

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THERMAL ABSORPTION PROPERTIES OF SPENT TEA LEAF FILLED POLYURETHANE COMPOSITE MATERIAL

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

SITI AISYAH BINTI SAFUAN B051010180 890425-10-5092

FACULTY OF MANUFACTURING ENGINEERING 2013

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Thermal Absorption Properties of Spent Tea leaf filled Polyurethane **Composite Material**

SESI PENGAJIAN: 2011/12 Semester 2

Saya SITI AISYAH BINTI SAFUAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULITETERHADETIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
No. 7 Jalan Joran Satu,	
19/24 A, Seksyen 19	
40300, Shah Alam, Selango	
Tarikh:	Tarikh:
** Jika Laporan PSM ini SULIT atau berkenaan dengan menyatakan se SULIT atau TERHAD.	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Thermal Absorption Properties of Spent Tea Leaf Filled Polyurethane Composite Material" is the results of my own research except as cited in references.

Signature	:	ang
Author's Name	:	SITI AISYAH BINTI SAFYAN
Date	:	28 JUNE 2013

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) (Hons.). The members of the supervisory committee are as follow:

(Principal Supervisor)

(Co-Supervisor)

ABSTRAK

Pemuliharaan tenaga merupakan isu semakin serius bagi sektor kediaman pada masa kini. Oleh itu, prestasi termal bahan sistem penebat haba untuk bangunan semakin bertambah kebelakangan ini. Laporan ini dibuat untuk menganalisis kebolehan bahan polimer komposit menyerap haba dengan mancampurkan pelbagai jenis gred dan komposisi gentian dalam polimer komposit. Tujuan kajian ini dijalankan adalah untuk mencirikan dan menyiasat pelbagai jenis gred gentian dari segi sifat fizikal, kimia dan termal termasuklah ketumpatan gentian, hubungan kimia gentian, dan juga perubahan fasa gentian serta kadar pengaliran haba pada berlainan suhu (50,70,90,110°C). Terdapat tiga jenis gred gentian iaitu BM-FAE dan SW-BHE daripada batang daun pokok teh serta Fiber-FAE daripada daun teh. Polimer komposit (PU/STL) telah dibentuk melalui proses kisar dan 'open molding' dengan komposisi gentian 5,10,15 dan 20%. Keputusan menunjukan gentian BM-FAE adalah gentian yang kurang tumpat dengan ketumpatan 1.441g/cm³disebabkan dari pada bahagian batang daun. Kehadiran komposisi lignin juga hadir dalam lingkugan 1650cm⁻¹ ke 1380 cm⁻¹ melalui FTIR. Untuk suhu perubahan fasa, suhunya berada diantara 70°C ke 80°C. Bagi kadar pengaliran haba pula, PU/BM-FAE komposit menunjukkan kadar pengaliran haba rendah jika dibandingkan dengan gentian yang lain disebabkan kanduangan liang yang ada dalam gentian tersebut. Daripada kajian ini, dapat dilihat bahawa dengan penambahan gentian, kadar pengaliran haba rendah bagi komposit (PU/STL). Dapat dilihat juga bahawa melebihi suhu perubahan fasa, kadar pengaliran haba meningkat disebabkan berlakunya perubahan fasa polyurethane.

ABSTRACT

Energy conservation is an increasingly important issue in the residential sector. Therefore, attention towards the thermal performance of building materials, particularly thermal insulation systems for building has grown in recent years. This report describes the thermal absorption behavior of polyurethane composites reinforced with different grades of spent tea leaves (STL) fibers at various fibers loading. The objectives of this study were to characterize the spent tea leave fibers in terms of its physical, chemical, and thermal properties as well as the rate of heat transfer of the spent tea leaves filled polyurethane (PU/STL) composite at various temperatures (i.e. 50, 70. 90, and 110°C). There were three grades of STL fibers, which are BM-FAE and SW-BHE obtained from the stalk while Fiber-FAE extracted from the leave of a tea plant. The PU/STL composite was fabricated via granulation and open molding with fiber loading ranging from 5, 10, 15, and 20% wt%. Results showed that BM-FAE has the lowest density, 1.441g/cm³ as it comes from the stalk. These three grades of fiber have showed the presence of lignin at the wavenumber range between 1650 cm⁻¹ and 1380 cm⁻¹ from FTIR. For the glass transition temperature (Tg) of fibers, the value was in between 70°C and 80°C. In terms of thermal absorption behavior, it was observed that at temperature 70°C (Tg of composite), PU/BM-FAE composite showed lower heat absorption than other composites due to the porous media in fiber. It was also perceived that the addition of fiber loading reduced the heat absorption of the composite. Above the Tg of composite (90 and 110°C), the rate of heat transfer becomes higher due to the phase change of the polyurethane.

DEDICATION

To my beloved family and my siblings

ACKNOWLEDGEMENT

Completion of this project report was made possible because of numerous supports and helps given to me when I was working on it. Thus, it is a great pleasure for me to write this special acknowledgement to every single individual that helped and inspired me to finish this project. I would like to express my highest gratitude to all of them.

First and foremost, I would like to express my thankfulness and appreciation to my supervisor, Miss Chang Siang Yee, for her supervision, guidance, understanding and patience throughout this research work. Also, I would like to thank her for her precious time. Special thanks also goes to my co-supervisor, Prof. Dr. Qumrul Ahsan, for his support and encouragement. All valuable information provided by him is much appreciated. Not to forget to other lecturers, friends and lab technicians for sharing their experiences, skills, opinions, advises and guidance in handling the equipments throughout the study.

Lastly, my sincere appreciation is dedicated to my parents for their love, encouragement and continuous support particularly when I am having difficulties.

TABLE OF CONTENT

Abstra	ak	i
Abstra	act	ii
Dedic	ation	iii
Ackno	owledgement	iv
Table	of Content	v
List of	f Tables	х
List of	f Figures	xii
List of	f Abbreviations, Symbols, and Nomenclatures	XV
CHAI	PTER 1: INTRODUCTION	1
1.1	Background Study	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Scopes	4
CHAI	PTER 2: LITERATURE REVIEW	5
2.1	Introduction	5
	2.1.1 Thermal Insulation	5
	2.1.2 Properties and Performance of Insulating Materials	6

	2.1.3	Commercial Thermal Insulation Materials	8
2.2	Therm	al Insulation of Synthetic Materials	10
	2.2.1	Fiberglass	10
	2.2.2	Expanded Polystyrene (EPS)	10
	2.2.3	Rock wool	11
	2.2.4	Polyurethane (PU)	12
		2.2.4.1 Isocyanate	13
		2.2.4.2 Polyol	14
		2.2.4.3 Blowing Agent	14
2.3	Therm	nal Insulation of Composite Materials	15
	2.3.1	Composite	15
	2.3.2	Synthetic Fiber-Reinforced Composite	15
	2.3.3	Natural Fiber-reinforced Composite	17
	2.3.4	Tea Leaves Composite	23
2.4	Effect	of Fiber-Loading on Composite Materials	26
	2.4.1	Physical Properties	26
	2.4.2	Thermal Properties	27
		2.4.2.1 Influence of the cell gas	27
		2.4.2.2 Influence of density	27
		2.4.2.3 Influence of temperature	28
		2.4.2.4 Influence of water absorption after immersion in water	28

CHA	HAPTER 3: REEARCH METHODOLOGY		29
3.1	Raw M	Materials	29
	3.1.1	Polyurethane (PU)	29
	3.1.2	Spent Tea Leaves	31
3.2	Chara	cterization of Raw Materials	32
	3.2.1	Digital Imaging Microscopy	32
	3.2.2	Scanning Electron Microscope (SEM)	33
	3.2.3	Fourier Transform Infrared Spectroscopy (FTIR)	34
	3.2.4	Density Measurement	35
	3.2.5	Differential Scanning Calorimetry (DSC)	36
	3.2.6	Thermogravimetry Analysis	36
3.3	Fabric	ation of Spent Tea Leaves Filled Polyurethane Composite	37
	3.3.1	Preparation of Spent Tea Leaves	37
	3.3.2	Fabrication of Spent Tea Leaves Filled Polyurethane Composite	38
	3.3.3	Sample Preparation	39
3.4	Samp	le Characterization	40
	3.4.1	Density Measurement	40
	3.4.2	Water Absorption	40
	3.4.3	Differential Scanning Calorimetry (DSC)	41

3.5	Sampl	e testing	42
	3.5.1	Thermal Test Measurement	42
3.6	Micro	scopic Observation	43
3.7	Flow	Chart of methodology	44
CHA	PTER 4	: RESULTS AND DISCUSSION	45
4.1	Chara	cterization of Raw Material	45
	4.1.1	Digital Imaging Microscopy (DIM)	45
	4.1.2	Particle Size Analyzer (PSA)	47
	4.1.3	Density Measurement	48
	4.1.4	Fourier Transform Infrared Spectroscopy (FTIR)	50
	4.1.5	Differential Scanning Calorimetry (DSC)	53
	4.1.6	Thermogravimetry Analysis (TGA)	55
	4.1.7	Scanning Electron Microscopy (SEM)	56
4.2	Chara	cterization of Composite	58
	4.2.1	Physical Properties	58
		4.2.1.1 Density Measurement	58
		4.2.1.2 Water Absorption	59
	4.2.2	Thermal Properties	65
		4.2.2.1 Differential Scanning Calorimetry (DSC)	65

4.3	Testing	66
	4.3.1 Thermal Test	66
CHAP	TER 5: CONCLUSION AND FUTURE WORK	70
5.1	Conclusion	70
5.2	Future Work	72
REFERENCES		73

APPENDICES

A Gantt Charts

LIST OF TABLES

2.1	Properties and performance of insulating materials (Pasanen et al., 2000)	7
2.2	Density and thermal conductivity of expanded polystyrene (Yucel <i>et al.</i> , 2009)	11
2.3	Density and thermal conductivity result of different type of rock wool (Itewi, 2011)	12
2.4	Different types of polyurethane foams (Polymer Foams Handbook, 2010)	13
2.5	Thermal conductivity of the polyester resin and fiber glass percent and hards (Almtori <i>et al.</i> , 2010)	ness 16
2.6	Advantages and disadvantages of using natural fiber in compose (Pickering, 2008)	sites 18
2.7	Effect of density on different properties (Luamkanchanaphan et al., 2012)	19
2.8	Thermal conductivity of various materials (Luamkanchanaphan et al., 2012)	19
2.9	Thermal conductivity of banana/sisal composites (Indicula et al., 2006)	20

3.1	Physical and chemical properties of Polyurethane (KNT Edge, Malaysia)	30
3.2	Nomenclature and compositions of PU/STL composite	39

4.1	Measurement of STL fibers for BM-FAE, SW-BHE and Fiber-FAE	46
4.2	Density of STL fibers; BM-FAE, SW-BHE and Fiber-FAE.	49
4.3	Table 4.3: FTIR Adsorption Bands Typical of Celluign Materials.	
	Adapted from: Camposo et al. (2013)	51

LIST OF FIGURES

2.1	Classification of the most used insulating materials (Papadopoulus, 2004)	8
2.2	Density of PU/coir at different fiber wt% (Azmi et al., 2005)	20
2.3	Maximum force of PU/coir panel at different fiber wt%	
	(Azmi et al., 2005)	21
2.4	Shear stress of PU/coir panel at different fiber wt% (Azmi et al., 2005)	21
2.5	(a) Untreated coir fiber surface at 75x magnification; (b) Treated coir	
	fiber surface at 75x magnification and (c) Treated coir fiber surface	
	at 200x magnification (Azmi et al., 2005)	22
2.6	Composition of tea leaves (O-CHA, 2010)	24
2.7	DTA-TG curves of the PWT material (Demir, 2006).	25
3.1	Polyurethane (PU)	30
3.2	The three grades of STL obtained from BOH Sdn Bhd, Cameron	
	Highland, Pahang, Malaysia: (a) BM-FAE, (b) SW-BHE, (c) Fiber-FAE	31
3.3	Digital Imaging Microscopy (MeijiTechno, Japan)	32
3.4	SEM machine (INCAX-sight, U.K)	33
3.5	Pulverization (Pulverisette 14, Germany)	34
3.6	FTIR spectrometer (Perkin Elmer Precisely Spectrum 100, U.S.A)	35
3.7	Gas pycnometer (InstruQuest, United States)	35

3.8	Drying oven (Memmert, Germany)	37
3.9	Process fabrication of the composite	38
3.10	Non-standard procedure for thermal testing	42

Particle size result for BM-FAE, SW-BHE and Fiber-FAE fiber.	47
FTIR Spectrums of Spent Tea-Leaf Fibers with BM-FAE, SW-BHE, and FIBER-FAE	50
Phase changes from solid to glass transition temperature of STL Fibers	53
Degradation temperature for STL fibers; Fiber-FAE by TGA	55
Measured PU/STL composite density at different types of fiber and loading	58
Effect of fiber type for same fiber loading: (a) 5%, (b) 10%, (c) 15%, (d) 20%	61
Effect of fiber loading for same fiber type: (a) BM-FAE, (b) SW-BHE, (c) Fiber-FAE	63
Colour water after water absorption test for Fiber-FAE: (a) Pure polyurethane, (b) 5% of fiber, (c) 10% of fiber, (d) 15% of fiber, (e) 20% of fiber	64
Phase change from solid to glass transition temperature of PU100 and PU/BM-FAE-20 composite	65
Figure 4.10: The rate of thermal gradient for different fiber loading at test temperature of 50, 70, 90 and 110°C: (a) PU/BM-FAE, (b) PU/SW-BHE, (c) PU/Fiber-FAE	67
	 Particle size result for BM-FAE, SW-BHE and Fiber-FAE fiber. FTIR Spectrums of Spent Tea-Leaf Fibers with BM-FAE, SW-BHE, and FIBER-FAE Phase changes from solid to glass transition temperature of STL Fibers Degradation temperature for STL fibers; Fiber-FAE by TGA Measured PU/STL composite density at different types of fiber and loading Effect of fiber type for same fiber loading: (a) 5%, (b) 10%, (c) 15%, (d) 20% Effect of fiber loading for same fiber type: (a) BM-FAE, (b) SW-BHE, (c) Fiber-FAE Colour water after water absorption test for Fiber-FAE: (a) Pure polyurethane, (b) 5% of fiber, (c) 10% of fiber, (d) 15% of fiber, (e) 20% of fiber Phase change from solid to glass transition temperature of PU100 and PU/BM-FAE-20 composite Figure 4.10: The rate of thermal gradient for different fiber loading at test temperature of 50, 70, 90 and 110°C: (a) PU/BM-FAE, (b) PU/SW-BHE, (c) PU/Fiber-FAE

4.11 The rate of thermal gradient for different type of fiber at test temperature of 50, 70, 90 and 110°C: (a) 5% fiber loading, (b) 20% fiber loading

68

72

5.1 Sandwich structure of PU/STL composite

LIST OF ABBREVIATIONS, SYMBOLS, AND NOMENCLATURE

BM	-	Broken mat
CFC	-	Chlorofluorocarbon
СО	-	Carbon oxide
CO ₂	-	Carbon dioxide
DSC	-	Differential Scanning Calorimetry
EPS	-	Expanded Polystyrene
FTIR	-	Fourier Transform Infrared
HC	-	Hydrocarbon
HCFC	-	Hydrochloroflourocarbon
HCN	-	Hydrogen cyanide
HFC	-	Fycroflourocarbon
HRR	-	Heat release rate
iPP	-	Isotactic polypropylene
KBr	-	Potassium Bromide
MDI	-	Di-phenyl methane di-isocyanate
NaOH	-	Sodium Hydroxide
NFC	-	Natural Fiber Composite
NO	-	Nitrogen oxide

ОН	-	Hydroxyl group
PALF/LDPE	-	Pine apple leaf fiber/Low density polyethylene
PE	-	Polyethylene
pMDI	-	Polymeric by product
PP/OMMT	-	Polypropylene/organophilic montmorillonite
PSMA	-	Polystyrene maleic anhydride
PU100	-	Pure PU
PU	-	Polyurethane
PU/BM-FAE	-	BM-FAE type of fiber filled polyurethane composite
PU/SW-BHE	-	SW-BHE type of fiber filled polyurethane composite
PU/Fiber-FAE	-	Fiber-FAE type of fiber filled polyurethane composite
PU/STL	-	Spent tea leaves filled polyurethane
SE	-	Secondary electron
SEM	-	Scanning Electron Microscope
STL	-	Spent tea leaves
SW	-	Sweeping
TDI	-	Tolune di-isocyanate
TGA	-	Thermogravimetric analysis
TI	-	Thermal insulation
WTL	-	Waste tea leaves
WTLB	-	Waste tea leaves particleboard

°C	-	degree Celcius
g	-	gram
g/cm ³	-	gram per centimeter cube
g/ml	-	gram per milliliter
μm	-	micrometer
%	-	percent
λ	-	Thermal conductivity, k-value
wt%	-	weight percentage
К	-	Kelvin
1	-	length
mm	-	millimeter
nm	-	nanometer
rpm	-	revolution per minute
Tg	-	Glass transition temperature
t	-	thickness
W/mK	-	Watt per meter Kelvin
W	-	Watt
W	-	width

CHAPTER 1

INTRODUCTION

1.1 Background of study

As global warming has become a major concern for human beings nowadays, the use of thermal insulation (TI) structure in building construction is burgeoning. TI structure is regarded as one of the most energy efficiency improvements in buildings and also an important factor to achieve thermal comfort for building occupants. In fact, the thermal insulation structure is not an independent energy production or conservation system, but part of the complex structural elements which form a building's shell. Commercial TI structures are commonly made from synthetic materials such as fiberglass, mineral wool, expanded polystyrene (EPS) and polyurethane (PU) foams. Although these materials have good physical properties such as low thermal conductivity, good moisture protection and fire resistance, they can be hazardous to human health and environment (Demant, *et al.* 1994). Fiberglass has an adverse effect on human health. When fiberglass is handled, cut or otherwise disturbed, people may be exposed to airborne fiber and resulted in skin and eye irritation or emphysema and lung cancer through inhalation

The hazard of using commercially available TI materials made of synthetic materials has spurred interest in other renewable green materials as alternative. Over the years, several researches have succeeded in developing TI materials using lignocellulosic fibers. Various lignocellulosic fibers that have been investigated as raw materials for TI

purpose are coconut husk (Viswanathan *et al.* 2000; Van Dam *et al.* 2004), kenaf core (Xu *et al.* 2004), cotton (Alma *et al.* 2005), bagasse (Widyorini *et al.* 2005), oil palm (Feng *et al.* 2001; Khalil *et al.* 2007; Suradi *et al.* 2010)¹, flax and hemp (Kymalainen and Sjoberg, 2008), wood, (Kawasaki and Kawai, 2006; Azizi and Faezipour, 2006; Akgul *et al.* 2007; Loh *et al.* 2010), coffee husk and hulls (Bekalo and Reinhardt, 2010), and papyrus (Tangjuank, 2011). Among these fibers, fiberboard fabricated from papyrus fiber reinforced natural rubber latex showed the most promising result with thermal conductivity values of 0.029 W/mK. This is comparable to commercially available insulating concrete foams made of EPS which shows a thermal conductivity values of 0.033 W/mK.). Despite the low thermal conductivity behavior, lignocellulosic fibers also outweigh other commercial synthetic thermal insulation materials in the regard of density. The density of natural fiber is 1.15 - 1.50 g/cm³ whereas 2.4 g/cm³ for fiberglass. Research shows that decreasing of the density of TI materials reduced the thermal conductivity value (Luamkanchanaphan *et al.*, 2012)

It is undeniable that natural fibrous materials exhibit numerous advantages to be functioned as TI material. A tropical country like Malaysia is rich in the production of crops such as coconut, pineapple, banana, palm oil, and rice. Tea leaves *(Camellia Sinensis)* is one of the fibrous plants available in abundance which can be found at Cameron Highlands, Pahang and Ranau, Sabah. Therefore, this study attempts to investigate on the feasibility of incorporating spent tea leaves (STL) as an alternative lignocellulosic material to produce TI materials.

1.2 Problem Statement

Natural fibers have shown to possess low thermal conductivity and density which is advantageous for thermal insulation purpose. However, when dealing with these natural fibers, an undesirable attribute of the fiber is their ability to absorb moisture from the atmosphere in comparatively large quantity (Chawla, 1998). Upon moisture absorption, most of these fibers swell and become prone to microbial attack as well as biological decay. In most buildings, the building materials are exposed to moisture due to high humidity due in the weather or the use of the air-conditioning system. The presence of moisture encourages the growth of moss or algae which may disfigure and deteriorate the properties of the building materials made of natural fibers. Spent tea leaves obtained from tea producing factories are optimistically considered as a new resource because it exhibits antimicrobial properties. Spent tea leaves are expected to show higher durability in thermal insulation applications than other natural fibers owing to the high phenolic extractive content which retards the growth of moss or algae. Hence, spent tea leaves serve a scope for further research as thermal barrier component.

1.3 Objectives

The objectives of this project were as follows:

- 1. To characterize various grade of spent tea leaves extracted from different parts of tea plant in terms of physical, chemical and thermal properties.
- 2. To fabricate thermal insulation board using various grades of spent tea leaves filled polyurethane composite through open molding technique.
- 3. To investigate physical and thermal properties of spent tea leaves filled polyurethane composite.

