

DEVELOPMENT OF A PICK AND PLACE TABLE TOP SIZED ROBOT CELL

This report is submitted to Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotics and Automation) with Honours.

By

NAME : MOHD AZMAN SYAFIQ BIN YUSOF

MATRIX NO : B051010228

IC NUMBER : 890319045241

FACULTY OF MANUFACTURING ENGINEERING

2013

DECLARATION

I hereby, declared this thesis entitle "Development Of A Pick And Place Table Top Size Robot Cell" is the result of my own research except as cited in references.

Signature:Author's name: Mohd Azman Syafiq Bin YusofDate: 29/05/13

APPROVAL

This report is submitted to Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotics and Automation) with Honours. The member of the supervisory committee is as follow:

(Official Stamp of Supervisor)

ABSTRAK

Projek sarjana muda ini membincangkan pembangunan prototaip sel robot berskala makmal berfungsi untuk mengambil dan meletak objek yang diintegrasikan dengan sistem pengimejan mesin berasaskan komputer untuk melakukan beberapa fungsi seperti mengesan, mengira dan mengesahkan. Secara umumnya, sistem ini merangkumi tiga sistem yang berlainan iaitu sistem konveyor, sistem pengimejan mesin dan robot yang akan diintegrasikan bersama untuk melakukan suatu fungsi yang lengkap. Setiap alatan utama didalam sistem secara umumnya mempunyai sistem kawalan tersendiri bergantung kepada keperluan alatan tersebut. Secara umumnya, 3 sistem kawalan digunakan didalam system ini iaitu PIC microcontroller untuk mengawal konveyor, "sensor" dan pengasing, komputer peribadi untuk mengawal system pengimejan serta "XPC target" komputer industri untuk mengawal pergerakan robot secara masa sebenar. Prototaip sistem yang telah dibina adalah sebuah sistem yang tepat dan boleh berulang dimana ia telah dibukti melalui 30 ujian yang dilakukan secara rawak bagi mengesan warna dan jumlah blok Lego[™] didalam sebuah pemasangan. Melalui projek ini, beberapa kebaikan akan dapat diperoleh dimana ia boleh diajadikan sebagai contoh yang bagus untuk diaplikasikan di industri secara skala yang lebih besar dimana ia boleh membantu dalam meningkatkan produktiviti dan kecekapan proses dengan mengautomasikan proses menggunakan teknologi pengimejan mesin. Disamping itu, projek ini juga boleh digunakan sebagai medium pengajaran oleh pensyarah untuk mengajar pelajar berkaitan system pengimejan mesin berasaskan computer.

ABSTRACT

This Bachelor Degree Project discusses about the development of a pick and place table top sized robot cell which are integrated together with computer based vision inspection system for detecting, counting and verification function. Basically the prototype of the system that had been developed consist of three separate components which is the conveyor, computer based vision inspection system and robotic arm which are integrated together to perform one complete function. Each of the main components of the system generally had its own individual controller based on the requirement of the components in order to provide better performance and reduce the computational time of the system. The 3 types of the controller used in the system is the PIC microcontroller which is used to control the conveyor, sensor and sorter, a personal computer (PC) which used to controls the vision system and the XPC target industrial computer for real time processing of the movement of the robotic arm. The prototype of the system developed is an accurate and repeatable system as it had given accurate result within the 30 random tests that had been perform in order to detect the right colour and numbers of the Lego[™] blocks inside an assembly. The benefit of this project is that it can a good example for be implemented in the industry in larger scale in order to enhance the productivity and efficiency of the operation by automating the process using machine vision technology. In addition to that, this project can also be used as a teaching medium for lecturers to teach students about computer based vision inspection system.

DEDICATION

To my beloved families, lecturers and friends for their endless support and motivation

v

ACKNOWLEDGEMENT

Alhamdulillah...i am grateful to ALLAH S.W.T for letting me successfully complete the project within the time period. My sincere and humble thanks goes to my beloved families for giving me such motivation and support for me until I am able to reach this stage. You are my source of inspiration and without you all, i may not be able to reach this step in my life.

I would also like to express my gratitude and thanks to few people who had contributed much during the project development. Firstly I would like to thanks my supervisor which is Dr. Zamberi bin Jamaludin for his endless support and motivating me in completing the project as well as develop new ideas for improving the system that had been made. My thanks also goes to Mr. Mahasan bin Mat Ali, Mr. Mohd Nazrin bin Muhammad and Mr. Muhamad Asari Bin Abdul Rahim for helping me in solving few technical problems which I had encountered during the project development phase. Not to forget all the BMFA friends who had contribute in giving me ideas for completing the project.

Finally, I would like to thank all that had contributed to this project directly or indirectly. All of you guys support and motivation will be always be appreciated by me throughout my entire life.

Thank you ALLAH S.W.T

TABLE OF CONTENT

Abstrak	iii
Abstract	iv
Dedication	v
Acknowledgement	vi
Table of Content	vii
List of Tables	xiv
List of Figures	XV
List of Abbreviations, Symbols and Nomenclature	XX

CHAPTER 1: INTRODUCTION

1.0	Introduction	1
1.1	Problem Statement	3
1.2	Objectives	3
1.3	Scopes	4
1.4	Expected Result	5
1.5	Content of Report	5
1.6	Gantt Chart	7

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	8	
2.1	Definition of Robotic Cell		
2.2	Work Cell Equipment	9	
	2.2.1 Type of Robotic Work Cell Layout	9	
	2.2.1.1 Robot Centered Work Cell	10	
	2.2.1.2 In Line Robotic Work Cell	10	
	2.2.1.3 Mobile Robot Work Cell	11	
	2.2.2 Conveyor	12	
	2.2.2.1 Wheel Conveyor2.2.2.2 Roller Conveyora. Gravity Roller Conveyor	13 14 14	
	b. Live Roller Conveyor	15	
	2.2.3 Chain Conveyor	15	
	2.2.4 Flat Belt Conveyor	16	
2.3	Definition of Machine Vision System	17	
2.4	History of Machine Vision System	18	
2.5	Overview of Machine Vision System	20	
2.6	Operation of Machine Vision System	21	
2.7	Components of Machine Vision System	23	
	2.7.1 Optical Sensor	23	
	2.7.2 Camera	24	
	2.7.3 Lighting	24	

	2.7.4	Frame Grabber	25
	2.7.5	Computer Software	26
	2.7.6	PC Platform	27
2.8	Funda	mental of Imaging	27
	2.8.1	Basic Camera Concept To Capture An Image	27
	2.8.2	Sensor Type	28
	2.8.3	Charged-Coupled Device (CCD)	28
	2.8.4	Complementary Metal Oxide Semiconductor (CMOS)	30
	2.8.5	Comparison Between CCD And CMOS Sensor	31
	2.8.6	Market Share for Area Image Sensors overall and specifically	32
		for Machine Vision	
2.9	Image	Analysis Technique	33
	2.9.1	Image acquisition	33
		a. Bitmap (.bmp)	34
		b. Joint Photographic Experts Group (.jpg)	34
		c. Graphics Interchange Format (.gif)	34
		d. Tagged Image File Format (.tif)	34
	2.9.2	Thresholding	35
	2.9.3	Image segmentation	35
	2.9.4	Edge detection	36
		a. Sobel operator	37
		b. Prewitt operator	37
		c. Canny operator	38

	d. Comparison of outcome for an image using various	39
	types of edge detection techniques	
	2.9.5 Template matching	39
2.10	Application of machine vision	40
	2.10.1 Automated visual inspection	41
	2.10.2 Process control	41
	2.10.3 Parts identification	42
	2.10.4 Robotic guidance and control	42
2.11	Summary of the chapter	42

CHAPTER 3: METHODOLOGY

3.0	Introduction		44
3.1	Flowc	hart of project development	46
3.2	Mecha	anical component	47
	3.2.1	Acrylic	47
	3.2.2	Mild Steel rod	48
	3.2.3	Conveyor belt	48
3.3	Electro	onics component	49
	3.3.1	PIC Microcontroller	49
	3.3.2	PIC Microcontroller Board	51
	3.3.3	Servo controller	53
	3.3.4	Liquid Cristal Display (LCD)	54

	3.3.5	Optical infrared Sensor	55
	3.3.6	DC geared motor	57
	3.3.7	Servo motor	59
	3.38	Webcam	61
3.4	Softwa	are	62
	3.4.1	MATLAB 7	62
	3.4.2	SolidWorks premium edition 2011	63
3.5	Overv	iew of the system layout	65
3.6	Flowc	hart of the system	66
3.7	Opera	tion of the system	68

CHAPTER 4: RESULT AND DISCUSSION

4.0	Introduction	70
4.1	Mechanical parts	70
	4.1.1 Conveyor 1	72
	4.1.2 Conveyor 2	73
	4.1.3 Sorter arm	74
	4.1.4 Parts bay	75
	4.1.5 Assembly bay	76
	4.1.6 Accept/Reject box	77
	4.1.7 Complete system assembly	78
4.2	Electronic circuit	79

	4.2.1 Voltage regulator circuit	79
	4.2.2 Optical sensor circuit	81
	4.2.3 Relay circuit	82
	4.2.4 PIC microcontroller electronic circuit	84
	4.2.5 IT-ROBOT arm electronic circuit	84
4.3	IT-ROBOT control architecture	85
4.4	The colour detection algorithm	86
4.5	Overview of system security	87
4.6	Overview of system operation	89
4.7	Overview of colour detection algorithm	91
4.8	Defining the region of interest (ROI)	94
4.9	Detecting different colour block	95
	4.9.1 Shades of red	96
	4.9.2 Shades of green	98
	4.9.3 Shades of blue	100
4.10	Testing the serial communication using Hyperterminal	102
4.11	System hardware test	109
4.12	Complete system test procedure	111
4.13	Complete system test result	116

CHAPTER 5: CONCLUSION AND RECOMENDATION

5.0	Introduction	12
5.0	Introduction	12

5.1	Conclusion	129
5.2	Recommendation for future works	130

LIST OF TABLES

1.1	Gantt chart for PSM 1 and PSM 2	7
2.1	General operations perform in the image processing	22
2.2	Comparison between CCD and CMOS sensor	31
3.1	Board layout function	52
3.2	Pin configuration	55
3.3	Product specification of SPG50-100K	58
3.4	Product specification of C40R Servo Motor	60
3.5	Component functionality	65
4.1	Main component of the system	71
4.91	Shades of red	96
4.92	Shades of green	98
4.93	Shades of blue	100
4.11	Hardware test	109
4.13	Complete system reliability test result	116

LIST OF FIGURES

2.1	Illustration of robotic cell in industry application	9
2.2	Robot centered work cell	10
2.3	In line robotic work cell	11
2.4	Robot attach to an overhead rail system	12
2.5	Robot is attach to floor track system	12
2.6	Wheel Conveyor	13
2.7	Gravity roller conveyor	14
2.8	Live roller conveyor	15
2.9	Chain Conveyor	16
2.10	Flat Belt Conveyor	17
2.11	Simple block diagram for a typical vision system operation	21
2.12	Optical sensor	23
2.13	Camera for machine vision system	24
2.14	Lighting in machine vision system	25
2.15	Frame grabber	26
2.16	Basic camera concept to capture image	28
2.17	Block Diagram of a Charge-Coupled Device (CCD)	29
2.18	Block Diagram of a Complementary Metal Oxide Semiconductor	31
	(CMOS)	

2.19	Market Share for Area Image Sensors Overall and specifically	33
	for Machine Vision	
2.20	Original image	35
2.21	Threshold image	35
2.22	Image segmentation	36
2.23	Sobel convolution kernels	37
2.24	Prewitt convolution kernels	37
2.25	Original image	39
2.26	Sobel operator	39
2.27	Prewitt operator	39
2.28	Canny operator	39
2.29	Template matching using Mat lab software	40
3.1	Overview of the component inside the system	44
3.2	Flowchart for project development	46
3.3	Transparent acrylic sheet	47
3.4	Mild steel rod	48
3.5	Conveyor belt	49
3.6	PIC 16F877A	50
3.7	PIC 16F877A pin configuration	50
3.8	SK40C	51
3.9	Board layout	52

3.10	8 Channel Servo Controllers	53
3.11	16 x 2 characters LCD display	54
3.12	Working principle of infrared sensor	56
3.13	SN-E18-B03N1 Digital infrared sensor	57
3.14	DC Geared Motor	58
3.15	Relation of the width of pulse with rotation of servo motor	59
3.16	RC Servo Motor	60
3.17	Webcam	61
3.18	Matlab 7	62
3.19	SolidWorks premium edition 2011	63
3.20	Isometric view of the system layout	64
3.21	Top view of the system layout	64
3.22	Flowchart for system	67
4.1	Complete system assembly	71
4.2	Actual model for conveyor 1	72
4.3	3D CAD modelling for conveyor 1	72
4.4	Actual model for conveyor 2	73
4.5	3D CAD modelling for conveyor 2	73
4.6	Actual model for sorter arm	74
4.7	3D CAD modelling for sorter arm	74
4.8	Actual model for parts bay	75

4.9	3D CAD modelling for parts bay	75
4.10	Actual model for assembly bay	76
4.11	3D CAD modelling for assembly bay	76
4.12	Actual model for accept/reject box	77
4.13	3D CAD modelling for accept/reject box	76
4.14	Actual model for complete system assembly	78
4.15	3D CAD modelling for complete system assembly	78
4.16	Actual voltage regulator circuit	80
4.17	Voltage regulator electronic circuit	80
4.18	Actual optical sensor circuit	81
4.19	Optical sensor electronic circuit	82
4.20	Actual relay circuit	83
4.21	Relay electronic circuit	83
4.22	PIC microcontroller electronic circuit	84
4.23	IT-ROBOT arm electronic circuit	84
4.24	Control architecture for recording the motion	85
4.25	Control architecture for recalling the motion recorded	86
4.26	System interface	87
4.27	Message dialog box alerting the user had successfully gain access	87
	to the system	
4.28	Message dialog box alerting that the user had entered the wrong	88

combination of username and password

4.29	Message dialog box alerting the user had reached the maximum 8	
	number of trial allowed	
4.30	Overview of system operation	90
4.31	Overview of colour detection algorithm	91
4.32	Original image captured	94
4.33	ROI position of the image captured	95
4.34	Location information dialog box	103
4.35	Confirm cancel dialog box	104
4.36	Warning dialog box	104
4.37	Connection description dialog box	105
4.38	Location information dialog box	106
4.39	Connect to dialog box	106
4.40	COM port setting	107
4.41	Test serial properties	108
4.42	ASCII setup	108
4.43	Hyperterminal interface	109
4.44	Vision system GUI interface	113
4.45	GUI interface displaying the object detected	114

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

CCD	-	Charge-Coupled Device (CCD)
CMOS	-	Complementary Metal Oxide Semiconductor
IR	-	Infrared
LED	-	Light Emitting Diode
CAD	-	Computer Aided Design
3D	-	3 Dimensional
DC	-	Direct Current
VR	-	Voltage Regulator
IC	-	Integrated Circuit
PIC	-	Peripheral Interface Controller
PC	-	Personal Computer
NO	-	Normally Open
NC	-	Normally Close
ROI	-	Region Of Interest
DOF	-	Degree Of Freedom
M1	-	Motor 1
ТМ	-	Trademark
HSV	-	Hue,Saturation,Value
RGB	-	Red,Green,Blue

СОМ	-	Communication
ASCII	-	American Standard Code For Information Interchange
UART	-	Universal Asynchronous Receiver/Transmitter
LCD	-	Liquid Crystal Display
CPU	-	Central Processing Unit
RAM	-	Random Access Memory

CHAPTER 1

INTRODUCTION

1.0 Introduction

Nowadays as the industry become more competitive than ever, many manufacturers are now strive to increase the level of the productivity of their operation to maximize the volume of output produce in order to gain better profit margin. In addition to that manufacturers are also focusing on producing high quality products with little or zero defect. As this happen, there are needs to develop and introduce better manufacturing process into the production operation of their manufacturing plant. One of the emerging technologies that are rapidly used in the industry todays to deal with this type of problem is the machine vision system. A machine vision system is a technology that deals with an algorithm that processes an image in real time in order to perform several beneficial functions in increasing the productivity and the efficiency level of the production process. Such functions that can be perform using the machine vision system is product inspection, quality assurance, parts sorting, material handling and also process control.

This project is being introduce in order to develop a prototype of a table top size robot cell that are integrate together with a computer based vision inspection system to demonstrate a manufacturing process in packaging operation inside a manufacturing robot cell.

The system develop will include two separate system that are integrated together to perform a beneficial function in material transfer across a packaging process. The first system is a robot cell which includes a robot arm that performs a pick and place operation to pick parts from parts bay and insert it into the incoming box from box conveyor and transfers it to another conveyor for next operation. When the process is completed the second

1

system which is the computer based vision inspection system will take over the operation. Different from the system 1, the computer based vision inspection system will be used to perform three separate function simultaneously which include part detection, counting and part verification to verify whether the parts inside the box containing the right numbers of quantity such as program by the users. If the system detect that the right quantity of part inside the box, the system will allow the box to travel through the conveyor and enter the finish bay but if the quantity does not met the set quantity, an automatic sorter will be enable to sort the box into reject box. The cycle of the operation will be continuing until the users stop the operation.