SURVEILLANCE ROBOT

MUHAMMAD BUKHARI BIN KAMAROZAMAN

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Industrial Electronic) With Honours

> Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

> > June 2013

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek	SURVEILLANG	CE ROBOT
Sesi	. 2012 / 2013	
Pengajian		
Saya	MUHAMMAD BUKHA	RI BIN KAMAROZAMAN
mengaku m syarat kegu	nembenarkan Laporan Pro naan seperti berikut:	(HURUF BESAR) ojek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
1. Lapora	n adalah hakmilik Univer	rsiti Teknikal Malaysia Melaka.
2. Perpus	takaan dibenarkan memb	uat salinan untuk tujuan pengajian sahaja.
3. Perpus	takaan dibenarkan memb	uat salinan laporan ini sebagai bahan pertukaran antara institusi
	ian tinggi.	
4. Sila tar	ndakan ($$):	
	SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	TIDAK TERHAD	
		Disahkan oleh:
	(TANDATANGAN PENULI 1317 JALAN SEMARAK 34 TAMAN PANCHOR JAYA 70400 SEREMBAN NEGERI SEMBILAN	(COP DAN TANDATA GAN PENYELIA) NUR ALISA BIAN ALI Pensyarah Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka (UTEM) Karung Berkunci No 1752 Pejabat Pos Durian Tunggal 76109 Durian Tunggal, Melaka.
Tarikh:	4 JUNE 2013	Tarikh: 14 JUNE 2013

"I	hereby	declare	that th	nis repor	is	result	of my	own	effort	except	for	quotes	as	cited
					iı	the re	eferenc	es"						

Signature :

Author : Muhammad Bukhari bin Kamarozaman

Date : June 14, 2013

"Hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of bachelor of Electronic Engineering

(Industrial Electronics) With Honours"

Signature :

Supervisor's Name : Engr. Nur Alisa binti Ali

Date : June 14, 2013

"Dedicated to my parents, my siblings and also my colleagues and friends who have been supporting me all the time"

ACKNOWLEDGEMENT

Success and accomplishment of this report cannot be achieved without the support, encouragement and sacrifice of other. First and foremost, it's grateful to Allah S.W.T because with his blessing, I am able to complete this project in success.

I would like to thank and express my appreciation and gratitude to my parents and those who have been involved in contributing their precious ideas in helping me to prepare and complete this project.

Special thanks to my supervisor, Engr. Nur Alisa binti Ali, thank you for your guidance, advise, encouragement, suggestion and constructive views throughout during my final year project (FYP) period. I am absolutely grateful to the valuable knowledge that she gave to me. To all my friends, thank you for the assistance and voluntary participation in completing all required information.

Finally, special appreciation also dedicated to all individuals either directly or indirectly involved in final preparation of this thesis. Thank you for the moral support and encouragement that can make this report success to be done. Without all the help and support, this thesis would not have been presented here.

ABSTRACT

Nowadays, surveillance system is used in order to observe specific activities or areas in purpose of managing, directing or protecting. By using the surveillance system, the users are able to monitor and identify if something abnormal happens and further action can be taken after that. However, since the typical surveillance system such as Closed-Circuit Television (CCTV) is using a static camera, the image captured is in single viewing angle and it is difficult to get effective image. The purpose of this project is to build a "Surveillance Robot" that can be used to visualize image captured on-site. This mobile robot that equipped with camera is controlled by human using a computer wirelessly via Zigbee wireless technology. The image visualize by this Surveillance Robot can be more efficient compared to other typical surveillance system since its multiple viewing angle can be varied.

ABSTRAK

Pada masa kini, sistem pengawasan digunakan untuk memerhati aktiviti atau kawasan tertentu bagi tujuan mengurus, mengarah atau melindungi. Dengan menggunakan sistem pengawasan, pengguna boleh memantau dan mengenalpasti jika sesuatu yang tidak normal berlaku justeru tindakan selanjutnya boleh diambil selepas itu. Walau bagaimanapun, oleh sebab sistem pengawasan yang biasa seperti televisyen litar tertutup (CCTV) menggunakan kamera statik, dimana imej yang dirakam adalah dari sudut paparan tunggal dan ia memberi kesukaran untuk mendapatkan imej yang berkesan. Tujuan projek ini adalah untuk menghasilkan "Robot Pengawasan" yang digunakan untuk menggambarkan imej yang dirakam di tapak kawasan. Robot mudah alih yang dilengkapi dengan kamera ini dikawal oleh manusia menggunakan komputer secara tanpa wayar melalui teknologi tanpa wayar, ZigBee. Imej yang dihasilkan oleh Robot Pengawasan ini lebih berkesan berbanding dengan sistem pengawasan biasa yang lain kerana pelbagai sudut paparan yang boleh diubah-ubah.

CONTENTS

CHAPTER	TITI	LE	PAGE	
	PRO	JECT TITLE	i	
		LARATION	iii	
		ERVISOR'S DECLARATION	iv	
	DEDICATION			
		NOWLEDGEMENT	v vi	
		TRACT	vii	
		TRAK	viii ix	
		TENTS	ıx xiii	
	LIST OF TABLES			
	LIST OF FIGURES			
	LIST	T OF ABBREVIATIONS	xvi	
	LIST	T OF APPENDICES	xvii	
1	INTI	RODUCTION	1	
	1.1	OVERVIEW	1	
	1.2	PROJECT OBJECTIVE	3	
	1.3	SCOPE OF PROJECT	3	
	1.4	PROBLEM STATEMENT	4	
	1.5	OUTLINE OF REPORT	4	

2	LITI	ERATU	RE REVIEW	5
	2.1	OVE	RVIEW	5
	2.2	SURV	EILLANCE MOBILE ROBOT	6
		2.2.1	Autonomous Explorer Mobile Robot	6
		2.2.2	Remote Controlled Surveillance Mobile	
			Robot with IP Camera	7
		2.2.3	Mobile Robot based on Network Camera	8
		2.2.4	Remote Control and Monitoring of an	
			Autonomous Mobile Robot	9
		2.2.5	Wi-Fi Surveillance Robot	10
3	мет	THODO	LOGY	12
	3.1	OVE	RVIEW	12
	3.2	PROJ	ECT IMPLEMENTATION	13
		3.2.1	Initial Design	14
			3.2.1.1 GUI Console	14
			3.2.1.2 Mobile Robot	16
			3.2.1.3 Zigbee	17
		3.2.2	Robot Base Fabrication	18
			3.2.2.1 Mobile Robot Base	18
			3.2.2.2 Servo Motor	19
		3.2.3	Circuit Design	20
		3.2.4	Microcontroller Programming	22
		3.2.5	Communicating Robot (wired)	24
		326	Communicating Robot (wireless)	26

		3.2.7	Circuit Fabrication	28
		3.2.8	Video Camera Installation	29
		3.2.9	User Interface Development	30
		3.2.10	Robot Construction	32
	3.3	PROJ	ECT SCHEDULE	32
4	RES	ULT AN	ND DISCUSSIONS	33
	4.1	OVE	RVIEW	33
	4.2	CIRC	UIT DEVELOPMENT	34
		4.2.1	Circuit Simulation	34
			4.2.1.1 Battery Level	34
			4.2.1.2 Camera Angle Adjustment	35
		4.2.2	Circuit Schematic	36
		4.2.3	PCB Layout	39
		4.2.4	Printed Circuit Board	41
		4.2.5	Finishing	43
	4.3	SOFT	WARE DEVELOPMENT	44
		4.3.1	PIC Microcontroller	44
			4.2.1.1 Preprocessor Directive	44
			4.2.1.2 Main Program	46
			4.2.1.3 Function	48
		4.3.2	Visual Basic	51
			4.3.2.1 Login Form	51
			4.3.2.2 GUI Console	52
	4.4	HARI	OWARE DEVELOPMENT	58
		4.4.1	Mobile Robot Base Preparation	59
		4.4.2	Hardware Installation	59

5	CON	CONCLUSION AND RECOMMENDATION			
	5.1	OVERVIEW	64		
	5.2	CONCLUSION	65		
	5.3	RECOMMENDATION	66		
	REF	REFERENCES			
	APP	69			

LIST OF TABLES

NO	TITLE	PAGE
3.1	Combination of two motors for robot movement	23
4.1	Table of servo motor rotation angle	36
4.2	Table of converting battery level	48
4.3	Hardware aspect consideration	60
4.4	Description for each tag from figure 4.16 until figure 4.20	63

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Overview of project system	2
2.1	Autonomous explorer mobile robot	6
2.2	RC surveillance mobile robot with GUI console	7
2.3	Internet based network system	8
2.4	Mobile robot with GUI console	9
2.5	Autonomous mobile robot with GUI console	10
2.6	Wi-fi surveillance robot with GUI console	11
3.1	Flowchart of project implementation	13
3.2	GUI console work flow	14
3.3	Initial design of GUI console	15
3.4	Mobile robot work flow	16
3.5	Initial design of mobile robot in CATIA P3	17
3.6	XBee module	17
3.7	Acrylic glass	18
3.8	Design of mobile robot base in CATIA P3	19
3.9	Servo motor	19
3.10	Servo motor working principle	20
3.11	Structure of the design circuit	21
3.12	2ms of pulse width signal	24

3.13	(a) DB-9 pin diagram and (b) RS-232 USB cable	25
3.14	Proteus hyperterminal	25
3.15	XBee connection for surveillance robot	26
3.16	X-CTU software	27
3.17	Interface XBee module with PIC microcontroller	27
3.18	(a) Top circuit, (b) Bottom circuit and (c) Flash LED circuit in	
	ARES 3D view	28
3.19	Wireless IP camera (DCS-930L)	29
3.20	First design of GUI console using visual basic	30
4.1	Simulation of battery level circuit	35
4.2	Simulation of 2.4ms PWM signal	36
4.3	Bottom circuit schematic diagram	37
4.4	Top circuit schematic diagram	38
4.5	Flash LED circuit schematic diagram	38
4.6	PCB layout of bottom circuit	39
4.7	PCB layout of top circuit	40
4.8	PCB layout of flash LED circuit	40
4.9	PCB fabrication process flow	41
4.10	Bottom circuit PCB	42
4.11	Top circuit PCB	42
4.12	Flash LED circuit PCB	43
4.13	Surveillance robot login form	51
4.14	GUI console for surveillance robot	52
4.15	Acrylic mobile robot base	59
4.16	Top view of surveillance robot	60
4.17	Front view of surveillance robot	61
4.18	Rear view of surveillance robot	61
4.19	Side view of surveillance robot	62
4 20	XRee module for USB connection	62

LIST OF ABBREVIATIONS

PIC - Programmable Integrated Circuit

GUI - Graphical User Interface

MCU - Microcontroller Unit

DC - Direct Current

LED - Light Emitting Diode

CCTV - Closed-Circuit Television

RF - Radio Frequency

IP - Internet Protocol

RC - Remote Control

GPS - Global Positioning System

CMOS - Complementary Metal-Oxide-Semiconductor

CIF - Caltech Intermediate Form

PCB - Printed Circuit Board

PWM - Pulse Width Modulation

ADC - Analog-to-Digital Converter

RX - Receiver

TX - Transmitter

Li-Po - Lithium Polymer

GND - Ground

LIST OF APPENDICES

NO	TITLE	PAGE
A	Mobile Robot Dimension	69
В	XBEE Specifications	70
C	Mobile Robot Base Dimension	71
D	Servo Motor Specifications	72
Е	PIC 16F87X Datasheet	73
F	L293D Motor Driver Datasheet	74
G	D-Link DCS-930L Specifications	75
Н	Gantt Chart of Project Planning	76
J	Surveillance Robot Project Poster	77

CHAPTER 1

INTRODUCTION

1.1 Overview

Surveillance system is a type of system that been used to observe specific activities or areas in term of managing, directing or protecting purpose [1]. By monitoring the certain activities or areas every time using the surveillance system, the users are able to know if something abnormal happens and further action can be taken after that.

According to Tom Harris [2], robot is an electro-mechanical machine that is controlled by a computer program or electronic apparatus. It is being used to give convenience to human by doing specific task. Robots are able to execute the task that impossible or beyond capability of human. From this advantage, it can gives many advantages in term of safety, ease and efficiency.

Surveillance system and robots are two different systems that carry out their own task respectively. The main inspiration for this project is to combine these two systems to produce a mobile robot equipped with a camera as an intelligence surveillance system. By using this *Surveillance Robot*, the image visualize can be more efficient compared to other typical surveillance system since its multiple viewing angle can be varied. This robot can be used as a medium for a monitoring system wirelessly by remotely-controlled by human via computer.

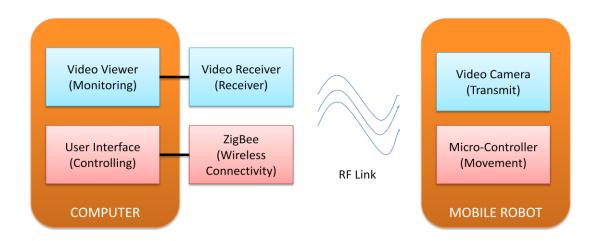


Figure 1.1: Overview of Project System

Figure 1.1 shows this project consists of both hardware and software modules where PIC microcontroller is used as a controller of the robot in term of movement and other control while Graphical User Interface (GUI) is created using Visual Basic as a navigation control and monitoring station for a user on a computer. Zigbee wireless technology is used in this project as a wireless communicating device between the mobile robot and the computer.

1.2 Project Objectives

The aim of this project is to develop a surveillance mobile robot that able to visualize image on-site and being control by a computer using Graphical User Interface (GUI). This is carried out by the following objectives:

- i. To develop a mobile robot equipped with camera for monitoring system using microcontroller unit (MCU).
- ii. To create a Graphical User Interface (GUI) as a console for navigation control.
- iii. To communicate the robot and computer using Zigbee wireless technology.

1.3 Scope of Project

In order to achieve the objectives of the project, the scopes of work are identified as:

- i. Remotely-controlled mobile robot by computer
- ii. Limitation of controlling range is between 50 to 100 meters indoor area
- iii. Working environment is flat surface
- iv. Two DC motors are used for mobile robot movement
- v. One wireless camera with 180° degree of panning rotation
- vi. Flash LED to light up dark area
- vii. Battery level indicator for mobile robot's battery level

1.4 Problem Statement

Currently, most of dangerous areas that should be monitored regularly often use the Closed-Circuit Television (CCTV) system as the medium of monitoring operation. However, this CCTV used a static camera where it is difficult to transmit the image on-site effectively because of single viewing angle for each CCTV installed. Due to this problem, manpower is used to gives a direct view to get the desired image which is indirectly endanger to the safety of human being. Dangerous environment such as radiation, high temperature, flammable and etc will risk the human life. Their safety is not guaranteed if they are directly used to execute the monitoring task.

1.5 Outline of Report

This report consists of three chapters and organized as follows. In Chapter 1, the introduction section will be briefly explained about the background of the project generally. The problem statement, objective and scope of the project also being stated in this first chapter. In Chapter 2, literature review of the project is summarized where the background studies over the previous project developed by others is stated. Some critical review is discussed in this chapter. Methodology is briefly explained in Chapter 3 on how the project is approached and executed. Project planning is clearly stated here. Process flow of the project also included in this chapter. Chapter 4 discussed the result of the project. The final chapter concluded the overall performance of project achievement and some recommendations are being stated.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Literature review is a background studies that aims to review the critical points of recent information. All of information gained via internet, journals, conference papers and books is gathered to get a better idea and inspiration on this project.

In this chapter, the similar previous projects that developed by others is reviewed and discussed to give critical review and also to choose the suitable equipment and method before starting the project implementation.

2.2 Surveillance Mobile Robot

Presently, an intelligence surveillance system is in high demand where the traditional ways of monitoring system which using CCTV resulting an ineffective image due to its static position[3]. Several projects have been done to overcome the problem and one of the basic idea is developing a surveillance mobile robot. Several related project is reviewed as follows.

2.2.1 Autonomous Explorer Mobile Robot

The previous project by Csongor Márk Horváth and Róbert Tamás Fekete in their article "Development of Autonomous Explorer Mobile Robot for a Specific Environment" on 2011 [4] is using the same basic concept as the *Surveillance Robot* where a mobile robot is equipped with a camera but the robot is used for exploring purpose instead of monitoring. Figure 2.1 below shows the Autonomous Explorer Mobile Robot.

Figure 2.1: Autonomous Explorer Mobile Robot [4]

In this project, the robot is controlled by ATMEL ATmega128 microcontroller. It is a fully automated type of robot where it consists of sonar sensor for obstacle avoiding and infrared sensor for a wall following function [4]. The mobile robot used a wireless camera in order to transmit the image captured on-site to a monitoring station. This robot does not use a communicating device such as RF transceiver to manually control by a computer. It only used a Wi-Fi network to connect the robot and computer. This mobile robot is fully depends on the Wi-Fi access point that determine its covering area which gives some disadvantages where this robot only able to operate in a Wi-Fi network environment.

2.2.2 Remote Controlled Surveillance Mobile Robot with IP Camera

The Remote Controlled Surveillance Mobile Robot with IP Camera is developed by Gilbert, Martin and Janssen in 2011 [3]. This manually-operated mobile robot using PIC 16F877A microcontroller and equipped with wireless IP Camera. As shown in Figure 2.2, this surveillance mobile robot also being control by user using a GUI console created on a computer. As a connecting device, this robot used an RF Transceiver. Other additional function such as battery level indicator also included in this project.

Figure 2.2: RC Surveillance Mobile Robot with GUI Console [3]