

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE EFFECT OF CRUDE OIL TO THE CORROSION PROPERTIES OF PETROLEUM PIPELINE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

HAZWAN HASIF BIN HAMDAN B050910081 891108-01-5071

FACULTY OF MANUFACTURING ENGINEERING 2013

UNIVERSIT	I TEKNIKAL MALAYSIA MELAKA
BORANG PENGE	SAHAN STATUS LAPORAN PROJEK SARJANA MUDA
TAJUK: The Effect of Crude	Oil to the Corrosion Properties of Petroleum Pipeline
SESI PENGAJIAN: 2012/13 Se	mester 2
Saya HAZWAN HASIF BI	IN HAMDAN
mengaku membenarkan Lapo Malaysia Melaka (UTeM) den	oran PSM ini disimpan di Perpustakaan Universiti Teknikal gan syarat-syarat kegunaan seperti berikut:
 Laporan PSM adalah hak Perpustakaan Universiti tujuan pengajian sahaja Perpustakaan dibenarkar antara institusi pengajian 	milik Universiti Teknikal Malaysia Melaka dan penulis. Teknikal Malaysia Melaka dibenarkan membuat salinan untuk dengan izin penulis. n membuat salinan laporan PSM ini sebagai bahan pertukaran n tinggi.
	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERHAD TIDAK TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan olel organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
No. 24, JALAN OREN,	
TAMAN BUKIT PASIR,	
83000 BATU PAHAT, JOHOR	

DECLARATION

I hereby, declared this report entitled "The Effect of Crude Oil to the Corrosion Properties of Petroleum Pipeline" is the results of my own research except as cited in references.

Signature	:
Author's Name	: HAZWAN HASIF BIN HAMDAN
Date	:

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) (Hons.). The members of the supervisory committee are as follow:

.....

(DR. MOHD. ASYADI 'AZAM BIN MOHD. ABID)

ABSTRACT

This project is about the pipeline corrosion caused by the composition of petroleum product in particular crude oil to the internal surface of carbon steel pipeline. Internal and external pipeline corrosion has been the main causes of pipeline failure in oil and gas industry not only in Malaysia but all over the world. However, the internal corrosion is preferred to be concerned in this project because it involved one of the corrosive media in crude oil such as sulfur content. The first objective in this project is to study the sulfur concentration in crude oil by using Fourier Transform Infrared (FTIR) spectroscopy and Atomic Absorption Spectroscopy (AAS). The corrosion rate, corrosion current (E_{corr}) and corrosion potential (I_{corr}) of API X65 grade carbon steel pipeline in different concentration of simulated H₂SO₄ solution were analyzed using Tafel extrapolation method. The corrosion properties on the sample were measured using Optical Microscope (OM), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX).

The results showed that the corrosion rate of carbon steel increased significantly with the increase of H_2SO_4 concentration. The corrosion products formed on carbon steel surfaces were mainly composed of iron sulfate (FeSO₄), iron sulfide (FeS) and iron oxide (FeO). These findings is important to understand the crude oil corrosivity behavior and should be further investigated the other probability influence factor such as temperature.

i

ABSTRAK

Projek ini adalah mengenai pengaratan saluran paip yang disebabkan oleh komposisi produk petroleum khususnya minyak mentah ke atas permukaan dalaman paip keluli karbon. Pengaratan luaran dan dalaman adalah punca utama kegagalan saluran paip dalam industri minyak dan gas bukan hanya di Malaysia sahaja tapi di seluruh dunia. Walau bagaimanapun, pengaratan dalaman adalah menjadi pilihan dalam projek ini kerana ia melibatkan salah satu media pengaratan dalam minyak mentah contohnya sulfur. Objektif pertama projek ini adalah untuk mempelajari kepekatan sulfur dalam minyak mentah dengan menggunakan Fourier Transform Infrared (FTIR) spektroskopi dan Spektroskopi Penyerapan Atom (AAS). Kadar pengaratan, potensi pengaratan (E_{corr}) dan arus pengaratan (I_{corr}) paip keluli karbon gred API X65 dalam simulasi larutan berasid H₂SO₄ dengan kepekatan berbeza telah dianalysis menggunakan kaedah ekstrapolasi Tafel. Ciri-ciri pengaratan pada sampel diuji dengan menggunakan Mikroskop Optik (OM), Mikroskop Imbasan Elektron (SEM) dan Sebaran Tenaga Sinar-X (EDX).

Hasil kajian menunjukkan bahawa kadar pengaratan keluli karbon meningkat dengan ketara dengan peningkatan kepekatan H₂SO₄. Produk-produk pengaratan terbentuk pada permukaan keluli karbon terutamanya terdiri daripada sulfat besi (FeSO₄), sulfida besi (FeS) dan oksida besi (FeO). Penemuan ini penting untuk memahami tingkah laku pengaratan oleh minyak mentah dan juga perlu disiasat faktor pengaruh lain contohnya suhu yang mungkin menyebabkan peningkatan mekanisma pengaratan.

DEDICATION

I would like to express my gratitude to my supervior, Dr. Mohd. Asyadi 'Azam bin Mohd. Abid for his guidance, support and push during this Final Year Project. His expertise and contribution have been invaluable for my bachelor studies. I truly appreciate Dr. Asyadi for his deep theoretical and practical knowledge in corrosion and his organizational abilities.

And also my sincere love to my beloved parents for their love and support. I will try my best to make you guys proud.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim...

Firstly, I would like to convey my gratitude towards the Al-Mighty for giving me the strength and willingness during this Final Year Project. Then I would like to express my sincere gratitude and appreciation to my supervisor, Dr. Mohd. Asyadi 'Azam bin Mohd. Abid who guided me during this project. I deeply appreciate for the countless hours spent by him on this project.

Special thanks and appreciation to my parent, Mr. Hamdan bin Ogok and Mrs. Samporna binti Tosin for their sacrifice and encouragement in the dissertation efforts. Acknowledgement of appreciation also goes to my friends for their patience and support. Thank you again.

Wassalam... Hazwan Hasif bin Hamdan

Abs	tract			i
Abst	trak			ii
Ded	ication			iii
Ack	nowledge	ement		iv
Tabl	e of Con	tent		v
List	of Figure	s		ix
List	ofTables	5		xii
List	of Abbre	viations,	Symbols and Nomenclatures	xiii
CHA	APTER	I: INTRO	DUCTION	1
1.1	Backg	round		1
1.2	Proble	m stateme	ent of the project	2
1.3	Object	ives		3
1.4	Scope			3
CHA	APTER 2	2: LITER	ATURE REVIEW	4
2.1	Oil an	d gas indu	ustry in Malaysia	4
	2.1.1	History		4
	2.1.2	Activitie	es in oil and gas industry	6
		2.1.2.1	Exploration and production	7
		2.1.2.2	Refining	7
		2.1.2.3	Development	7
		2.1.2.4	Trading and marketing	7
		2.1.2.5	Distribution, transport and storage	8
	2.1.3	Contribu	ation of this industry to the country	8

2.2	Petrol	eum products 10		
	2.2.1	Crude oil	10	
	2.2.2	The hydrocarbons in crude oil	11	
	2.2.3	Crude oil distillation process	12	
2.3	Petrol	eum pipeline	13	
	2.3.1	Carbon steel pipeline	13	
	2.3.2	Grades of pipeline	13	
	2.3.3	Coating of pipeline	15	
2.4	Overv	view of corrosion	17	
	2.4.1	Definition of corrosion	17	
	2.4.2	Corrosion in oil and gas industry	17	
	2.4.3	Types of corrosion in oil and gas industry	19	
		2.4.3.1 External corrosion	19	
		2.4.3.2 Types of internal corrosion	20	
	2.4.4	Importance to understand corrosion	24	
	2.4.5	Effect of corrosion to economy	24	
	2.4.6	Mechanism of corrosion	25	
	2.4.7	Calculation of corrosion rate from the corrosion current	28	
2.5	Chara	cterization of crude oil and pipeline	29	
	2.5.1	FTIR spectroscopy	29	
	2.5.2	AAS	29	
	2.5.3	ОМ	30	
	2.5.4	Electrochemical corrosion testing	30	
	2.5.5	Metallographic study	31	
		2.5.5.1 SEM	32	
		2.5.5.2 EDS or EDX	35	

CHA	PTER 3	3: METHODOLOGY	37
3.1	Flow of methodology process		
3.2	FTIR spectroscopy		
	3.2.1 Checking the crude oil composition		
	3.2.2	Conversion from FTIR spectra to solution concentration	40
3.3	Samp	le preparation for corrosion test	41
	3.3.1	Sample cutting and copper wire attached	42
	3.3.2	Cold mounting	44
	3.3.3	Grinding and polishing	45
	3.3.4	Etching	47
	3.3.5	Electrolyte for corrosion rate measurement	47
	3.3.6	Dilution of H ₂ SO ₄ solution	47
3.4	Exper	imental setup for corrosion test	48
3.5	Surfac	e characterization and elemental analysis: OM, SEM, EDX	50
3.6	Corrosion rate measurement from Tafel extrapolation analysis 51		
CHAI	PTER 4	: RESULTS AND DISCUSSION	53
4.1	Obser	vation and presentation of the collected data	53
4.2	FTIR	analysis of sulfur in crude oil	54
4.3	AAS a	analysis of sulfur concentration in crude oil	56
4.4	Molar	ity determination for H_2SO_4 solution from the concentration of	
	SO4 ²⁻ i	in ppm (parts per million)	57
4.5	Tafel	extrapolation analysis for corrosion rate determination	58
4.6	Digita	l image for API X65 pipeline steel	63
4.7	Optica	al Microscope (OM)	65
	4.7.1	Microstructure observation of steel sample before corrosion testing	65
	4.7.2	Microstructure observation of steel sample after corrosion testing	66
4.8	SEM a	analysis of corrosion product on steel samples	68
	4.8.1	Surface morphology of steel samples before corrosion testing	68

	4.8.2	Surface morphology and cross section of steel samples after	
		corrosion testing	68
4.9	Corro	sion product analysis by EDX	75
4.10	Sugge	estions of corrosion mechanism	81
CHA	PTER S	5: CONCLUSIONS AND FUTURE WORKS	83
5.1	Concl	usions	83
5.2	Future	e works	84
REFI	ERENC	ES	85

APPENDIX

LIST OF FIGURES

2.1	Malaysia's oil production and consumption, 1991 – 2010	5
2.2	Malaysia's Oil and Gas Reserves from 2006 until 2010	6
2.3	The way government get income from oil and gas industries	9
2.4	Crude oil distillation process	12
2.5	Installation of an exterior pipe tape wraps	16
2.6	Internal pitting corrosion in pipeline	20
2.7	Erosion corrosion at pipe elbow	21
2.8	CO ₂ corrosion on internal pipe surface	22
2.9	H ₂ S corrosion on internal pipe surface	23
2.10(a) SEM surface morphologies and EDX of carbon steel after CO ₂ corrosion	33
2.10(b) SEM surface morphologies and EDX of carbon steel after H ₂ S corrosion	34
2.11	Example of SEM image of carbon steel pipe with 4000 x magnification	35
3.1	Flow of methodology process	38
3.2	Crude oil	39
3.3	ATR-FTIR machine	40
3.4	Sample preparation flow chart	42
3.5	Original pipeline sample from PETRONAS	41
3.6	Sample dimensions	43
3.7	Horizontal band saw machine	43
3.8	Diamond cutter	43
3.9	Carbon steel specimens	44
3.10	Carbon steel pipe specimens attached with copper wire	44
3.11(a)Cold mounting process	45
3.11(b)Cold mounting specimens	45
3.12(a))Grinding process of cold mounted specimen	46
3.12(b)Grinding machine	46

ix

3.13	Polishing machine	46
3.14	Electrochemical cell for corrosion test with H ₂ SO ₄ solution	48
3.15	OM	50
3.16	SEM and EDX	50
3.17	Example of Tafel plot	51
4.1	FTIR analysis result of sulfur in crude oil	54
4.2	Tafel curve obtained once the corrosion film is formed on API X65 in	
	0.05 MH ₂ SO ₄	59
4.3	Tafel curve obtained once the corrosion film is formed on API X65 in	(0)
	$0.20 \text{ MH}_2 \text{SO}_4$	60
4.4	1 afel curve obtained once the corrosion film is formed on API X65 in	
	$0.40 \text{ M} \text{ H}_2 \text{SO}_4$	60
4.5	Tatel curve obtained once the corrosion film is formed on API X65 in	
	$0.75 \text{ M H}_2 \text{SO}_4$	61
4.6	Tafel curve obtained once the corrosion film is formed on API X65 in	
	$1 \text{ M} \text{ H}_2 \text{SO}_4$	62
4.7	Digital image of steel sample with 1.0 x magnification	63
4.8	Digital image of pitting corrosion after corrosion test in (a) 0.05 M	
	(b) 0.20 M (c) 0.40 M (d) 0.75 M (e) 1 M H_2SO_4	64
4.9	OM for microstructure of API X65 carbon steel pipe	65
4.10	Optical micrograph of pitting corrosion after corrosion test in (a) 0.05 M	
	(b) 0.20 M (c) 0.40 M (d) 0.75 M (e) 1 M H_2SO_4	67
4.11	SEM morphology of API X65 carbon steel sample surface without	
	corrosion product	68
4.12	SEM morphology image of sample in the solution of 0.05 M H_2SO_4	69
4.13	SEM morphology image of sample in the solution of 0.20 M $\rm H_2SO_4$	69
4.14	Cross-section SEM image corrosion layer after corrosion test with	
	0.05 M H ₂ SO ₄	70
4.15	Cross-section SEM image corrosion layer after corrosion test with	

X

	0.20 M H ₂ SO ₄	70
4.16	SEM morphology image of sample in the solution of 0.40 M H_2SO_4	71
4.17	SEM morphology image of sample in the solution of 0.75 M H_2SO_4	71
4.18	Cross-section SEM image corrosion layer after corrosion test with	
	0.40 M H ₂ SO ₄	72
4.19	Cross-section SEM image corrosion layer after corrosion test with	
	0.75M H ₂ SO ₄	72
4.20	SEM morphology image of sample in the solution of $1 \text{ M H}_2\text{SO}_4$	73
4.21	Cross-section SEM image corrosion layer after corrosion test with	
	1 M H ₂ SO ₄	74
4.22	Analysis of corrosion product after corrosion test with 0.05 M H_2SO_4	75
4.23	EDX peak after corrosion test with 0.05 M H_2SO_4	76
4.24	Analysis of corrosion product after corrosion test with 0.20 M H_2SO_4	76
4.25	EDX peak after corrosion test with 0.20 M H ₂ SO ₄	77
4.26	Analysis of corrosion product after corrosion test with 0.40 M H_2SO_4	77
4.27	EDX peak after corrosion test with 0.40 M H ₂ SO ₄	78
4.28	Analysis of corrosion product after corrosion test with 0.75 M H_2SO_4	78
4.29	EDX peak after corrosion test with $0.75 \text{ M H}_2\text{SO}_4$	79
4.30	Analysis of corrosion product after corrosion test with $1 \text{ M H}_2\text{SO}_4$	80
4.31	EDX peak after corrosion test with 1 M H ₂ SO ₄	80
4.32	Illustration of pitting corrosion mechanism at steel surface	82

LIST OF TABLES

2.1	Example of typical composition of crude oil in United States	11
2.2	Hydrocarbon weights in United States	11
2.3	Line pipe physical properties	14
2.4	Failures in oil and gas industry average in Western Europe,	
	Gulf of Mexico and Poland, and India	1 8
3.1	API X65 pipeline steel with composition specifications	42
3.2	Data for the carbon steel specimen according ASTM G 102	47
4.1	Selected functional groups in the crude oil sample	54
4.2	AAS analysis result for sulfur concentration in crude oil	56
4.3	Value of corrosion rate, I_{corr} , and E_{corr} for different concentrations of H ₂ SO ₄	58

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

Α	-	Ampere
Ainitial	-	Exposed specimen area
Ag/AgCl	-	Silver/silver chloride
API	-	American Petroleum Institute
ASTM	-	America Society for testing and Materials
ATR	-	Attenuated Total Reflectance
AWD	-	Analytical Working Distance
BP	-	British Petroleum
СГ	-	Chloride
CPU	-	Control Processing Unit
CO ₂	-	Carbon Dioxide
CECER	-	Construction Engineering Research Laboratories
cm	-	Centimeter
Cu	-	Copper
С	-	Carbon
ССК	-	Corrosion Cell Kit
CE	-	Counter electrode
CR	-	Corrosion rate
daN	-	force display (Newton)
Et al	-	et alli (and others)
Ec	-	Current electrochemical parameter
Ecorr	-	Corrosion potential
EDS	-	Energy Dispersive X-ray Spectroscopy
EDX	-	Energy Dispersive X-ray Spectroscopy
EIA	-	Environmental Impact Assessment
Eq	-	Equation

xiii

Ep	-	Editional photographers
Ew	-	Equivalent Weight
FKP	-	Fakulti Kejuruteraan Pembuatan
Fe	-	Iron
FeCO ₃	-	Iron carbonate
FTIR	-	Fourier Transform Infrared
GNP	-	Gross National Products
g/l	-	gram per liter
HNO ₃	-	Nitric acid
H ₂ S	-	Hydrogen Sulfide
H ₂ CO ₃	-	Carbonic acid
H ₂ SO ₄	-	Sulfuric acid
IR	-	Infrared
KM	-	Kilometer
К	-	Kelvin
Kw	-	Kilowatts
Kg	-	kilograms
KLCC	_	Kuala Lumpur City Centre
Ksi	-	Kilopound per square inch
L	-	Liter
LPC	-	Production Sharing Contracts
Μ	-	Metal
m/s	-	meter per second
max	-	Maximum
Мра	-	Mega Pascal
Mn	-	Manganese
mm	-	Millimeters
m/min		meter per minute
MHz	-	Megahertz
NaCl	-	Sodium Chloride
N	-	Nitrogen

NG	-	Not Good
0	-	Oxygen
OM	-	Optical Microscope
Р	-	Phosphorus
PETRONAS	-	Petroliam Nasional Berhad
PGU	-	Peninsular Gas utilization
pН	-	Potential of hydrogen
ppm	-	Parts per million
PS	-	Production Sharing
Psi	-	Pounds per Square Inch
PSL 1	-	Products Specification Level 1
PSM	-	Projek Sarjana Muda
Rp	-	Polarization resistance
S	-	Sulfur
SEM	-	Scanning Electron Microscope
Sdn. Bhd	-	Sendirian Berhad
SO4 ²⁻	-	Sulfate ion
U.S.	-	United States
UTeM	-	Universiti Teknikal Malaysia Melaka
v	-	volt
Wt %	-	Weight Percentages
XRD	-	X-ray diffraction
°C	-	Degree Celsius
%	-	Percentage
°F	-	Degrees Fahrenheit
е	-	Electron
Fe ²⁺	-	Iron (II) ion
Icorr	-	Corrosion current
μm	-	micron meter
ρ	-	Density

CHAPTER 1 INTRODUCTION

1.1 Background

Corrosion is the leading cause of failure of the pipelines in the world. Majority of the failures were due to internal corrosion which were more frequent than those due to external corrosion. Normally, large amount of crude oil usually needs effective transportation. So, pipeline is a great transportation to solve this problem. But any failure to ensure the safety and continuous operation on crude oil pipelines can be effected to economic, environment and life-safety implications.

The title of this project is the effect of crude oil to the corrosion properties of the petroleum pipeline. However, the focus of this project is to study compositions in the crude oil such as sulfur which have an effect on the corrosion properties of petroleum pipeline. This information is necessary in order to predict the corrosion mechanism where crude oil is flowing in the pipeline. This is because before this many studies of the corrosion in petroleum pipeline are mainly focused on the corrosion caused by gas rather than crude oil. So, this study is carried out to justify the corrosion caused by crude oil content itself. In addition, the analysis of crude oil composition that relates to the corrosion properties is very important in the corrosion behavior.

The understanding about crude oil composition and corrosion mechanism is a good method to predict the corrosion properties in the pipeline surface. So this study is

important to be carried out because the corrosion caused by crude oil is severally investigated rather than corrosion caused by gas in the pipeline.

1.2 Problem statement of the project

The effect of crude oil to pipelines may cause corrosion on the internal surface of pipeline. Corrosion issues in oil and gas industries have been costly, worldwide either directly or indirectly. According to Teevens et al. (2008), internal and external corrosion are leading causes of failures in petroleum pipeline operations. From these two major types of corrosion, internal corrosion which was costing the most than those due to external corrosion. The internal corrosion is preferred to be concerned in this project because the sulfur in the crude oil is one of the corrosive media that can attack the pipeline surface. Therefore, the corrosion on internal pipeline surface is usually caused by the gas and the most popular corrosion is carbon dioxide (CO_2) and hydrogen sulfide (H_2S) corrosion (Razmahwata, 2005). However, studies about crude oil composition especially sulfur content effect on pipeline corrosion behavior is less known. The sulfur concentration in the crude oil may affect the corrosion behavior of the pipeline. On the other hand, the corrosion rate is one of the important factor that must be take into consideration in order determine the how fast the mechanism of the corrosion.

1.3 Objectives

This project is therefore to study the corrosion on the internal surface of petroleum pipelines. The main aim of this project is to study the effect of the crude oil to the corrosion behavior of petroleum pipelines. Also, this project related to the corrosion properties in the internal surface of pipelines. Therefore to achieve the aim, the following objectives are in focus:

- a) To determine the sulfur concentration in crude oil by using FTIR spectroscopy and AAS.
- b) To conduct an electrochemical measurement to determine corrosion rate and morphological analysis using OM, SEM and EDX spectroscopy.
- c) To study the corrosion mechanism caused by sulfur in crude oil to the internal surface in petroleum pipeline.

1.4 Scope

This project focuses on the composition of the crude oil which affects the corrosion properties of petroleum pipeline. In this project, FTIR spectroscopy, electrochemical measurement, microscopy and phase analysis are main equipment to obtain the chemical composition and microstructural characterization of corrosion product. Besides that, Tafel extrapolation method will be used to determine how fast the corrosion rate mechanism between carbon steel specimen and simulated acidic of sulfate ion (SO₄²⁻). The sulfur content is selected in this project to determine its effect to the pipeline corrosivity by varying concentrations. After the results has shown, it will compare together to analyze the effect from lowest to highest sulfur concentrations. Though, the prediction and assumptions will be discussed between the supervisor, Dr. Mohd. Asyadi Azam Bin Mohd. Abid in order to ensure the hypothesis about the problems raised and come up with better solutions. However, this project not covers the corrosion protection method at the carbon steel pipeline.

CHAPTER 2 LITERATURE REVIEW

2.1 Oil and gas industry in Malaysia

2.1.1 History

Oil was first discovered in Malaysia in 1910 in Miri, Sarawak. Since then, two other ground breaking events has helped shape Malaysia's Oil & Gas Industry. First, Malaysia's Parliament passed the Petroleum Development Act and second, Petroliam Nasional Berhad or PETRONAS was established to manage the country's petroleum resources. It also provides support in terms of resource planning, distribution and marketing. PETRONAS was incorporated on 17 August 1974 under the Companies Act, 1965. It is wholly-owned by the Malaysian Government and is vested with the entire ownership and control of the petroleum resources in Malaysia through the Petroleum Development Act, 1974. Over the years, PETRONAS has grown to become a fully integrated oil and gas corporation and is ranked among the FORTUNE Global 500 largest corporations in the world (Halliburton, 2012).

Malaysia has approximately 615,100 square kilometers of acreages available for oil and gas exploration. Of these, 218,678 square kilometers or 36 % of the total acreages is currently covered by Production Sharing Contracts (LPC). Exploration drilling in Malaysia by the Production Sharing Contractors has resulted in the discovery of 163 oil fields and 216 gas fields. Many significant discoveries were made in shelfal shallow waters as well as in deep water environments. Increasingly, new discoveries have been

made through new play types such as fractured basements, pinnacle reefs, low CO_2 gas and turbidities. Application of new technologies has also greatly contributed to exploration successes, especially in deep water areas (Halliburton, 2012).

Malaysia's national oil company, Petroliam Nasional Berhad (PETRONAS), dominate upstream and downstream activities in the country's oil sector. PETRONAS is the only remaining wholly state-owned enterprise in Malaysia, and is the single-largest contributor of Government revenues. It holds exclusive ownership rights to all exploration and production projects in Malaysia, and all foreign and private companies must operate through Production Sharing Contracts (PSCs) with the national oil company. ExxonMobil (through its local subsidiary Esso Production Malaysia Inc.) is the largest oil company by production volume, and there are numerous other foreign companies operating in Malaysia via PSCs. PETRONAS is a major player in the retail and marketing sector, but faces competition from Shell, Chevron and BP (Razmahwata, 2005). Figure 2.1 shows the Malaysia's oil production and consumption from year 1991 until 2010.

Figure 2.1: Malaysia's oil production and consumption, 1991 - 2010 (Razmahwata, 2005).