

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF RESIN TRANSFER MOULD FOR COMPOSITE PART

This report submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with honors

By

SITI KHADIJAH BINTI BHARUM B 050910046 900624-14-5798

FACULTY OF MANUFACTURING ENGINEERING 2013

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and Analysis of Resin Transfer Mould for Composite Part SESI PENGAJIAN: 2012/13 Semester 2

Saya SITI KHADIJAH BINTI BHARUM

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Alamat Tetap: 2121, JALAN SJ ¼,	Cop Rasmi:
TAMAN SEREMBAN JAYA, 70450 SEREMBAN, NEGERI	SEMBILAN.
Tarikh:	Tarikh:
** Jika Laporan PSM ini SULIT atau berkenaan dengan menyatakan se	ı TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi kali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Analysis of Resin Transfer Mould for Composite Part" is the results of my own research except as cited in the references.

Signature	:	
Author's Name	:	SITI KHADIJAH BINTI BHARUM
Date	:	JUNE 2013

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory is as follows:

(DR. ROSIDAH BINTI JAAFAR)

ABSTRACT

The composites manufacturing process is available to process various types of reinforcement and resin system. Resin Transfer Mould (RTM) is one of the processes for making the composite part. Meanwhile, Hand Lay Up process is used for making the mould for the Resin Transfer Mould part. The final year project's aims to design the composite part of Resin Transfer Mold, design the mould for the Resin Transfer Mold part. The final year project's aims to design the composite part of Resin Transfer Mold, design the mould for the Resin Transfer Mold process and to perform the analysis which consists of fluid flow analysis for RTM mould and stress analysis of the Resin Transfer Mold part. The 3D model was designed by using SolidWorks Premium 2012 software. The fluid flow analysis was simulated by using SolidWorks FloXpress Wizard Analysis and the stress analysis results show that the Von Mises Stress and Resultant Displacement is directly proportional to the pressure applied. Meanwhile, the Factor of Safety value is indirectly proportional to the pressure applied. The yield strength value plays important role in stress analysis. By doing the fluid flow simulation, the result shows that the maximum velocity of fluid flow is 0.119 m/s. The Reynolds number is less than 1 show that the flow of fluid is laminar.

i

ABSTRAK

Proses pembuatan komposit merupakan proses yang digunakan untuk memproses pelbagai jenis sistem pengukuhan damar. 'Resin Transfer Mold' adalah salah satu proses untuk membuat bahagian-bahagian komposit. Manakala, acuan pada bahagian komposit dihasilkan melalui proses 'Hand Lay Up'. Projek Sarjana Muda bertujuan untuk merekabentuk produk komposit untuk 'Resin Transfer Mold' proses, rekabentuk acuan untuk 'Resin transfer Mold' process dan membuat analisis iaitu analisis aliran cecair untuk acuan produk yang dihasilkan melalui proses Resin Transfer Mold dan analisis tekanan untuk produk komposit yang dihasilkan melalui proses Resin Transfer Mold. Model 3 Dimensi direka dengan menggunakan perisian SolidWorks Premium 2012. Aliran cecair dianalisa menggunakan perisian SolidWorks FloXpress Wizard Analysis dan tekanan pada produk komposit dianalisa dengan menggunakan perisian SolidWorks Simulation Xpress. Keputusan analisa menunjukkan bahawa tekanan Von Mises dan anjakan terhasil adalah berkadar terus dengan tekanan yang dikenakan. Sementara itu, nilai Faktor Keselamatan adalah berkadar langsung kepada tekanan yang dikenakan. Kekuatan nilai 'Yield Strength' memainkan peranan yang penting dalam analisis tekanan. Dengan melakukan simulasi aliran bendalir, hasilnya menunjukkan bahawa halaju maksimum aliran bendalir adalah 0.119 m / s. Nombor Reynolds adalah kurang daripada 1 menunjukkan bahawa aliran cecair adalah lamina.

DEDICATION

Dedicated to my beloved father and mother, En Bharum bin Hassan and Pn Hanifah binti Md. Yusof, my dear siblings, my respected supervisor, Dr. Rosidah binti Jaafar, and my beloved friends. I have been inspired and encouraged by them.

ACKNOWLEDGEMENT

Alhamdulillah, a big thank to The Almighty Allah because of His permission that gives me strength to finish the Final Year Project (FYP) report even though there is a lot of difficulties along the progress in completing the project. First of all, I want to express my appreciation to my FYP supervisor, Dr. Rosidah binti Jaafar for her guidance, supervision and comments in order to help me during completing the Final Year Project and produce this report. The appreciation also express to my Supervisor for FYP 1, Pak Sapto Wahyono Widodo for his guidance. I am thankful to my beloved parents, En Bharum bin Hasan and Pn Hanifah binti Md. Yusof and my dear siblings because I barely cannot accomplish this project without them and their support. I also take this opportunity to thank my dear best friends for all the supports and always be by my side. Thank you again for those who are involved directly or indirectly with my FYP report completion. Only Allah can repay for what they have done.

Thank You.

TABLE OF CONTENT

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	viii
List of Figures	ix
List of Abbreviations, Symbols & Nomenclature	xi

CHA	PTER 1: INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope and Limitation of Project	3
1.5	Report Organization	3
1.6	Final Year Project Planning Process Flow	4
СНА	PTER 2: LITERATURE REVIEW	7
2.1	Composites	7
2.2	Composites Manufacturing Process	8
	2.2.1 Manufacturing Process for Thermo Set Composites	9
2.3	Definitions of Resin Transfer Mould	11
2.4	Resin Transfer Mould Process	11
	2.4.1 Major Application	11
	2.4.2 Basic Raw Material	13
	2.4.3 Tooling	13

v

	2.4.4	Advantages of	f RTM Process	15
	2.4.5	Temperature	Profile of RTM Mould	15
2.5	Defini	tions of Hand	Lay Up Process	16
2.6	Hand	Lay Up Proces	S	16
	2.6.1	Major Applic	ation	18
	2.6.2	Basic Raw M	aterial	18
	2.6.3	Tooling		18
	2.6.4	Advantages of	f Hand Lay Up Process	19
	2.6.5	Limitation of	Hand Lay Up Process	19
2.7	Materi	ial used for the	RTM Part	19
	2.7.1	Rovicore		20
	2.7.2	Polyplex		21
	2.7.3	Butanox M-5	0	23
2.8	Materi	ial used for the	mould	24
	2.8.1	Thai Epoxy F	Resin	24
	2.8.2	Nylon Peel P	ly	24
	2.8.3	Vinyl Ester R	lesin	25
	2.8.4	Breather		26
	2.8.5	Tacky Tape		27
2.9	Design	n Requirements	S	28
	2.9.1	Injection Pres	ssure	29
	2.9.2	Resin Viscos	ity	30
	2.9.3	Fluid Flow th	rough Porous Media Theory in RTM	A 31
		2.9.3.1 Darcy	's Law	33
	2.9.4	Stress Analys	is	34
2.10	CAD a	and Simulation	Software	35
	2.10.1	SolidWorks H	Premium 2012	35
	2.10.2	The SolidWo	rks Model	35
		2.10.2.1	Parts Modelling	36
		2.10.2.2	Assemblies	37

	2.10.2.3	Drawing	38
2.10.3	SolidWorks X	press Simulation Software	40
2.10.4	SolidWorks F	oXpress Analysis Wizard	42

CHA	PTER 3	3: METHODOLOGY	44	
3.1	Flow	w Chart		
3.2	Proce	ss Development of the Product	47	
	3.2.1	Phase 1: Planning	47	
	3.2.2	Phase 2: Research Establishment	47	
	3.2.3	Phase 3: Design Development	47	
	3.2.4	Phase 4: Analysis, Discussion and Conclusion	48	
	3.2.5	Phase 5: Report Submission and Presentation	48	
3.3	Form	ulation Analysis	49	
3.4	3D De	3D Design of RTM for Composite Part and its Mould		
	3.4.1	3D Modelling for Existing RTM Part	51	
	3.4.2	Actual Product of Slip Cover Linear Composite Part	52	
	3.4.3	Actual Design of Slip Cover Linear Mould	55	
	3.4.4	3D Modelling for Redesign RTM Parts	57	
	3.4.5	3D Design Mould for RTM Part	59	
	3.4.6	Assembly on Counter Mould and Face Mould	63	
СНА	APTER 4	4: RESULT & DISCUSSION	66	
4.1	Simul	ation Analysis on RTM Part with SolidWorks 2012	66	
	4.1.1	Manipulated Variables	67	
	4.1.2	Controlled Variables	70	

4.1.2	Controlled Variables	70
4.1.3	Procedure in using Simulation Xpress Analysis	71
	4.1.3.1 Step 1	72
	4.1.3.2 Step 2	73
	4.1.3.3 Step 3	73

		4.1.3.4 Step 4	74
		4.1.3.5 Step 5	75
		4.1.3.6 Step 6	76
		4.1.3.7 Step 7	76
	4.1.4	Simulation Analysis on RTM Composite Part	77
	4.1.5	Result on Simulation Xpress Analysis Wizard	78
		4.1.5.1 Result for Analysis on Top Slip Cover Linear	80
		4.1.5.2 Result for Analysis on Right and Left Side of	90
		Slip Cover Linear	
		4.1.5.3 Result of Analysis on Front or back Side of	97
		Slip Cover Linear	
4.2	Fluid	Flow Simulation on RTM Part with SolidWorks FloXpress	106
	Simul	ation	
	4.2.1	Controlled Variables	109
	4.2.2	Procedure in using SolidWorks FloXpress Simulation	112
		4.2.2.1 Step 1	112
		4.2.2.2 Step 2	112
		4.2.2.3 Step 3	113
		4.2.2.4 Step 4	113
		4.2.2.5 Step 5	114
		4.2.2.6 Step 6	114
		4.2.2.7 Step 7	115
		4.2.2.8 Step 8	115
	4.2.3	Result of Fluid Flow Analysis by using FloXpress Simulation	116
СНА	PTER 5	5: CONCLUSION & RECOMMENDATION	119
5.1	Concl	usion	119
5.2	Recon	nmendation	121
REF	ERENC	ES	122

viii

APPENDICES

А	2D and 3D Drawing of Slip Cover Linear Part (Isometric View	w)
---	---	----

- B 2D and 3D Drawing of Slip Cover Linear Part (Multi View)
- C 2D and 3D Drawing of Slip Cover Linear Part (Dimension)
- D 2D and 3D Drawing of Counter Mould (Isometric View)
- E 2D and 3D Drawing of Counter Mould (Multi View)
- F 2D and 3D Drawing of Counter Mould (Dimension)
- G 2D and 3D Drawing of Face Mould (Isometric View)
- H 2D and 3D Drawing of Face Mould (Multi View)
- I 2D and 3D Drawing of Face Mould (Dimension)
- J Table Properties of Rovicore
- K Bill of Material for Slip Cover Linear Part
- L Bill of material for Counter and Face Mould

LIST OF TABLES

1.1	Gantt Chart for Final Year Project 1	5
1.2	Gantt Chart for Final Year Project 2	6
2.1	Maximum continuous use temperature for various polymer	9
2.2	The typical gel times obtained with varying catalyst	22
2.3	Vacuum pressure, Mould temperature and cure temperature	28
2.4	The requirements in RTM Process	29
4.1	Material properties of Slip Cover Linear	73
4.2	Simulation Xpress Analysis Results on 70 psi (Top)	75
4.3	Simulation Xpress Analysis Results on 110 psi (Top)	76
4.4	Simulation Xpress Analysis Results on 150 psi (Top)	77
4.5	Simulation Xpress Analysis Results on 190 psi (Top)	78
4.6	Simulation Xpress Analysis Results on 230 psi (Top)	79
4.7	Simulation Xpress Analysis Results on 270 psi (Top)	80
4.8	Simulation Xpress Analysis Results on 310 psi (Top)	81
4.9	Simulation Xpress Analysis Results on 70 psi (Right/Left Side)	85
4.10	Simulation Xpress Analysis Results on 140 psi (Right/ Left Side)	86
4.11	Simulation Xpress Analysis Results on 210 psi (Right/ Left Side)	87
4.12	Simulation Xpress Analysis Results on 280 psi (Right/ Left Side)	88
4.13	Simulation Xpress Analysis Results on 350 psi (Right/ Left Side)	89
4.14	Simulation Xpress Analysis Results on 70 psi (Front/Back Side)	92
4.15	Simulation Xpress Analysis Results on 100 psi (Front/Back Side)	93
4.16	Simulation Xpress Analysis Results on 130 psi (Front/Back Side)	94
4.17	Simulation Xpress Analysis Results on 160 psi (Front/Back Side)	95
4.18	Simulation Xpress Analysis Results on 190 psi (Front/Back Side)	96
4.19	Simulation Xpress Analysis Results on 210 psi (Front/Back Side)	97

LIST OF FIGURES

2.1	Example of part demoulding in RTM	12
2.2	RTM aerospace components	12
2.3	Example used of Tooling in the RTM Process	14
2.4	Typical temperature profile for RTM cycle	15
2.5	Hand Lay Up Process	16
2.6	Procedure of Hand Lay Up Process	17
2.7	Rovicore	20
2.8	The detail of material Rovicore	20
2.9	Polyplex	21
2.10	The RTM Infusion	22
2.11	Butanox M-50	23
2.12	Nylon Peel Ply	25
2.13	Vinyl Ester Resin	26
2.14	Location Breather in Hand Lay Up process	26
2.15	Tacky Tape	27
2.16	Part of thermos is Trigger design by using SolidWorks software	36
2.17	Part of thermos is Base by using SolidWorks	37
2.18	Assemblies part by using SolidWorks	37
2.19	2D drawing for part Trigger Button	38
2.20	2D drawing for Base part	39
2.21	2D drawing for thermos assemblies	39
2.22	Critical regions of Faucet	40
2.23	Deformed shape of faucet	40
2.24	Example of Simulation Xpress for thermos part which	41
2.25	Example of Simulation Xpress on Factor of Safety of the part	41
2.26	Radiation heat transfer analysis	43
3.1	Flow chart on FYP 1 and FYP 2	45

3.2	Detail of flow chart	46
3.3	3D Modelling for Existing RTM Part	51
3.4	Overview for RTM Part	52
3.5	Top View of Slip Cover Linear	53
3.6	Bottom View of Slip Cover Linear	53
3.7	Wet Fibre Location	54
3.8	Entrapped Air between Resin Skin	54
3.9	Uneven Thickness of RTM Part	55
3.10	Face Mould	56
3.11	Counter Mould	56
3.12	3D Solid Part of RTM using SolidWorks 2012	57
3.13	RTM Part with Dimension	58
3.14	Section cut of RTM part in x-direction	58
3.15	Section cut of RTM part in y-direction	59
3.16	Counter Mould for RTM Part	60
3.17	Section cut of counter mould for RTM part in x-direction	61
3.18	Section cut of counter mould for RTM part in y-direction	61
3.19	Face Mould for RTM Part	62
3.20	Section cut of face mould for RTM part in x-direction	62
3.21	Section cut of face mould for RTM part in y-direction	63
3.22	Assemble part in Transparent Condition	64
3.23	Assemble Parts	65
3.24	Section Cut for Assemble Parts	66
4.1	RTM Composite Parts subdivided into Small Pieces	67
4.2	Pressure being Applied on the Top of RTM Part	68
4.3	Pressure being applied on the Right/Left Side of RTM Part	68
4.4	Pressure being applied on the Back Side of RTM Part	69
4.5	Manipulated Variable which is Pressure	69
4.6	Edit Material Box	70
4.7	Material Selection for Slip Cover Linear	71

4.8	Dimension in X and Y Direction	72	
4.9	Evaluate tab and start the Stress Analysis		
4.10	Fixture being applied to the RTM Part	73	
4.11	Pressure is being applied to the Area Needed	73	
4.12	Material being applied is Chosen	74	
4.13	Run the Animation	75	
4.14	The Animation is Played	75	
4.15	The Value of FOS	76	
4.16	Generate Report	76	
4.17	Example Result of Von Mises Simulation Xpress Analysis	77	
4.18	Example of Solid Mesh	78	
4.19	Mass Properties of RTM Composite Part	79	
4.20	Graph Von Mises Stress vs. Pressure (Top)	87	
4.21	Graph Resultant Displacement vs. Pressure (Top)	87	
4.22	Graph Factor of Safety vs. Pressure (Top)	88	
4.23	Graph Von Mises Stress vs. Pressure (Left/Right)	95	
4.24	Graph Resultant Displacement vs. Pressure (Left/Right)	95	
4.25	Graph Factor of Safety vs. Pressure (Left/Right)	96	
4.26	Graph Von Mises Stress vs. Pressure (Back)	103	
4.27	Stress-Strain Curve	104	
4.28	Stress-Strain Curve for Material Composite	104	
4.29	Graph Resultant Displacement vs. Pressure (Back)	105	
4.30	Graph Factor of Safety vs. Pressure (Back)	106	
4.31	Counter Mould for Slip Cover Linear	107	
4.32	Face Mould for Slip Cover Linear	108	
4.33	Assemble for Counter and face Mould	108	
4.34	Flow Inlet Properties-Pressure Value	109	
4.35	Flow Inlet Properties-Volume Flow Rate	110	
4.36	Flow Inlet Properties-Mass Flow Rate	110	
4.37	Flow Outlet Properties-Pressure Value	111	

4.38	Start the Fluid Flow Simulation	112
4.39	Type of Fluid Flow	112
4.40	View the Fluid Flow Area	113
4.41	Controlled Parameter being Set Up for Inlet	113
4.42	Controlled Parameter being Set Up for Outlet	114
4.43	Solve the Model	114
4.44	Resultant Velocity Trajectories	115
4.45	Result Generate	115
4.46	Exploded View of Slip Cover Linear	118

LIST OF ABBREVIATIONS, SYMBOLS AN NOMENCLATURE

RTM	-	Resin Transfer Mould
FRP	-	Fibre Reinforcement Plastic
km	-	kilometre
h	-	Hour
FYP	-	Final Year Project
PEEK	-	Polyether ether ketone
PPS	-	Polyphenylene Sulphide
SRIM	-	Structural Reaction Injection Moulding
GMT	-	Glass Fibre Mat reinforced Thermoplastic
GRP	-	Glass Reinforced Plastic
CSM	-	Chopped Strand Mat
UV	-	Ultraviolet Light
MEKP	-	Methyl Ethyl Ketone Peroxide
k	-	Kilo
Pa	-	Pascal
$^{\circ}$	-	Degree Celsius
S	-	Second
SI	-	System International
mm	-	millimetres
Ν	-	Newton
FEA	-	Finite Element Analysis
3D	-	Three Dimension
2D	-	Two Dimension
CAD	-	Computer Aided Design
BOM	-	Bill of Material

CHAPTER 1 INTRODUCTION

The introductory chapter comprises a brief explanation about the Final Year Project, and the background of the project title "Design and Analysis of Resin Transfer Mould for Composite Part". The Chapter 1 also covers on Problem Statement, Objective of the project, Scope and Limitation of Project, Report Organization and Planning Flow Process.

1.1 Background

The composites manufacturing process is available to process various types of reinforcement and resin system. Resin Transfer Mould (RTM) is the process for making composites parts and Hand Lay Up as the process in making its mould. Resin transfer moulding is a closed mould pressure injection process to manufacture fibreglass composites. The use of RTM as an economic and efficient means of producing high performance fibre-reinforced composites are critical limited by the permeability of the fabrics employed. This parameter relates the fluid flow rate to the pressure gradient, the fluid viscosity and the dimensions of the bed of porous medium. Resin is introduced through a central injection port in the mould base. Most other composite manufacturing process involves only a short range flow of the resin into the fibre tow or through the layer thickness. RTM differs from other composite manufacturing processes as it involves the long-range flow of resin, parallel to the lamina, through the pore space between the reinforcing fibres.

The advantages of this process include faster gel time; faster cure times, less waste, less environmental impact, and more constant part size or material usage as compared to alternative types of moulding. Resin Transfer Moulding (RTM) is a high performance composite manufacturing technique of liquid injection moulding for fabricating parts with tight dimensional and strength requirements which is gaining popularity in the composite industry. The RTM process is a closed mould operation in which a dry fibre performs is placed in a mould and then the thermo set resin is injected through an inlet port until the mould is fully filled with resin. The resin is then cured and the part is removed from the mould.

Hand Lay Up is a shaping method in which successive layers of resin and reinforcement manually applied to an open mould to build the laminated FRP composite structure. Hand Lay Up processes are not required higher labour intensive process so; it does not require large capital investments. The material used for RTM parts are Rovicore, Butanox M-50 and Polyplex as a resin. Meanwhile, the material used for making moulds of the RTM part are Thai epoxy resins, Vinyl ester resin, Nylon peel ply, breather, perforated foil, vacuum foil and Butanox M-50. The design requirements for the RTM part and mould for RTM parts are injection pressure which are full and half pressure, mould temperature, curing temperature, resin viscosity, fluid flow through porous media in RTM and stress analysis. The analysis will be done by using SolidWorks Simulation Xpress and SolidWorks FloXpress Analysis Wizard.

1.2 Problem Statement

Resin Transfer Mould processes make use of a closed mould and unlike in hand layup process, RTM gives better control on product thickness and good surface finish. RTM process can be used for the part because the medium reactive resins that cure at much faster cycles than used in hand lay-up which a productive cycle of RTM is about 20 minutes compared to the 3 to 4 hour cure in hand lay-up. The major problems of this project are the part that is designed to have a complex shape. The RTM process is used for making the part because it requires low tooling cost; it is high in production rate and easier to use. Moreover, the RTM process is the most suitable process for making parts with complex shape. The analysis should be on fluid flow analysis and stress analysis because the sandstorm speed can reach more than 70 psi so; the part must be strong enough in the sand storm. The fluid flow distribution must be in uniform to produce a better surface finish.

1.3 Objective

The objectives of this project are:

- 1. To design the composite part of the Resin Transfer Mould process.
- 2. To design the mould for the Resin Transfer Mould process.
- 3. To perform the analysis which consists of fluid flow analysis for RTM mould and stress analysis of the Resin Transfer Mould part.

1.4 Scope/Limitation

This project is focusing on the Resin Transfer Mould composite part and its mould. The analysis is focused more on the fluid flow of resin of RTM process and stress analysis of the part.

1.5 Report Organization

This report contains five major chapters which are Introduction, Literature Review, Methodology, Discussion and Conclusion.

3

a) Chapter 1: Introduction

Chapter 1 will explain on Background, Problem Statement, and Objective of the project, Scope and limitation of the project, Report Organization and Final Year Project Planning Flow Progress.

b) Chapter 2: Literature Review

Chapter 2 will explain in the literature review. The information which is related to the project was studied and summarized. The literature review is based on journal, magazines, conference, books and studies past course. The literature will be a guide for the project in the future including the design of parts and mould for the most part, software used for designing the part and mould, software used for design analysis, the process involved and the material used for the project.

c) Chapter 3: Methodology

Chapter 3 will explain on methodology. This chapter will explain and elaborate more on research method, and the process flow on how to conduct the research method. This chapter shows the project flow from beginning until it's finished.

d) Chapter 4: Discussion

Chapter 4 will discuss more on the design analysis result that have been conducted. The discussion of design analysis will focus more on flow analysis and stress analysis. e) Chapter 5: Conclusion

Chapter 5 will conclude on the project findings and research. This chapter includes the recommendation or suggestion for the project in the future development.

1.6 Final Year Project Planning Flow Process

In order to accomplish the project within the time provided, a Gantt chart is designed to show the schedule of the project. The Gantt chart is very important as a guide that used to monitor the entire project progress. The Gantt chart for FYP 1 and FYP 2 is shown below.