour structure with junction depth for	
	16nm gate length MOSFET design	36
4.6	16nm gate length MOSFET design with mesh	37

4.7	MOSFET design with 9.8nm gate length	38
4.8	Contour structure with junction depth for	
	9.8nm gate length MOSFET design	38
4.9	9.8nm gate length MOSFET design with mesh	39
4.10	Design shallow source/drain extension (SDE) structure for	
	24nm gate length MOSFET	40
4.11	Design shallow source/drain extension (SDE) structure for	
	16nm gate length MOSFET	41
4.12	Design shallow source/drain extension (SDE) structure for	
	9.8nm gate length MOSFET	41
4.13	$I_D - V_{GS}$ curves of 0.7V drain voltage for standard structure	
	(ITRS) 24nm gate length MOSFET	42
4.14	$I_D - V_{GS}$ curves of 0.7V drain voltage for standard structure	
	(ITRS) 16nm gate length MOSFET	43
4.15	$I_D - V_{GS}$ curves of 0.7V drain voltage for standard structure	
	(ITRS) 9.8nm gate length MOSFET	44
4.16	$I_D - V_{GS}$ curves of 50mV drain voltage for standard structure	
	(ITRS) 24nm gate length MOSFET	45
4.17	$I_D - V_{GS}$ curves of 50mV drain voltage for standard structure	
	(ITRS) 16nm gate length MOSFET	46
4.18	$I_D - V_{GS}$ curves of 50mV drain voltage for standard structure	
	(ITRS) 9.8nm gate length MOSFET	47
4.19	$I_D - V_{GS}$ curves of 0.7V drain voltage for shallow source/drain	
	extension (SDE) 24nm gate length MOSFET	48
4.20	$I_D - V_{GS}$ curves of 0.7V drain voltage for shallow source/drain	
	extension (SDE) 16nm gate length MOSFET	49
4.21	$I_D-V_{GS}\xspace$ curves of 0.7V drain voltage for shallow source/drain	

	extension (SDE) 9.8nm gate length MOSFET	50
4.22	$I_D - V_{GS}$ curves of 50mV drain voltage for shallow	
	source/drain extension (SDE) 24nm gate length MOSFET	51
4.23	$I_D - V_{GS}$ curves of 50mV drain voltage for shallow	
	source/drain extension (SDE) 16nm gate length MOSFET	52
4.24	$I_D - V_{GS}$ curves of 50mV drain voltage for shallow	
	source/drain extension (SDE) 9.8nm gate length MOSFET	53
4.25	log $I_D - V_{GS}$ subhtreshold curves with 50mV and 0.7V	
	drain voltage for standard structure (ITRS) 24nm	54
	gate length MOSFET	
4.26	log I_D-V_{GS} subthreshold curves with 50mV and 0.7V	
	drain voltage for standard structure (ITRS) 16nm	55
	gate length MOSFET	
4.27	log I_D-V_{GS} subthreshold curves with $50mV$ and $0.7V$	
	drain voltage for standard structure (ITRS) 9.8nm	56
	gate length MOSFET	
4.28	log I_D-V_{GS} subthreshold curves with 50mV and 0.7V	
	drain voltage for source drain extension (SDE) profiles	57
	structure 24nm gate length MOSFET	
4.29	log I_D-V_{GS} subthreshold curves with 50mV and 0.7V	
	drain voltage for source drain extension (SDE) profiles	58
	structure 24nm gate length MOSFET	
4.30	log $I_D - V_{GS}$ subthreshold curves with 50mV and 0.7V	
	drain voltage for source drain extension (SDE) profiles	59
	structure 24nm gate length MOSFET	
4.31	Graph Gate length, L_G against V_{TH} for standard structure	
	(ITRS) and source/drain extension (SDE) profiles structure	60

and standard structure (ITRS)

LIST OF ABBREVIATIONS

MOSFET	-	Metal-Oxide-Semiconductor Field-Effect-Transistor
nm	-	nanometer
ITRS	-	International Technology Roadmap Semiconductor
TCAD	-	Technology Computer Aided Design
SCE _s	-	Short Channel Effects
VLSI	-	Very Large Scale Integrated Circuits
SDE	-	Source/Drain Extension
TED	-	Transient Enhance Diffusion
NMOS	-	N-channel MOSFET

LIST OF SYMBOLS

I _D	-	Drain Current
V _D	-	Drain Voltage
V _{GS}	-	Gate-To-Source Voltage
V_{TH}	-	Threshold Voltage
L _G	-	Gate Length
I _{ON}	-	Drive Current

LIST OF APPENDICES

NO TITLE PAGE

А	ATLAS INPUT FILES: $I_D - V_{GS}$ Transfer Curves and	
	$Log I_D - V_{GS}$ Subthreshold Curves for Drain Voltage	68
	50mV and 0.7V Gate Length 24nm of standard structure	
	(ITRS)	
В	ATLAS INPUT FILES: $I_D - V_{GS}$ Transfer Curves and	
	$Log I_D - V_{GS}$ Subthreshold Curves for Drain Voltage	70
	50mV and 0.7V Gate Length 16nm of standard structure	
	(ITRS)	
С	ATLAS INPUT FILES: $I_D - V_{GS}$ Transfer Curves and	
	$Log I_D - V_{GS}$ Subthreshold Curves for Drain Voltage	72
	50mV and 0.7V Gate Length 9.8nm of standard structure	
	(ITRS)	
D	ATLAS INPUT FILES: $I_D - V_{GS}$ Transfer Curves and	
	$Log I_D - V_{GS}$ Subthreshold Curves for Drain Voltage	74
	50mV and 0.7V Gate Length 24nm of Shallow Source/Drain	

C Universiti Teknikal Malaysia Melaka

Extension (SDE) structure

E	ATLAS INPUT FILES: $I_D - V_{GS}$ Transfer Curves and	
	$Log \ I_D - V_{GS} \ Subthreshold \ Curves \ for \ Drain \ Voltage$	76
	50mV and 0.7V Gate Length 16nm of Shallow Source/Drain	
	Extension (SDE) structure	
F	ATLAS INPUT FILES: $I_D - V_{GS}$ Transfer Curves and	
	$Log I_D - V_{GS}$ Subthreshold Curves for Drain Voltage	78
	50mV and 0.7V Gate Length 9.8nm of Shallow Source/Drain	
	Extension (SDE) structure	

xxi

CHAPTER I

INTRODUCTION

This project use SILVACO TCAD tools to design MOSFET structure process and device simulation. The introduction of the study is thoroughly elaborated. This chapter also outlined on the objectives and scope of the research.

1.1 Project Background

More than 30 years, the Metal - Oxide - Semiconductor Field-Effect Transistor (MOSFET) has continually been scale down in size in channel length from micrometres to sub - micrometres and then to sub - micrometres range following Moore's Law. The channel length of MOSFET is reducing from 100nm to 45nm. The size reduction of the device makes great improvement to MOSFET operation.

However, there have many effects when reduction the scale size of the MOSFET. The one of the effect is short channel effect.

Short channel effect is an effect of the channel length of a MOSFET is the same order of magnitude as the depletion-layer widths of the source and drain junction, behaves differently from other MOSFETs. There are two physical phenomenon of the short channel effect. The first is the limitation imposed on electron drift characteristics in channel and the second is the modification of the threshold voltage due to the shortening channel length. In this project, the source/drain extension has been selected to be studied. The concept that influence for scaling the shallow source/drain extension (SDE) must be known for improving the short channel effect. Finally, the design of shallow source/drain extension (SDE) will be proposed.

1.2 Problem Statement

Nowadays, MOS device technologies have been improving at a dramatic rate. A large part of the success of the MOS transistor is due to the fact that it can be scaled to increasingly smaller dimensions, which results in higher performance. The ability to improve performance consistently while decreasing power consumption has made CMOS architecture the dominant technology for integrated circuits. The scaling of the CMOS transistor has been the primary factor driving improvements in microprocessor performance. Transistor delay times have decreased by more than 30% per technology generation resulting in a doubling of microprocessor performance every two years. In order to maintain this rapid rate of improvement, aggressive engineering of the source/drain and well regions is required. As the MOSFET technology is approaching nano scaling, short channel effect becomes more considerable as the channel length is reduced. Thus, one of the important parts is to design the shallow source/drain extension profiles in improving the short channel effect in nanoscale devices.

1.3 Objectives

Aim: To improve the short channel effect (SCE_S) in nanoscale devices.

The main objective of this project is:

- To design the shallow source/drain extension (SDE) profiles for gate length 24nm, 16nm & 9.8nm.
- To analyze and simulate the results of improving short channel effect using the SILVACO Software.

1.4 Scope of Project

This project focus on the design the shallow source/drain extension (SDE) profiles for improving the short channel effect. Design of the NMOS transistor is carried out using Silvaco's DEVEDIT software while the simulation was done using Silvaco's ATLAS software.

From the project, the required parameters of every fabrication steps and order of fabrication steps are very important to ensure a proper MOSFET device was fabricated. On the other hand, it also highlighted some MOSFET characteristics that need to be studied such as transfer characteristics ($I_d - V_{gs}$) and subthreshold curves (log $I_d - V_{gs}$). After that, this MOSFETs design gate length 24nm, 16nm and 9.8nm is propose for nanoscale devices.

1.5 Summary of Work

This project will be carried out in two semesters. The first part of the project is done in the first semester where the understandings of literature review and methodology that will use are done. Gathering information is needed in order to