

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

OPTIMIZATION OF INJECTOR GUN DESIGN USING DESIGN FOR MANUFACTURING AND ASSEMBLY (DFMA) AT THE CONCEPTUAL DESIGN STAGE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

AZLINDA BINTI MOHAMAD B050910202 800130-01-5442

FACULTY OF MANUFACTURING ENGINEERING 2013

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Optimization of Injector Gun Design using Design for Manufacturing and Assembly (DFMA) at the Conceptual Design Stage

SESI PENGAJIAN: 2012/13 Semester2

Saya AZLINDA BINTI MOHAMAD

Mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Silatandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TERHAD

SULIT

Alamat Tetap:

266, JLN MAKMUR 10,

TAMAN MAKMUR,

81000 KULAI, JOHOR.

Tarikh: <u>3 JUN 2013</u>

Disahkan oleh: Cop Rasmi:

ENGR. DR. HAMBALI BIN AREP @ ARIFF Head Of Department (Manufacturing Design) Faculty Of Manufacturing Engineering Universiti Teknikal Malaysia Melaka

3/6/2013 Tarikh:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled Optimization of Injector Gun Design using Design for Manufacturing and Assembly (DFMA) at the Conceptual Design Stage is the results of my own research except as cited in references.

	MC.
•	e e e e e e e e e e e e e e e e e e e
:	AZLINDA BINTI MOHAMAD
:	3.6.2013
	: : :

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering at UTeM as a partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory committee is as follow:

. ENGR. S. HAMBALI BIN AREP @ ARIFF ENGR. DR. HAMBALI BIN AREP @ ARIFF Head Of Department (Manufacturing Design) Faculty Of Manufacturing Engineering Universiti Teknikal Malaysia Melaka

ABSTRAK

Setiap syarikat mahu menghasilkan produk yang berkos rendah, berkualiti tinggi dan dipasarkan dalam waktu yang singkat. Rekabentuk untuk Pembuatan dan Pemasangan merupakan satu konsep yang boleh aplikasikan untuk kebanyakan produk dalam industri pembuatan. Kajian ini menumpukan kepada kaedah Rekabentuk untuk Pembuatan dan Pemasangan Boothroyd-Dewhurst bagi menganalisa produk pistol suntikan (injector gun), yang memberi penekanan kepada pengurangan kos dan komponen. Tujuan kajian ini adalah untuk mengoptimumkan rekabentuk asal pistol suntikan pada peringkat rekabentuk konsep. Kajian ini mengaplikasikan perisian Rekabentuk untuk Pembuatan dan Pemasangan Boothroyd-Dewhurst sepenuhnya melalui dua jenis aplikasi iaitu perisian DFA untuk mendapatkan jumlah masa pemasangan, kos pemasangan serta peratusan indeks rekabentuk untuk pemasangan dan perisian DFM Concurrent Costing digunakan untuk menganalisa kos pembuatan yang melibatkan bahan serta proses yang ditentukan bagi setiap komponen produk. Seterusnya, analisa DFMA yang dijalankan melalui penggunaan perisian DFA memberikan jumlah kesuluruhan kos pembuatan dan pemasangan bagi seunit produk. Berdasarkan keputusan yang diperolehi, rekabentuk asal telah diubahsuai. Menggunakan perisian dan kaedah yang sama, rekabentuk produk baru dianalisa. Hasil daripada kedua-dua analisa dibandingkan bagi melihat sejauhmana metodologi DFMA memberi impak kepada pengoptimuman rekabentuk produk pistol suntikan ini. Hasil kajian menunjukkan pengurangan masa pemasangan sebanyak 52%, penurunan kos keseluruhan bagi sebuah produk sebanyak 28% dan perubahan pada peratus indeks rekabentuk untuk pemasangan dari 34% kepada 72%, iaitu peningkatan sebanyak 53%. Penggunaan bersama beberapa metodologi lain seperti simulasi dan rekabentuk untuk alam sekitar dicadangkan untuk perlaksanaan kajian pada masa akan datang.

ABSTRACT

Every company wants to produce low cost products, high quality and faster time to market. Design for Manufacturing and Assembly (DMFA) is a methodology that can be applied to many products in the manufacturing industry. This study focuses on Boothroyd-Dewhurst DFMA method to analyze the injector gun, which emphasis on cost reduction and parts count reduction. The purpose of this study is to optimize the current design of injector gun for oil palm tree fertilization application at the conceptual design stage. This study applies the DFMA Boothroyd-Dewhurst software by using two types of applications. The original design of the product was analyzed using DFA software applications to get the total assembly time, assembly costs and the percentage of DFA index. Then, DFM Concurrent Costing software application was used to analyze the cost of manufacturing for each part of the product which the materials and processes involved. Lastly, the DFMA analysis was carried out by using the DFA software. It provides overall total cost per unit of manufacturing and assembly of the product. Based on the results obtained, the original design had been modified. Using the same software and methods, new product design is analyzed. Results of both analyzes are compared to identify the extent of DFMA methodologies impacting the design optimization of the injection gun. The results show a reduction of 52% assembly time, the total cost of a product reduced by 28% and the percentage of DFA index change from 34% to 72%, an increase of 53%. For future studies, a number of methodologies such as simulation and Design for Environment (DFE) should be implemented simultaneously with the DFMA method.

DEDICATION

To my beloved husband Mohammad Aizrulshah bin Kamaruddin

my children Muhammad Izzu Syahmi & Maryam Kayyisah

> my mother Rufiah binti Jaafar

and all my family members.

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Engr. Dr. Hambali Arep @ Ariff for his superior guidance and motivational advices. Without his constructive criticism, this project would not be successfully accomplished.

An utmost thanks to staffs at Faculty of Manufacturing Engineering, UTeM for their tolerance and cooperation. This project can be successfully carried out, thanks for their invaluable suggestion and cooperative efforts throughout the whole project.

Lastly, I sincerely express my foremost gratitude to every single person who kindly provide assistance and spiritual support to me without any hesitation and comments.

TABLE OF CONTENTS

Abs	trak		i
Abs	tract		ii
Ded	ication		iii
Ack	nowled	gement	iv
Tab	le of Co	ontents	v
List	of Tab	les	ix
List	of Figu	ires	xi
List	of Abb	previations, Symbols and Nomenclatures	xiii
CHA	APTER	1: INTRODUCTION	1
1.1	Background of Project		
1.2	Problem Statement		
1.3	3 Objectives		
1.4	.4 Scope of Project		
CHA	APTER	2: LITERATURE REVIEW	5
2.1	Product Design		
2.2	2 Design Optimization		
2.3	3 Conceptual Design Stage		
2.4	Desig	n for Manufacturing and Assembly (DFMA)	11
	2.4.1	DFMA History	12
	2.4.2	The Use of DFMA in Product Development Process	13
	2.4.3	Design for Assembly (DFA)	14
	2.4.4	Boothroyd Dewhurst DFA Method	16
	2.4.5	Important of DFA	16
	2.4.6	DFA in Product Design	18
	2.4.7	Design for Manufacturing (DFM)	19
	2.4.8	Application of DFMA in Different Industries	21
		2.4.8.1 Aerospace Industry	21

		2.4.8.2 Automotive Industries	21
		2.4.8.3 White Goods Industry	21
2.5	DFM	A Software	22
	2.5.1	DFA Software	22
	2.5.2	DFM Software	28
2.6	Sumn	nary	33
CH	APTER	3: METHODOLOGY	34
3.1	Projec	ct Planning	34
3.2	The C	Overall Structure of the Project Work	37
	3.2.1	Planning Phase	38
		3.2.1.1 Define the Problem	38
		3.2.1.2 Define the Problem Statement, Objective and Scope	38
		3.2.1.3 Literature Review	39
		3.2.1.4 Studying on Current Product	39
		3.2.1.5 Methodology	39
	3.2.2	Implementation of Analysis Phase	40
	3.2.3	Redesign Phase	41
	3.2.4	Discussion of the Report	41
CH	APTER	4: RESULTS AND DISCUSSION	42
4.1	Origii	nal Design	42
	4.1.1	Assembly Tree of the Original Design	43
	4.1.2	Bill of Material (BOM) of the Original Product	43
	4.1.3	Parts Information about the Original Product	44
4.2	Analy	rsis Results of the Original Design	44
	4.2.1	DFA Result of the Original Design	47
	4.2.2	DFM Result of the Original Design	50
	4.2.3	DFMA Result of the Original Design	52
4.3	Sugge	estion for New Design	53
	4.3.1	Combine Connected Item	54
	4.3.2	Reduce the Number of Item	54
	4.3.3	Reduce Separate Operation Times	55

4.4	New Design 55		
	4.4.1 Assembly Tree of the New Design	56	
	4.4.2 Bill of Material (BOM) of the New Design	56	
	4.4.3 Parts Information about the New Design	57	
4.5	Analysis Results of the New Design	59	
	4.5.1 DFA Result of the New Design	59	
	4.5.2 DFM Result of the New Design	61	
	4.5.3 DFMA Result of the New Design	62	
4.6	Discussion	63	
	4.6.1 Modification of Original Design	63	
	4.6.2 Comparison between Original Design and New Design	68	
4.7	Summary of Result and Discussion	70	
CHA	APTER 5: CONCLUSION AND FUTURE WORK	71	
5.1	5.1 Conclusion 7		
5.2	Future Work 72		
REF	ERENCES	73	
APP	PENDICES		
А	Boothroyd-Dewhurst Manual Handling Table		
В	Boothroyd-Dewhurst Manual Insertion Table		
C1	Original Design Detail Drawing - Rod		
C2	Original Design Detail Drawing – Yellow Plastic Washer		
C3	Original Design Detail Drawing – Butt Stock		
C4	Original Design Detail Drawing – Catch Release Plate Spring		
C5	Original Design Detail Drawing – Tin Hat Plunger		
C6	Original Design Detail Drawing – Trigger		
C7	Original Design Detail Drawing – Pin		
C8	Original Design Detail Drawing – Catch Plate		
C9	Original Design Detail Drawing – Catch Plate Spring		
C10	Original Design Detail Drawing – handle		
C11	Original Design Detail Drawing – Sleeve		
C12	Original Design Detail Drawing – Hexagonal Zinc Barrel Screw		

- C13 Original Design Detail Drawing Steel Washer
- C14 Original Design Detail Drawing Plastic Cap
- C15 Original Design Detail Drawing Barrel
- C16 Original Design Detail Drawing Nozzle
- C17 Original Design Detail Drawing Nozzle Holder
- C18 Original Design Detail Drawing O-Ring
- D1 New Design Detail Drawing Rod
- D2 New Design Detail Drawing Catch Release Plate
- D3 New Design Detail Drawing Catch Release Plate Spring
- D4 New Design Detail Drawing Butt Stock
- D5 New Design Detail Drawing Catch Plate
- D6 New Design Detail Drawing Catch Plate Spring
- D7 New Design Detail Drawing Plunger
- D8 New Design Detail Drawing Trigger
- D9 New Design Detail Drawing Pin
- D10 New Design Detail Drawing Nozzle
- E Executive Summary Comparison DFMA

LIST OF TABLES

2.1	Products design and time to market or incubation period	6
3.1	Gantt chart FYP 1 and FYP 2	35
4.1	BOM of the Original Design Injector Gun	44
4.2	Parts Information of the Original Design Injector Gun	45
4.3	DFA analysis result of the Original Design	49
4.4	Material and Manufacturing Process for Each Part of Original Design	50
4.5	DFMA Analysis for Original Design Injector Gun	53
4.6	Suggested Part for Combine Connected Item	54
4.7	Suggested Parts for Reduce the Number of Item	54
4.8	Suggested Parts for Reduce Separate Operation Times	55
4.9	BOM of the New Design Injector Gun	57
4.10	Parts Information of the New Design Injector Gun	57
4.11	DFA analysis result for the New Design	60
4.12	Material and Manufacturing Process for Each Part of New Design	61
4.13	DFMA Analysis for New Design Injector Gun	63
4.14	Combining Rod and Handle Parts to Reduce the number of Items	64
4.15	Comparison Between Original Design and New Design in terms of time and cost, after Combining the Rod and Handle	65
4.16	Combining Nozzle and Plastic Cap Parts to Reduce the number of Items	65
4.17	Comparison Between Original Design And New Design In Terms Of Time And Cost, After Combining The Nozzle And Plastic Cap	66
4.18	Combining the Lock nut, Split Sachet Plunger and Tin Hat Plunger Reduce the number of Items	66
4.19	Comparison Between Original Design and New Design in terms of time and cost, after Combining the Nozzle and Plastic Cap	67

- 4.20 Combining the Butt Stock, Steel Washer, Yellow Plastic Washer, 67 Hexagonal Zinc Barrel Screw and Plastic Cap Reduce the number of Items
- 4.21 Comparison Between Original Design and New Design in terms of time and cost, after Combining : Combining the Butt Stock, Steel Washer, Yellow Plastic Washer, Hexagonal Zinc Barrel Screw and Plastic Cap
- 4.22 DFMA Results Comparisons Between Original and New 68 Improved Design of Product

LIST OF FIGURES

1.1	Injector Gun Distributed by Cox North America	3
1.2	Syringe for Oil Palm Tree Fertilization	3
1.3	Exploded View of Injector Gun Product Modelling	3
2.1	Iterative model of the Engineering Design Process	9
2.2	Key Components of DFMA Process	12
2.3	Design Improvements of Automotive Panels by the DFA Process	15
2.4	Procedures for Processing Selection	20
2.5	DFA main window	23
2.6	Inserting Part to DFA Window	23
2.7	Example DFA Window for a Piston	24
2.8	Evaluation Criteria in DFA window	25
2.9	Example of Suggestion for Redesign of the Parts	26
2.10	Example of DFA for Redesign Piston	27
2.11	Main Analysis Window	29
2.12	Process and Material Selection Window	30
2.13	Main Analysis Window of a Valve	31
2.14	Examples of Parameters for the Semi-Automatic Sand Casting Process	31
2.15	Mold Core 1 Process Parameters	32
2.16	Graph of Cost Comparison between Two Processes	32
3.1	Flow Chart of FYP	37
4.1	Assembly Drawing of the Original Design Injector Gun	42
4.2	Assembly Tree of the Original Design Injector Gun	43
4.3	Exploded View of the Original Design Injector Gun	44
4.4	Structure Chart of the Original Design Injector Gun	47

4.5	The DFA Question for Barrel Part	48
4.6	The Breakdown of Assembly Time Per Product for the Original Design	50
4.7	Total Manufacturing Cost per Part for Original Design	51
4.8	Manufacturing Cost Breakdown Chart Of Trigger Part	52
4.9	Chart of Cost Breakdown per Product for Original Design	53
4.10	Assembly Drawing of the New Design	55
4.11	Assembly Tree of the New Design	56
4.12	Exploded View of the New Design Injector Gun	57
4.13	Product Structure of the New Design	59
4.14	The Breakdown of Assembly Time Per Product for the Original Design	61
4.15	Total Manufacturing Cost per Part for New Design	62
4.16	Cost Breakdown per Product Chart for New Design DFMA Analysis	63
4.17	Comparison between Original Design and New Design in Terms of Structural Complexity	64
4.18	Comparison between Original Design and New Design for an Injector Gun by Cost Breakdown Chart	69

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ABS	-	Acrylonitrile Butadiene Styrene
AHP	-	Analytical Hierarchy Process
BOM	-	Bills of Material
CAD	-	Computer Aided Design
CAE	-	Computer Aided Engineering
CTQ	-	Critical to Quality
DFA	-	Design for Assembly
DFM	-	Design for Manufacturing
DFMA	-	Design for Manufacturing and Assembly
FYP	-	Final Year Project
HDPE	-	High Density Polyethylene
PDP	-	Product Design Process
PDS	-	Product Design Specification
RM	-	Ringgit Malaysia
UTeM	-	Universiti Teknikal Malaysia Melaka
%	-	Percentage
C_m	-	Assembly Cost
E _{ma}	-	Design Efficiency
kg	-	Kilogram
\mathbf{N}_{\min}	-	Theoretical Minimum Number Of Parts
S	-	Second
Ta	-	Theoretical Lowest Assembly Time for One Part
T _{ma}	-	Assembly Time

CHAPTER 1 INTRODUCTION

This chapter overall discusses about design optimization through implementing Design for Manufacturing and Assembly (DFMA) at the conceptual design stage. In this part, the briefing of the background, problem statement, objectives and scopes of the study are discussed.

1.1 Project Background

Nowadays, people are more demanding on something that simple and less costly in their daily requirement. In order to meet customer needs, more companies struggling with competitive markets to produce low cost products with high quality and faster to market. Many researchers and innovators have been carried out that focusing on increasing the efficiency and simplify the operation especially both assembly and manufacturing process and cost.

Improvement in many company's operations is made by using a specific method. Usually, in industry the improvement they made are based on cost reduction. The reduction of cost could be made in the early stage of the design cycle. This means that cost estimation is an essential aspect in the design stage. Moreover, this is accepted that over 70% of final product costs is determined during the design stage (Boothroyd et al., 2002)

Design for Manufacturing and Assembly (DFMA) is a method used by designers in a way to reduce part count, reduce assembly time or even during simplify the subassemblies. It is a combination of Design for Manufacturing (DFM) and the Design for Assembly (DFA). DFM is a tool used to select the most cost effective material and process to be used in the production in the early stages of product design. DFA is a tool used to assist the product design teams to ensure the productions at a minimum cost, focusing on the number of parts, handling and ease of assembly.

Two different stages of DFMA implementation process are when existing design need improvement in order to achieve design optimization and in an early stage of the new design requirement is established. At the initial design stage, the designer develops a simple conceptual design by focusing on an assembly that requires a minimum of parts to perform and easy for installation. In the second stage the designer redesigns existing assemblies in order to optimize the design for ease manufacturing and installation (Herrera, 1997). Besides, in order to implement DFMA, the designer must have a good knowledge of the manufacturing process so that no additional unnecessary cost during the design development. Ease of manufacturing and assembly is important for cost, productivity and quality (Huang, 2001).

1.2 Problem Statement

Liquid injector gun (Figure 1.1) is one of the consumer products that used in industry and distributed by COX North America, an exclusive distributor of COX hand-held sealant and adhesive applicators located in Haslett, Michigan. The selection of this product is intended to meet the demand of a company that requires a design tool that can handle viscous liquid fertilizer injection for oil palm trees.

Figure 1.1: Injector Gun (Cox North America, 2012)

Quantum Agro Solution is a supplier of special grade fertilizers for oil palm tree located in Petaling Jaya, Selangor. Currently, growers use only medical syringe for fertilizing as shown in Figure 1.2.

Figure 1.2: Syringe for oil palm tree fertilization

However, the use of a medical syringe cause some problems due to the equipment not durable and ergonomic design for users. Even though the liquid injector gun is used for different purpose, but adaptation of this product as a liquid fertilizer injector gun for the oil palm tree is appropriate. Because of the complicated existing design as shown in Figure 1.3, DFMA concept will implement in redesigning this product with the aim to save the cost and ease of assembly and manufacture.

Figure 1.3: Exploded View of Injector Gun Product Modelling (Cox North America, 2012)

1.3 Objectives

The main objective of this project is to design and develop a new conceptual design of injector gun. The specific objectives are as follows:

- To analyze the current product of an injector gun using Boothroyd-Dewhurst DFMA software.
- b) To design and analyze the improved injector gun using Boothroyd-Dewhurst DFMA software.
- c) To evaluate the original design efficiency over new design efficiency.

1.4 Scopes of Project

The scopes of the project are as follows:

- a) The use of injector gun as a case study product.
- b) The use of Boothroyd-Dewhurst DFMA softwares for product evaluations.
- c) Product improvement for product structure simplification.
- d) Comparison of product design efficiencies (DFA index).
- e) The use of SolidWorks CAD software for product design drawing.

CHAPTER 2 LITERATURE REVIEW

This chapter covers the areas that need to be reviewed and understood before optimizing the product design by applying the DFMA concept. All information collected is derived from the findings of other peoples. In addition, it explains about DFMA software by Boothroyd-Dewhurst method and related matters in this study.

2.1 Product Design

Product design is generally conducted by a manufacturing enterprise whose primary purpose is to manufacture and sell products for a profit (Stoll, 1999). According to Chitale and Gupta (2007), product design deals with conversion of ideas into reality and fulfilling human needs. Product development and design are closely linked with industrial activity and production. When a new product is planned, the designer has to bear in mind the available resources of the plant and the possible impact of the firm having acquire, modify or substitute existing machines and equipment or buy various components from other suppliers. The important of product development and design for long-range planning by management is further emphasized by the amount of time that elapses from the inception of the idea for the new design until production starts. Table 2.1 shows the period or time to market for several products.

Product	Time to Market
Automation bodies	2 years
Automobile engines	4-7 years
Radios and television sets	6-12 months
Telecommunications equipment	4 years
Aircraft	10-15 years
Household equipment	2 years
Fashion	Several weeks

Table 2.1: Products design and time to market or incubation period (Chitale & Gupta, 2007)

In defense projects, where development and design take somewhat long time, because of the complexity of the problems involved, some design may become obsolete.

2.2 Design Optimization

According to Rao (1996), optimization is the act of obtaining the best result under given circumstance. Optimization can be defined as the process of finding the conditions that give the maximum or minimum value of the function. There is no single method available for solving all optimization problems efficiently and it can be applied to solve any engineering problem.

The goal of design optimization is to identify a design solution that satisfies all design requirements and is best in some sense. It can be based on cost, weight, strength, capacity and so forth.in most design situations, the design team is constantly striving to optimize the design. Often, this is done on a subjective basis using engineering experience and general principles (Stoll, 1999).

In analytical optimization, the design objective such as to minimize costs as well as all of the design requirements or constraints are expressed mathematically in terms of design variables. Solution methods are then employed to determine the optimum numerical value for each design variable. When this is possible, analytical optimization can be an excellent design improvement tool for performing parametric design (Stoll, 1999).

Chitale and Gupta (2007) identify four classifications of optimization in design approaches:

a) Optimization by Evolution

There is a close parallel between technological evolution and biological evolution. Most designs in the past have been optimized by an attempt to improve on an existing similar design. Survival of the resulting variations depends on the natural selection of user acceptance.

b) Optimization by Intuition

The art of engineering is the ability to make good decisions, without being able to provide a justification. Intuition is knowing what to do, without knowing why one does it. The gift of intuition seems to be closely related to the unconscious mind.

c) Optimization by Trial-and-Error Modelling

This refers to the usual situation in modern engineering design, where it is recognized that the first feasible design is not always the best. Therefore, the design model is exercised for a few iterations, in the hope of finding an improved design.

d) Optimization by Numerical Algorithm

This is the area of current active development in which mathematically based strategies are used to search for an optimum. The computer is widely used for such an approach.

There is no unique technique for optimization in engineering design. How well a technique works, depends on the nature of the functions represented in the problem. It has been a natural development to combine computer-aided-engineering (CAE) analysis and simulation tools with computer based optimization algorithms. Linking optimization with analysis tools creates CAE design tool by replacing traditional