I admit that have read this report and to my opinion this report fulfill in terms of scope and quality for the Bachelor of Mechanical Engineering (Design & Innovation).

SIGNATURE :
NAME OF SUPERVISOR 1 :
DATE :

SIGNATURE :	•
NAME OF SUPERVISOR 2 :	•
DATE :	

DESIGN AND FABRICATION OF BOLLARD LIGHT USING MODERN PRODUCT DEVELOPMENT PROCESS

FARHANI BT MOHAMAD

This report is submitted to the Faculty Mechanical Engineering in partial to fulfill the requirement for Bachelor Mechanical Engineering (Design and Innovation)

FACULTY OF MECHINCAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2008

C Universiti Teknikal Malaysia Melaka

"I verify that, I have read this report and from my opinion this thesis have fulfill the scoop and quality requirement for Bachelor Mechanical Engineering (Design and Innovation)"

Signature	:
Name of Supervisor	:
Date	:

ii

To my beloved parents, Mr. Mohamad b. Hj Aziz and Mdm Mariyati bt Yaman, to my supervisor Mr. Hambali Boejang, and friends.

Thank you very much for the motivation and full support

ACKNOWLEDGEMENT

ALHAMDULILLAH, thanks to God for giving me a chance to finish up my final project 'Projek Sarjana Muda' report from the first word until this end of point. First of all I would like to say thank you to the Faculty of Mechanical Engineering that had managed me during my project. Thanks a lot to my supervisor En. Hambali b. Boejang who always gave me the guidance and full commitment along the project.

I also take this opportunity to say thanks to all of every single person that helps me in any kind of help in my way to finish up my project. Last but not least, Thanks to give me this valuables moments I ever go through in my lives that had develop me as a student and also as a person.

At last, I also wish to thank both my parent who always encouraging me, giving support to complete my project. All of this had shown me why I should carry out the project. I've realized all of this is only to teach me how to face the future environment, for preparing myself to communicate and show my ability in the future. Once again, I wish to thank all who involved in my project, giving me support and encouragement to complete this project in an organized and professional manner.

ABSTRACT

This project is to develop new design and fabricate the bollard light prototype by using Product Development Process approach. This project uses the principles of concurrent engineering and rapid prototyping as a tool to produce a prototype. To realize this project, the new design of bollard will be developed through product development approach from sketching until prototype fabrication. The entire elements in the product development have to be considered during the execution of this project. Computer Aided Design CAD is used to design the product into solid modeling or surface modeling. The data from CAD will be using during rapid prototyping process. RP process is to build the master pattern by using fused deposition modeling machine. Computer Aided Engineering (CAE) is use to identify the performance of the bollard and at the same time try to get the best material for the concept bollard through the analysis and optimization of CAE. Finally, the gathered data from market research, identifying customer needs, interview and survey have been use to produce the concept for the bollard. The bollard concept that had been chosen was Urban Style.

ABSTRAK

Projek ini adalah berkenaan pembangunan rekabentuk dan fabrikasi prototaip lampu taman dengan menggunakan pendekatan proses pembangunan produk. Projek ini juga menggunakan prinsip dari strategi kejuruteraan selaras dan rapid prototyping sebagai alat untuk menghasilkan prototaip. Untuk merealisasikan projek ini, rekabentuk lampu taman terbaru akan dibangunkan melalui pendekatan proses pembangunan product dari lukisan lakaran sehingga fabrikasi prototaip. Keseluruhan aspek dalam pembangunan produk haruslah dititik beratkan semasa pelaksanaan projek ini. Computer Aided Design CAD digunakan untuk merekabantuk produk kepada model pepejal atau pun model permukaan. Maklumat data dari CAD akan digunakan semasa proses rapid prototyping. Proses RP adalah untuk membentuk master pattern dengan menggunakan mesin fused deposition modeling. Computer Aided Engineering (CAE) digunakan bagi mengenalpasti kemampuan struktur lampu taman ini dan pada masa yang sama dapat memilih bahan yang terbaik bagi konsep lampu taman ini melalui proses analisis dan optimisasi melalui CAE. Akhirnya, data yang dikumpul daripada kajian pasaran, mengenal pasti kehendak pelanggan, temuduga dan survey digunakan untuk menghasilkan konsep untuk lampu taman. Konsep lampu taman yang telah dipilah adalah Urban Style.

TABLE OF CONTENTS

NO CONTENTS

PAGE

1

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF APPENDIX	xvii

1 INTRODUCTION

1.1 Project Background 1 Objective of Study 1.2 2 1.3 **Problem Statement** 2 1.4 Scope 4 1.5 Benefit of Study 4 1.6 Report Outline 5

2 LITERATURE REVIEW

2.1

Bollard Light		6
2.1.1	Function	6
2.1.2	Specification	8
2.1.3	Features	9

	2.1.4	Power Supply		11
	2.1.5	Performance		13
	2.1.6	Luminaire Consideration		14
	2.1.7	Thermal Consideration		16
2.2	Produ	act Development Process		16
	2.2.1	Product Planning Process		16
	2.2.2	Identifying Customer Needs		17
	2.2.3	Product Specification		19
	2.2.4	Concept Generation		21
	2.2.5	Concept Selection		23
	2.2.6	Preliminary Design		26
2.3	Concu	urrent Engineering		27
	2.3.1	Concurrent Engineering Method		29
	2.3.2	Concurrent Engineering Technology		29
	2.3.3	Sequential Engineering Process		30
	2.3.4	Concurrent Engineering Benefits		31
2.4	Comp	outer Aided Design		32
	2.4.1	Basic Principles in CAD		33
	2.4.2	Application of CAD		35
2.5	Comp	outer Aided Engineering		36
2.6	Rapid	Prototyping		36
	2.6.1	Rapid Prototyping Process		37
	2.6.2	Rapid Prototyping Benefits		41
2.7	Summ	nary		42
EXP	ERIME	NTAL WORK		
3.1	Projec	ct Planning		43
3.2	Produ	ct Planning		44
3.3	Identi	fying Customer Needs		46
3.4	Produ	ct Specification		47
3.5	Conce	eptual Design		49
	3.5.1	Concept Generation		50
	3.5.2	Concept Selection		51
	3.5.3	Final Design Concept	14 40	52

3

viii

3.6	Final Product Specification		53
3.7	Detail Design		
	3.7.1	Sketching	54
	3.7.2	CAD Drawing	54
3.8	Protot	type Fabrication	57
	3.8.1	Prototype Pre-Processing	58
	3.8.2	Prototype Processing	65
	3.8.3	Prototype Post-Processing	66
3.9	Analysis and Optimization		
	3.9.1	Material Selection	70
	3.9.2	Finite Element Analysis	72
	3.9.3	Analysis Pre-Processing	72
	3.9.4	Analysis Processing	76
	3.9.5	Analysis Post-Processing	76
3.10	Summ	nary	77

ix

4

RESULT AND DISCUSSION

4.1	Produc	et Development Process of Bollard	78
	4.1.1	Product Planning	79
	4.1.2	Identifying Customer Needs	82
	4.1.3	Target Product Specification	83
	4.1.4	Conceptual Design	84
	4.1.5	Final Product Concept	88
	4.1.6	Final Product Specification	89
	4.1.7	Detail Drawing	92
	4.1.8	Prototype Fabrication	94
	4.1.9	Analysis and Optimization	97
	4.1.10	Material and Structure Analysis	98
4.2	Sequer	ntial Engineering versus Concurrent Engineering	106
4.3	Lead T	ime	108
	4.3.1	Design Process Duration	108
	4.3.2	Fabrication Process Duration	109
	4.3.3	Analysis Process Duration	111
	4.3.4	Product Development Process Duration	112

		4.3.5	Time Efficient of Concurrent Engineering Approach	114	
	4.4	4.4 Cost Effectiveness			
		4.4.1	Cost Implementation within Sequential Approach	114	
		4.4.2	Cost Implementation within Concurrent Approach	115	
	4.5	Qualit	ty	116	
		4.5.1	Low Quality within Sequential Approach	116	
		4.5.2	High Quality within Concurrent Approach	117	
5		DISCUSSION			
	5.1	Discu	ssion	119	
	5.2	Limita	ation	122	
	5.3	Summ	hary	123	
6	CON	CLUSI	ON AND RECOMMENDATION		
	6.1	Concl	usion	124	
	6.2	Recor	nmendation	125	
	RFF	FRFNC	Υ Γ	126	
	DIDI			120	
	DIDI	ENDIN		130	
	Arr	CINDIX			

LIST OF TABLES

NO	TITLE	PAGE
3.1	Standard specification of existing bollard in Malaysia	47
3.2	Quality function deployment table for product specification	49
3.3	Concepts bollard	51
3.4	Decision metrics of the generation concepts	52
4.1	Statistic data and rank of target market	81
4.2	Statistic data from concept selection survey	87
4.3	Final product specification	91
4.4	Standard bollard specification	92
4.5	The advantages and disadvantages the prototype fabrication process	96
4.6	CAE advantage and disadvantage	97
4.7	Result of steel performance	100
4.8	Result of aluminum performance	101

4.9	Result of fiberglass performance	103
4.10	Comparison characteristics of three types of material	103
4.11	Sequential Engineering versus Concurrent Engineering	107
4.12	Design process duration	109
4.13	Prototype fabrication process	110
4.14	Analysis process duration	111
4.15	Product development process duration	112

LIST OF FIGURES

NO TITLE

Residential bollard	7
Garden Bollard	7
Pathway Bollard	7
Bollard's height range	8
Bollard design option	9
Result of impact strength on bollard	14
Basic style of lighting	15
Example of bollard's photometrics	16
The product planning process	17
The customer needs process	18
The five steps concept generation method	23
Concept selection process	25
Overview of Concurrent Engineering Methodology	28
The redundancies of the phase of CE principles to reduce	30
Flow diagram of a Sequential Engineering process	31
Freeform Surface Modeling in CAD	34
Solid Modeling in CAD	35
Specific processes of Rapid Prototyping method	37
Stereolithography process	38
Selective layer sintering process	38
Fused deposition modeling mechanism	39
Fused deposition modeling process	40
Three dimensional printing process	41
Rapid prototyping as the manufacturing middle	41
	Residential bollardGarden BollardPathway BollardBollard's height rangeBollard design optionResult of impact strength on bollardBasic style of lightingExample of bollard's photometricsThe product planning processThe customer needs processThe five steps concept generation methodConcept selection processOverview of Concurrent Engineering MethodologyThe redundancies of the phase of CE principles to reduceFlow diagram of a Sequential Engineering processSolid Modeling in CADSpecific processes of Rapid Prototyping methodStereolithography processFused deposition modeling mechanismFused deposition modeling processThree dimensional printing processRapid prototyping as the manufacturing middle

3.1	PSM process flow	44
3.2	Bollards in Malacca city	45
3.3	Three selected concepts from decision metrics	53
3.4	Bollard's sketching with dimensioning	54
3.5	2D drawing of bollard with dimensioning	55
3.6	3D drawing of cap part of bollard	56
3.7	Template drawing of bollard's cap.	56
3.8	Bollard's assembly	57
3.9	Schematic diagram of RP process sequence	58
3.10	Transferring CAD data to STL file	58
3.11	Sequence process of Magics RP software	59
3.12	Check the part properties	60
3.13	Rescale part to 0.25	60
3.14	Bollard's part nested into a platform	61
3.15	Sequences process of Insight software	62
3.16	Insight Software environment	62
3.17	Plane checking	62
3.18	Model processing	63
3.19	Building job	63
3.20	Pack and Download	64
3.21	Prodigy Plus and building status	64
3.22	Prodigy Plus Machine	65
3.23	Process and status of prototype operation in the Prodigy Plus.	65
3.24	Bollard's parts with support	66
3.25	Removing support from parts.	67
3.26	Parts dissolve into the WaterWorks Solution	67
3.27	Stratasys WaterWorks Solution	67
3.28	Parts removed from the solution	68
3.29	Washing the parts	68
3.30	Sanding the part surface	68
3.31	Painting the parts with spray paint	69
3.32	Oven to dry the wet painted pats	69
3.33	Idealization the geometry (simplify geometry)	73
3.34	Identify as mixed mesh part	73

XV

3.35	Identify the material properties of parts	74
3.36	Select the restraint part	74
3.37	Apply force on the top (buckling consideration)	75
3.38	Apply force at the body (crashing consideration)	75
3.39	Part meshing process	75
3.40	Run the analysis part	76
3.41	Result of the analysis in term of contour colour	77
	(need interpretation)	
4.1	Product development process	78
4.2	Survey questionnaire	80
4.3	Bar chart of the target market	80
4.4	Gantt chart; target timing of bollard project	82
4.5	Customer data template	83
4.6	Quality function deployment	84
4.7	Conceptual design flow process	85
4.8	Decision matrix for bollard's concepts	86
4.9	Questionnaire; survey on customer selection	87
4.10	Pie chart; result from customer selection survey	87
4.11	Sketching of the concept bollard with dimension	92
4.12	Bollard concept in CAD drawing	93
4.13	Template 2D and 3D of bollard drawing	93
4.14	The result on stress analysis for the steel material	98
4.15	Graph stress versus load for steel	98
4.16	The result on displacement analysis for the steel	99
4.17	Graph displacement versus load of the steel material.	99
4.18	The result on stress analysis for the aluminum material	101
4.19	Graph stress versus load of the aluminum material.	101
4.20	The result on displacement analysis for the aluminum material	101
4.21	Graph displacement versus load of the aluminum material.	101
4.22	The result on stress analysis for the fiberglass material	102
4.23	Graph stress versus load of the fiberglass material.	102
4.24	The result on displacement analysis for the fiberglass material	103
4.25	Graph displacement versus load of the fiberglass material.	103
4.26	Bar chart for comparison of maximum load	104

4.27	Bar chart for price comparison	104
4.28	Concurrent flow of bollard development process	113
4.29	Sequential flow of light development process from Muarlite Sdn Bhd	113
4.30	Cost Implementation within Sequential Process	114
4.31	Cost Implementation within Concurrent Process	115
4.32	Quality of product within Sequential Approach	116
4.33	Quality of product within Concurrent Approach	117
5.1	Bollard prototype	120

xvi

LIST OF APPENDIX

Α	Product Development Process
В	Detail Drawing
С	Bollard Specification
D	Form and Letter

xvii

CHAPTER 1

INTRODUCTION

This chapter is to provide the reader with an introduction to the research conducted for this project. This chapter discussed on the background, scopes, objective and problem statement of this project.

1.1 **Project Background**

This project is to develop a new design and fabricate the bollard light prototype using rapid prototyping machine which is Fused Deposition Modeling (FDM) machine. The process is started by product planning development and proceeds by design process development from sketching until prototype fabrication. The analysis and optimization of this product are by using modern approach which is Computer Aided Engineering (CAE) to get the best product.

Bollard light is one of the outdoor lighting. This project is to develop new design of bollard through modern product development approach. The references for this information are gathered from Majlis Bandaraya Meleka Bersejarah (MBMB), journal, reference books, and related websites. Rapid prototyping is the process to fabricate bollard prototype. Rapid prototyping (RP) is the process to develop the master pattern. The product development process can lead to superior design through the design by

analysis. The bollard prototype test is by using finite element analysis (FEA) to optimizing the structure and thermal of the bollard. For design optimization, FEA is need to check the structure and thermal issue of the design

1.2 **Objective of Study**

The main objective of this project is to carry out feasibility study of modern product development process.

1.3 **Problem Statement**

Traditionally, the product development process has relied on a combination of past experience, basic calculation, prototype fabrication manually and prototype testing. The traditional model of the product development process and organization is based upon a sequential and functional approach to development (Wheelwright and Clark, 1992; Zaccai, 1991). Initially in this process, a design concept was chosen, often heavily influenced by what worked in the past. In the traditional approach, the drawing of the concept design is done manually drawing which using drawing tools like ruler, protector and more. Next, calculations were made to get some assurance that the design would meet the requirements like structure, material selection and other characteristic. Typically, the analysis is by using the formula from theory and calculates it by manually part by part of the drawing. Prototype part was then obtained to obtain a representation of the product under development. The prototype fabrication was made by manually by using man power. A review of the methods traditionally used in the product development process development process would be helpful but it can be defined as the waste process where the traditional process extend cycle times or incur additional

resources use, thereby increasing costs. Traditionally, the development process has relied on classical structural mechanics and experimental based methods.

This project is to solve the traditional engineering process approach. This project has chosen the bollard light as the product to show the mechanism of the modern product development process and concurrent engineering approach. The modern product development process is started with the product planning where here the strategies and assessment of technology developments and market objectives have been developed. The process conceptual design is done by collecting data from customer need. The design is developed by using modern approach which using computer aided design (CAD). Then the data of the product from CAD will be transferred to the analysis software and prototype machine concurrently. Furthermore, all process in the modern product development process can be concurrently works; it can be identified as the concurrent engineering (CE) approach. Those bring a lot of benefits compared to the traditional approach.

This project will focus on the bollard because the problem of bollard where the current bollard in Malaysia are having weakness concept design and the fail of target market of this product where, from the observation bollard are becoming extinct in Malaysia's landscape due to the weakness of product planning and product development approach. The design of the bollard will be improved by implementing modern product development process through product planning, identifying customer need, target concept, design through computer aided design (CAD), analyzing using computer aided engineering (CAE), and testing product through rapid prototyping. This implementing process is using concurrent engineering (CE) approach.

The scopes of this project are:

- To study on concurrent engineering and product and design development process.
- To study on bollard existing market, computer aided design (SolidWork), computer aided engineering (CosmosWork), and rapid prototyping (Fused Deposition Modelling).
- iii. To study on the drawing tool which is SolidWork as the computer aided design (CAD) approach, analysis tool which is CosmosWork as the computer aided engineering (CAE) approach.
- iv. To design, analyze and fabricate the final concept design of bollard.

1.5 Benefit of Study

For the last few years a product development process is becoming more important. This project implementing modern product development process which conducting from the product planning phase until prototype fabrication phase.

Furthermore, this project is focusing on the concurrent engineering within product development process. It means this project is focusing more on the important of lead time and cost. The most efficient project is the project that reduces cost, compressed lead time and produce high profit. This project has trained on working base on concurrently approach and arranged all process in efficiently to obtain the target of this project.

This project also has introduced the modern technology tools such as rapid prototyping machine, CAD and CAE software. This technology is very important in concurrent engineering implementation. By using these modern technology tools the product development process is more effective where these tools provide easier and faster result.

1.6 Report Outline

Chapter 2 is discussed the literature search more on bollard lighting, product development process, concurrent engineering approach, computer aided design, and computer aided engineering, rapid prototyping and rapid tooling technologies.

Chapter 3 is discussed base on the experimental work that have been conduct during this project. The experimental works are base on project which implements modern product development process within concurrent engineering in developing new concept bollard. The process starts from product planning until prototype fabrication and analysis bollard's structure.

Chapter 4 is showed the result and the finding from this project. The result is more on the effectiveness of the implementation of the modern product development within concurrent engineering.

Chapter 5 is discussed on the result and interpreted the results that have been found through this project. Furthermore this chapter discussed on the limitation of this project that barrier to get the accurate result.

Chapter 6 is the conclusion for this project. This chapter has concluded the overall of this project in positive and negative side. Furthermore, the recommendation for future research also has been attached in this chapter.

CHAPTER 2

LITERATURE REVIEW

This chapter has provide an overview of bollard lighting, modern product development process, concurrent engineering approach, computer aided design, computer aided engineering, rapid prototyping and rapid tooling technology.

2.1 Bollard Light

Bollard light is a stand which provides illumination as a defining element to mark pathway, direct pedestrian and vehicular traffic. Furthermore, the bollard can brighten the dark yards and make the home stand out in the neighbourhood or improve safety and security.

2.1.1 Function

Bollards light are an aesthetic lighting steel barrier used to illuminate and brighten the walkway or path way of the landscape for residential used. Bollard also offers a unique way to dress up the exterior of home, commercial space or any landscape through soft lighting without detracting from the architectural element of the building's outlook.