

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF POLYPROPYLENE PLASTIC NAME CARD HOLDER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

FATIN NABILAH BINTI ROSLY B050910193 901031145164

FACULTY OF MANUFACTURING ENGINEERING 2013

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN AND ANALYSIS OF POLYPROPYLENE PLASTIC NAME CARD HOLDER

SESI PENGAJIAN: 2012/2013 Semester 2

Sava FATIN NABILAH BT ROSLY

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD

SULIT

(Mengandungi maklumat TERHAD yang telah ditentukan

oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap: No.9 Jln Nagasari 1, Tmn Jati Cop Rasmi:

Indah, Seksyen 32, 40460

Shah Alam Selangor.

Tarikh: June 2013

Tarikh:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Analysis of Polypropylene Plastic Name Card Holder" is the results of my own research except as cited in the references.

Signature	:	
Author's Name	:	Fatin Nabilah Binti Rosly
Date	:	June 2013

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory is as follows:

.....

(Project Supervisor)

ABSTRAK

Projek ini bertajuk "Merekabentuk dan Menganalisis Pemegang Kad Nama Plastik Polipropilena". Oleh itu, projek ini lebih memberi fokus terhadap merekabentuk dan menganalisis Pemegang Kad Nama untuk menentukan nilai ketebalan optimum Pemegang Kad Nama tersebut. Rekabentuk Pemegang Kad Nama ini telah direkabentuk dengan menggunakan perisian SolidWorks dan analisa Pemegang Kad Nama ini telah dianalisa dengan menggunakan perisian **SolidWorks** SimulationXpress. Bahan yang digunakan untuk Pemegang Kad Nama tersebut adalah polipropilena. Projek ini telah dimulakan dengan mengambil ukuran Pemegang Kad Nama yang sebenar. Selepas itu, lukisan 3D telah dihasilkan dengan menggunakan perisian SolidWorks. Analisa dengan menggunakan perisian SolidWorks SimulationXpress telah dijalankan untuk menentukan ketebalan optimum Pemegang Kad Nama tersebut supaya ia sesuai dengan penampilan fizikal, nilai estetika dan penggunaan harian seperti lenturan. Terdapat empat nilai ketebalan telah digunakan pada Pemegang Kad Nama iaitu 1.0 mm, 1.2 mm, 1.4 mm dan 1.6 mm. Ketebalan sebenar Pemegang Kad Nama adalah 1.6 mm, maka keputusan analisa yang diperolehi antara ketebalan yang berbeza Pemegang Kad Nama tersebut telah dibandingkan dengan ketebalan sebenar. Ketebalan optimum Pemegang Kad Nama telah dipilih berdasarkan keputusan analisa daya yang diperolehi. Hasilnya, Pemegang Kad Nama dengan ketebalan 1.0 mm telah dipilih. Akhir sekali, Pemegang Kad Nama telah ditukar dari lukisan CAD ke dalam produk sebenar dengan menggunakan mesin FDM di dalam peringkat prototaip pantas.

ABSTRACT

This final year project entitled, "Design and Analysis of Polypropylene Plastic Name Card Holder". The project focused on the design and analysis of the Name Card Holder which to determine the optimal thickness of the Name Card Holder. The design of the Name Card Holder was designed by using SolidWorks software and the analysis of the Name Card Holder was analyzed by using SolidWorks SimulationXpress analysis tool. The material used for the Name Card Holder is polypropylene. This project started by measuring the dimension of the actual size of the Name Card Holder. After that, a 3D drawing was created by using SolidWorks software. SolidWorks SimulationXpress analysis was conducted to determine the optimum thickness of the Name Card Holder so that, it suits the physical appearance, aesthetic wise and usage activities such as bending. There were four values of thickness had been applied on the Name Card Holder which is 1.0 mm, 1.2 mm, 1.4 mm and 1.6 mm. The actual thickness of the Name Card Holder is 1.6 mm, hence the results of analysis obtained between the different thicknesses of Name Card Holder was compared with the actual thickness. The optimum thickness of the Name Card Holder has been selected based on the results of force analysis obtained. As a result, Name Card Holder with 1.0 mm thickness has been chosen. Lastly, the Name Card Holder has been converted from the CAD drawing into real product by using the FDM machine in rapid prototyping stage.

DEDICATION

Very thankful to Allah and special thanks to my beloved supervisor, my beloved parents and friends.

ACKNOWLEDGEMENT

First of all, thanks to my bachelor degree final year project supervisor, Engr. Baharudin Bin Abu Bakar for his guide, help and support towards this project. With his advice, this project can be done according to the plan.

Special thanks to my family for their moral support and some advice and financial support. Thanks also to my academic staff in Universiti Teknikal Malaysia Melaka (UTeM) for teaching me a lot, so that I can finish this project. Thanks also to my friend that share the knowledge and idea to finish this project.

Last but not least, thanks to everyone that involve in this project.

TABLE OF CONTENT

Dec	laration	i
App	proval	ii
Abs	strak	iii
Abs	stract	iv
Ded	lication	V
Ack	knowledgement	vi
Tab	ble of Content	vii
List	t of Tables	xi
List	t of Figures	xiii
List	t of Abbreviations, Symbols and Nomenclatures	xvii
СН	APTER 1: INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	·	3
1.1	1.4.1 Scope	3
	1.4.2 Limitation	3
CH	APTER 2: LITERATURE REVIEW	4
2.1	Introduction to Reverse Engineering	4
2.2	Reverse Engineering	6
2.3	The Generic Process of Reverse Engineering	9
	2.3.1 Scanning	9
	2.3.2 Point Processing	10
	2.3.3 Application Geometric Development	10
	2.3.4 Coordinate Measuring Machine	11
	2.3.4.1 Type of Coordinate Measuring Machine	11
2.4	Design and Simulation Tools	14
	2.4.1 SolidWorks	14

	2.4.2 Finit	e Element Analysis	16
	2.4.3 Stres	ss Analysis	16
	2.4.4 Solid	dWorks SimulationXpress	17
2.5	Rapid Proto	otyping	19
	2.5.1 Rapi	d Prototyping Methodology	19
	2.5.2 Adva	antages of Rapid Prototyping Technologies	20
	2.5.3 Appl	lication of Rapid Prototyping	21
	2.5.3	3.1 Engineers Model Making	21
	2.5.3	3.2 Engineering Manufacture	21
	2.5.3	3.3 Industrial Design	21
	2.5.3	3.4 Medical Procedures	22
	2.5.3	3.5 Architecture	22
	2.5.4 Rapi	d Prototyping Processes	23
	2.5.5 3D I	Digitiser in Rapid Prototyping	27
2.6	Tolerances	in Plastic Mould	27
2.7	Type of Ma	aterial	28
CH	APTER 3: N	METHODOLOGY	32
	APTER 3: N Project Ove		32 32
3.1	Project Ove		
3.1 3.2	Project Ove	erview Problem Statement, Objective, Scope and Limitation	32
3.13.23.3	Project Ove Define the l	erview Problem Statement, Objective, Scope and Limitation Review	32 33
3.13.23.33.4	Project Ove Define the I Literature R	erview Problem Statement, Objective, Scope and Limitation Review	32 33 33
3.13.23.33.43.5	Project Ove Define the I Literature R Flow Chart Gantt Chart	erview Problem Statement, Objective, Scope and Limitation Review	32 33 33 33
3.13.23.33.43.5	Project Ove Define the I Literature R Flow Chart Gantt Chart Process Dev	erview Problem Statement, Objective, Scope and Limitation Review t	32 33 33 33 33 35
3.13.23.33.43.5	Project Ove Define the I Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product	32 33 33 33 33 35 35
3.13.23.33.43.5	Project Ove Define the I Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas 3.6.2 Phas	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product be 1: Planning	32 33 33 33 35 35 35 37
3.13.23.33.43.5	Project Over Define the I Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas 3.6.2 Phas 3.6.3 Phas	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product se 1: Planning se 2: Research Establishment	32 33 33 33 35 35 35 37 37
3.13.23.33.43.5	Project Over Define the D Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas 3.6.2 Phas 3.6.3 Phas 3.6.4 Phas	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product te 1: Planning te 2: Research Establishment te 3: Design Development	32 33 33 33 35 35 35 37 37 38
3.13.23.33.43.5	Project Over Define the I Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas 3.6.2 Phas 3.6.3 Phas 3.6.4 Phas 3.6.5 Phas	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product e 1: Planning e 2: Research Establishment e 3: Design Development e 4: Analysis, Discussion and Conclusion e 5: Report Submission and Presentation	32 33 33 33 35 35 35 37 37 38 38
 3.1 3.2 3.3 3.4 3.5 3.6 	Project Over Define the I Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas 3.6.2 Phas 3.6.3 Phas 3.6.4 Phas 3.6.5 Phas SolidWork	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product e 1: Planning e 2: Research Establishment e 3: Design Development e 4: Analysis, Discussion and Conclusion e 5: Report Submission and Presentation	32 33 33 33 35 35 35 37 37 38 38 38
 3.1 3.2 3.3 3.4 3.5 3.6 	Project Over Define the I Literature R Flow Chart Gantt Chart Process Dev 3.6.1 Phas 3.6.2 Phas 3.6.2 Phas 3.6.3 Phas 3.6.4 Phas 3.6.5 Phas SolidWork 3.7.1 Proc	erview Problem Statement, Objective, Scope and Limitation Review t velopment of the Product e 1: Planning e 2: Research Establishment e 3: Design Development e 4: Analysis, Discussion and Conclusion e 5: Report Submission and Presentation	32 33 33 33 35 35 35 37 37 38 38 38 38

CHAPTER 4: RES	ULT AND DISCUSSION	51
3.10 Discussion and	l Conclusion	50
3.9 Result Analysi	s of the Product	50
3.8.1 Fused I	Deposition Modeling (FDM)	48
3.8 Machine and S	pecification	48
3.7.3.7	Step 7	48
3.7.3.6	Step 6	47
3.7.3.5	Step 5	46
3.7.3.4	Step 4	46
3.7.3.3	Step 3	45
3.7.3.2	Step 2	45
3.7.3.1	Step 1	44

Simul	ation Analysis with SolidWorks SimulationXpress	51
4.1.1	Manipulated Variables	52
4.1.2	Controlled Variables	54
Simul	ationXpress Study on Loads Applied	57
4.2.1	Results of 1.6 mm Thickness Name Card Holder	58
4.2.2	Results of 1.4 mm Thickness Name Card Holder	71
4.2.3	Results of 1.2 mm Thickness Name Card Holder	81
4.2.4	Results of 1.0 mm Thickness Name Card Holder	91
Comp	arison of Data Obtained	101
	4.1.1 4.1.2 Simul 4.2.1 4.2.2 4.2.3 4.2.4	 Simulation Analysis with SolidWorks SimulationXpress 4.1.1 Manipulated Variables 4.1.2 Controlled Variables SimulationXpress Study on Loads Applied 4.2.1 Results of 1.6 mm Thickness Name Card Holder 4.2.2 Results of 1.4 mm Thickness Name Card Holder 4.2.3 Results of 1.2 mm Thickness Name Card Holder 4.2.4 Results of 1.0 mm Thickness Name Card Holder Comparison of Data Obtained

СНА	PTER 5: CONCLUSION AND FUTURE WORK	109
5.1	Conclusion	109

5.2	Future Work	11	11

REFERENCES

APPENDICESS

- A Gantt Chart for PSM 1
- B Gantt Chart for PSM 2
- C 3D Drawing of the Name Card Holder
- D Technical Drawing of the Name Card Holder
- E The Prototype of the Name Card Holder

LIST OF TABLES

2.1	Properties of Polypropylene	29
2.2	Physical Properties of Polypropylene	29
2.3	Processing Properties of Polypropylene	29
2.4	Typical Properties of Rigid PVC	30
2.5	Typical Properties of Flexible PVC	31
3.1	Fused Deposition Modeling	49
3.2	The Materials Builds Temperature	50
4.1	Properties of 1.6 mm Thickness Name Card Holder	58
4.2	Result Analysis of Case 1 for 1.6 mm Thickness Name Card	61
	Holder	
4.3	Result Analysis of Case 2 for 1.6 mm Thickness Name Card	66
	Holder	
4.4	Properties of 1.4 mm Thickness Name Card Holder	71
4.5	Result Analysis of Case 1 for 1.4 mm Thickness Name Card	72
	Holder	
4.6	Result Analysis of Case 2 for 1.4 mm Thickness Name Card	77
	Holder	
4.7	Properties of 1.2 mm Thickness Name Card Holder	81
4.8	Result Analysis of Case 1 for 1.2 mm Thickness Name Card	82
	Holder	
4.9	Result Analysis of Case 2 for 1.2 mm Thickness Name Card	87
	Holder	
4.10	Properties of 1.0 mm Thickness Name Card Holder	91
4.11	Result Analysis of Case 1 for 1.0 mm Thickness Name Card	92
	Holder	

4.12	Result Analysis of Case 2 for 1.0 mm Thickness Name Card	97
	Holder	
4.13	Comparison of Results Obtained for Case 1	101
4.14	Comparison of Results Obtained for Case 2	104

LIST OF FIGURES

1.1	Name Card Holder	2
2.1	Product Development Cycle	5
2.2	Physical to digital Process	7
2.3	Basic of Reverse Engineering	7
2.4	The Generic Process of Reverse Engineering	9
2.5	Example of Articulated Arm	12
2.6	Example of Laser Tracker	13
2.7	3D Modeling by Using SolidWorks	15
2.8	Example of Part	17
2.9	Example of Meshing Part	18
2.10	Generalized Illustration of Data Flow in Rapid Prototyping	19
2.11	Typical Application Area of Rapid Prototyping	22
2.12	Schematic Diagram of SLA Process	23
2.13	Schematic Diagram of SLS Process	24
2.14	Schematic Diagram of FDM Process	25
2.15	Schematic Diagram of LOM Process	26
2 1	Mathedala and Fland Chart	24
3.1	Methodology Flow Chart	34
3.2	Product Development Flow	36
3.3	Example of Solid Model by Using SolidWorks	40
3.4 2.5	Example of 2D drawing by using Solidworks	40
3.5	3D drawing of the Name Card Holder using Solidworks	41
3.6	3D Overview of the Name Card Holder	42
3.7	2D drawing of the Name Card Holder	42
3.8	Material Analysis of Polypropylene Copolymer	43
3.9	Product Mass Properties of Name Card Holder	44
3.10	Evaluate Tab to Start the Analysis	44
3.11	Fixtures Area	45
3.12	Force Area	45

3.13	Material Applied	46		
3.14	The Simulation Run			
3.15	The Played Animation			
3.16	Factor of Safety			
3.17	Generate Report			
3.18	Fused Deposition Modeling	49		
4 1	Name Card Halder With 1.0 mm Thistory	50		
4.1	Name Card Holder With 1.0 mm Thickness	52		
4.2	Name Card Holder With 1.2 mm Thickness	53 53		
4.3				
4.4	Name Card Holder With 1.6 mm Thickness	54		
4.5	Edit Material Box	55		
4.6	Material Selection of the Name Card Holder	55		
4.7	The Name Card Holder Length	56		
4.8	The Name Card Holder Width	56		
4.9	Example of SimulationXpress Study of Load Applied on the	57		
	Left Surface (Case 1)			
4.10	Example of SimulationXpress Study of Load Applied on the	58		
	Top Surface (Case 2)			
4.11	Mass Properties of 1.6 mm Thickness Name Card Holder	59		
4.12	Left Side Surface (Case 1)	60		
4.13	Top Surface (Case 2)	60		
4.14	Relationship between Resultant Displacements with Load	63		
	Applied for 1.6 mm Thickness Name Card Holder for Case 1			
4.15	Relationship between Von Mises Stress with Load Applied	64		
	for 1.6 mm Thickness Name Card Holder Case 1			
4.16	Relationship between Factors of Safety with Load Applied	65		
	for 1.6 mm Thickness Name Card Holder Case 1			
4.17	Relationship between Resultant Displacements with Load	68		
	Applied for 1.6 mm Thickness Name Card Holder for Case 2			
4.18	Relationship between Von Mises Stress with Load Applied	69		
	for 1.6 mm Thickness Name Card Holder Case 2			

4.19	Relationship between Factors of Safety with Load Applied	70
	for 1.6 mm Thickness Name Card Holder Case 2	
4.20	Mass Properties of 1.4 mm Thickness Name Card Holder	72
4.21	Relationship between Resultant Displacements with Load	74
	Applied for 1.4 mm Thickness Name Card Holder for Case 1	
4.22	Relationship between Von Mises Stress with Load Applied	75
	for 1.4 mm Thickness Name Card Holder Case 1	
4.23	Relationship between Factors of Safety with Load Applied	76
	for 1.4 mm Thickness Name Card Holder Case 1	
4.24	Relationship between Resultant Displacements with Load	78
	Applied for 1.4 mm Thickness Name Card Holder for Case 2	
4.25	Relationship between Von Mises Stress with Load Applied	79
	for 1.4 mm Thickness Name Card Holder Case 2	
4.26	Relationship between Factors of Safety with Load Applied	80
	for 1.4 mm Thickness Name Card Holder Case 2	
4.27	Mass Properties of 1.2 mm Thickness Name Card Holder	82
4.28	Relationship between Resultant Displacements with Load	84
	Applied for 1.2 mm Thickness Name Card Holder for Case 1	
4.29	Relationship between Von Mises Stress with Load Applied	85
	for 1.2 mm Thickness Name Card Holder Case 1	
4.30	Relationship between Factors of Safety with Load Applied	86
	for 1.2 mm Thickness Name Card Holder Case 1	
4.31	Relationship between Resultant Displacements with Load	88
	Applied for 1.2 mm Thickness Name Card Holder for Case 2	
4.32	Relationship between Von Mises Stress with Load Applied	89
	for 1.2 mm Thickness Name Card Holder Case 2	
4.33	Relationship between Factors of Safety with Load Applied	90
	for 1.2 mm Thickness Name Card Holder Case 2	
4.34	Mass Properties of 1.0 mm Thickness Name Card Holder	92
4.35	Relationship between Resultant Displacements with Load	94
	Applied for 1.0 mm Thickness Name Card Holder for Case 1	
4.36	Relationship between Von Mises Stress with Load Applied	95
	for 1.0 mm Thickness Name Card Holder Case 1	

4.37	Relationship between Factors of Safety with Load Applied	96
	for 1.0 mm Thickness Name Card Holder Case 1	
4.38	Relationship between Resultant Displacements with Load	98
	Applied for 1.0 mm Thickness Name Card Holder for Case 2	
4.39	Relationship between Von Mises Stress with Load Applied	99
	for 1.0 mm Thickness Name Card Holder Case 2	
4.40	Relationship between Factors of Safety with Load Applied	100
	for 1.0 mm Thickness Name Card Holder Case 2	
4.41	Relationship between Resultant Displacement with Thickness	101
	for 2N Load Applied	
4.42	Relationship between Von Mises Stress with Thickness for 2N	102
	Load Applied	
4.43	Relationship between Factor of Safety with Thickness for 2N	103
	Load Applied	
4.44	Relationship between Resultant Displacement with Thickness	104
	for 25N Load Applied	
4.45	Relationship between Von Mises Stress with Thickness for 25N	105
	Load Applied	
4.46	Relationship between Factor of Safety with Thickness for 25N	106
	Load Applied	

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ABS	-	Acrylonitrile Butadiene Styrene
CAD	-	Computer-aided Design
CAM	-	Computer-aided Manufacturing
CNC	-	Computer Numerical Control
FDM	-	Fused Deposition Modeling
J	-	Joule
Κ	-	Kelvin
kg	-	Kilogram
kgm ⁻³	-	Kilogram per meter cube
Ltd	-	Limited
LOM	-	Laminated Object Manufacturing
m	-	Meter
m ³	-	Meter cube
mm	-	Millimeter
Ν	-	Newton
Nm ⁻²	-	Newton per meter squared
No.	-	Number
PC	-	Polycarbonate
PP	-	Polypropylene
PVC	-	Polyvinyl Chloride
RP	-	Rapid Prototyping
S	-	Second
SLA	-	Stereolithography
SLS	-	Selective Laser Sintering
UTeM	-	Universiti Teknikal Malaysia Melaka
3D	-	Three Dimension

CHAPTER 1 INTRODUCTION

In this introductory chapter, it contains a brief explanation about this project and the background of the project title, "Design and Analysis of Polypropylene Plastic Name Card Holder". This chapter covers about the problem statement, objectives, and the scope and limitation of this project.

1.1 Project Background

This project is the study of the design and analysis of Name Card Holder which commonly used by all especially students. As it well known there is various types of Name Card Holder with different shape and sizes. The product, Name Card Holder as shown in Figure 1.1, has been measured and drawn using CAD software. Then, the analysis on the product has been conducted using SolidWorks SimulationXpress analysis. All the dimension and the design consideration for the product need to be emphasized and measure in details to ensure the best result in the design of the Name Card Holder. The analysis of the Name Card Holder has been measured in details based on the outcome gained at the end of this project.

Figure 1.1: Name Card Holder

1.2 Problem Statement

The thickness of the product is very thin and always subject to bending and hence breaks easily. The analysis of the product using SolidWorks SimulationXpress has determined the minimum thickness that can withstand bending during the operation of the Name Card Holder when slotting a name card into the holder.

1.3 Objectives

To fulfill the requirement needed for this project, the objectives to be achieved at the end of this project are as below:

- a) To redesign the Name Card Holder using Solidworks.
- b) To analyze the thickness of the Name Card Holder using SolidWorks SimulationXpress.
- c) To determine the optimal thickness of the Name Card Holder so that it suits the economic scale of the product.

1.4 Scope and Limitation

1.4.1 Scope

The scope of this project is to measure, draw and analyze to determine the optimal thickness of the Name Card Holder. The material for the product is polypropylene.

1.4.2 Limitation

The limitation is to optimize the thickness so that it suits the physical appearance, aesthetic, usage activities such as bending during the operation and the economic scale of the product. Likewise, limitation of the software results in the thickness which is less than 1.0 mm cannot run the data needed and unable to analyze the required data.

CHAPTER 2 LITERATURE REVIEW

Literature review or academic study is one of the earlier exploration processes to facilitate in the process of introducing the new technique for the course of action of the development of a Name Card Holder. Through this manner, near the beginning of repossession on a project weak point and advantage will be attainable through the learning process and judgment with current technique and apparatus. With this literature review, the product formed can be capable of accomplishing existing demand exclusive of any uncertainty.

2.1 Introduction to Reverse Engineering

In today's intensely competitive global market, product enterprises are constantly seeking new ways to shorten lead times for new product developments that meet all customer expectations. In general, product enterprise has invested in CADCAM, rapid prototyping, and a range of new technologies that provide business benefits. Reverse engineering (RE) is now considered one of the technologies that provide business benefits in shortening the product development cycle. Figure 2.1 below depicts how RE allows the possibilities of closing the loop between what is "as designed" and what is "actually manufactured" (Raja, 2008).

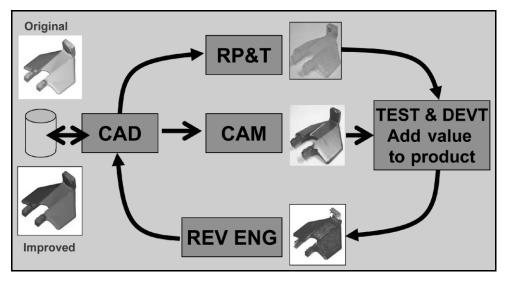


Figure 2.1: Product Development Cycle (Raja, 2008)

Engineering is the process of designing, manufacturing, assembling, and maintaining products and systems. There are two types of engineering, forward engineering and reverse engineering. Forward engineering is the traditional process of moving from high level abstractions and logical designs to the physical implementation of a system. In some situations, there may be a physical part or product without any technical details, such as drawings, bills-of-material, or without engineering data. The process of duplicating an existing part, subassembly, or product without drawings, documentation, or a computer model is known as reverse engineering (Raja, 2008).

Reverse engineering is also defined as the process of obtaining a geometric CAD model from 3D points acquired by scanning or digitizing existing parts or products. The process of digitally capturing the physical entities of a component, referred to as reverse engineering (RE), is often defined by researchers with respect to their specific task (Motavalli and Shamsaasef, 1996). Abella *et al.* (1994) described RE as, "the basic concept of producing a part based on an original or physical model without the use of an engineering drawing". Yau *et al.* (1993) define RE, as the "process of retrieving new geometry of a manufactured part by digitizing and modifying an existing CAD model".