EFFECT OF EDM DIE-SINKING PARAMETERS ON THE MATERIAL CHARACTERISTICS OF ALUMINIUM ALLOY LM6 USING COOPER TUNGSTEN

NOR HALIDA ILYANI BINTI KAMARUDIN B050910307

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2013

-	-	-	-				-	-		-	-	
						PDDALAON						
						BACHELOR OF MANUFACIORING ENGINEERING (MANUFACIORING PROCESS) (HONS.)						
						2013	222					
_				-	-			-	_			-

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECT OF EDM DIE-SINKING PARAMETERS ON THE MATERIAL CHARACTERISTICS OF ALUMINIUM ALLOY LM6 USING COOPER TUNGSTEN

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process) (Hons.)

by

NOR HALIDA ILYANI BINTI KAMARUDIN B 050910307 860605115258

FACULTY OF MANUFACTURING ENGINEERING 2013

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Effect of EDM Die-Sinking Parameters on the Material Characteristics of Aluminium Alloy LM6 Using Cooper Tungsten

SESI PENGAJIAN: 2012/13

Saya NOR HALIDA ILYANI BINTI KAMARUDIN

mengakumembenarkanLaporan PSM inidisimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengansyarat-syaratkegunaansepertiberikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Silatandakan (✓)

SULIT	(Mengandungimaklumat yang berdarjahkeselamatanataukepentingan Malaysiasebagaimana yang termaktubdalamAKTA
TERHAD	RAHSIA RASMI 1972) (Mengandungimaklumat TERHAD yang telahditentukanolehorganisasi/badan di
TIDAK TERHAI	Omanapenyelidikandijalankan) Disahkanoleh:

Lot 4708 Taman Bistari,

Depan SMK Pelagat, 22000 Jerteh,

Terengganu

Tarikh: _____

Cop Rasmi:

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Effect Of EDM Die-Sinking Parameters On The Material Characteristics of Aluminium Alloy Lm6 Using Cooper Tungsten " is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Nor Halida Ilyani Binti Kamarudin
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) (Hons.). The member of the supervisory is as follow:

ABSTRAK

Electric discharge machine (EDM) adalah proses untuk memotong logam keras dan membentuk secara mendalam dengan cara hakisan arka dalam semua jenis bahan konduktif. Ia adalah salah satu daripada proses pemesinan bukan tradisional yang melibatkan pelepasan percikan fana melalui bendalir disebabkan oleh perbezaan potensi antara elektrod dan bahan kerja. EDM banyak digunakan di mana bentuk yang kompleks rumit perlu dimesin dalam bahan-bahan yang sangat keras seperti keluli alat keras. Projek ini mengkaji ciri-ciri EDM hasil dari electrode wear rate (EWR), material removal rate (MRR), surface roughness (Ra), dan pemerhatian kawah pada permukaan bahan kerja. Eksperimen telah dilakukan menggunakan mesin EDM SODICK AQ35L. Design of experiment(DOE) dengan menggunakan taguchi method telah digunakan untuk mereka bentuk jadual eksperimen ujian, dan menganalisis faktor penting yang mempengaruhi ciri-ciri pemesinan untuk proses EDM. Sebanyak sembilan ujikaji telah dijalankan dengan setiap satu diulang sebanyak tiga kali. Keputusan yang diperolehi daripada kajian ini menunjukkan bahawa current, pulse on time dan pulse off time adalah faktor yang paling penting yang melaksanakan ciri-ciri pemesinan EDM. Parameter optimum bagi eksperimen ini ialah *current* dengan tahap 1 diikuti oleh *pulse on time* tahap 2 dan tahap 3 *pulse* off time. Ia akan menyokong dengan peratusan sumbangan menggunakan analisis of varians (ANOVA) bagi MRR, current 62.57%, pulse on time 36.10% dengan 23.41% pulse off time. Kemudian, untuk EWR, current 57.35% dengan 25.31% daripada pulse on time dan pulse off time 14.11%. Akhir sekali, bagi Ra peratusan untuk current adalah 99.85%, pulse on time 17.13% dengan 0.10% pulse off time. Oleh itu, *current* adalah faktor penting semasa bahan kerja melebur.

ABSTRACT

Electric discharge machining (EDM) is the process for cutting hard metal and forming deep area by arc erosion in all kind of electro conductive material. It is one of the non-traditional machining processes that involved a transient spark discharges through the fluid due to the potential difference between the electrode and the work piece. EDM is most used where intricate complex shapes need to be machined in very hard materials such as hardened tool steel. This paper presents a fundamental study of characteristics of electrode discharge machine (EDM) that are electrode wear ratio (EWR), material removal rate (MRR), surface roughness (Ra), and appearance observation. The experiment was done using SODICK AQ35L EDM machine. Design of experiment (DOE) using taguchi method was applied to design the experimental number of trials, and analyze the significant factors that affecting the machining characteristics for EDM process. Total of nine experiments were conducted with each repeated three times. The results obtained from this research shows that current, pulse on time and pulse off time were the most significant factor effecting the EDM machining characteristics. The optimum parameters for this experiment which are current with level 1 followed by pulse on time of level 2 and level 3 pulse off time. It will support with the percentage of contribution using analysis of variance (ANOVA) of MRR, current 62.57%, pulse on time 36.10% with 23.41% pulse off time. Then, for EWR, current 57.35% with 25.31% of pulse on time and pulse off time 14.11%. Lastly, for Ra the percentage for current is 99.85%, pulse on time 17.13% with 0.10% pulse off time. Thus, the flow of current melting the workpiece that's why the current was the significant factor.

DEDICATION

Special dedicated to my mother

Shamsiah Binti Yusuf

My beloved father

Kamarudin Bin Mat Saman

My supportive siblings

Mohammad Amirul Asyraf Bin Kamarudin Nur Alifah Ilyana Binti Kamarudin Muhamad Aliff Haiqal Bin Kamarudin

For my adored friends

Suraya Laily (Master's Student)

And to all my relatives and friends for their supports, courage and prayers. May Allah bless all of you

ACKNOWLEDGEMENT

Alhamdulillah and thank you to Allah S.W.T. for giving me strength and ability to accomplish this project research successfully. I would like to take the greatest opportunity to express my sincere and gratitude to my supervisor, Dr. Mohd Amran Bin Md. Ali for his encouragement, guidance, ideas which enlighten my curiosity, suggestion, advice and friendship throughout the year in completing this final year project. Besides, thanks to all the lecturers and staff of the Faculty of Manufacturing Engineering.

In this opportunity, I would like to give my sincere gratitude to my beloved parents and family who always pray and give the encouragement while pursuing my research and project. Their sacrifices are never being forgotten.

My special thanks to the friend that gives support and always company me in making and complete this project, I really thankful and appreciate it very much.

TABLE OF CONTENT

Abstrak				
Abstract				
Dedicat	tion		iii	
Acknow	vledgemer	nt	iv	
Table o	of Content		v	
List of	Tables		viii	
List of	Figures		x	
List Ab	breviation	s, Symbols and Nomenclatures	xii	
СНАР	TER 1: IN	NTRODUCTION	1	
1.1	Backgrou	and of the Project	1	
1.2	Problem	Statement	3	
1.3	Objective	es	3	
1.4	Scopes		4	
1.5	Outline o	of the Report	4	
СНАР	TER 2: L	ITERATURE REVIEW	5	
2.1	EDM Ma	achining Operations	5	
	2.1.1	Types of EDM Machines	7	
	2.1.2	EDM Die Sinking	9	
2.2	EDM Ma	chining Parameters	11	
2.3	EDM Ch	aracteristics	14	
	2.3.1	Material Removal Rate (MRR)	14	
	2.3.2	Electrode Wear (EWR)	15	
	2.3.3	Surface Roughness (Ra)	16	
	2.3.4	Texture and Cracking of Craters	18	
2.4	Material	Workpiece	19	
2.5	Types of	Electrode	19	
	2.5.1	Copper	20	
	2.5.2	Graphite	20	

	2.5.3	Tungsten	Tungsten Carbide					
	2.5.4	Cooper Tungsten						
	2.5.5	Iron		21				
2.6	Design	of Experime	nt (DoE)	22				
	2.6.1	Taguchi N	Viethod	22				
		2.6.1.1	Signal to Noise (S/N) Ratio	23				
		2.6.1.2	Response to Signal to Noise (S/N) Ratio	24				
		2.6.1.3	Analysis of Variance (ANOVA)	24				
2.7	Summa	ry		25				
СНА	PTER 3:]	METHODO	DLOGY	26				
3.1	Experin	nental Setup		26				
	3.1.1	Current H	Experimental Setup	28				
3.2	Specim	en Preparatio	on	30				
3.3	Electro	de Preparatio	n	31				
3.4	Experin	nental Param	ieters	32				
3.5	Design	of Experime	nt (DoE)	34				
	3.5.1	Taguchi N	Method Using Minitab English Version Sixteen	37				
3.6	Summa	ry		39				
СНА	PTER 4:]	RESULT A	ND DISCUSSION	40				
4.1	Experin	nental Data		40				
	4.1.1	Selection	of Factor Using Taguchi Method Design	40				
	4.1.2	Selection	of Factor Level	41				
	4.1.3	Selection	of Orthogonal Array (OA)	41				
4.2	Result of	of the Experi	ment	42				
4.3	Analysi	s of the Resu	ılt	44				
4.4	Analysi	s Result of S	urface Roughness (Ra) Response	44				
	4.4.1	Signal to	Noise Ratio Response of Ra	44				
	4.4.2	Signal to	Noise Ratio Plot for Ra	45				
	4.4.3	Validation	n for Ra	46				
4.5	Analysi	s of Variance	e (ANOVA) for Ra	47				
4.6	Overall	Overall Result of Ra 5						

4.7	Analysis	s Result of Material Removal Rate (MRR) Response	51		
	4.7.1	Signal to Noise Ratio of MRR	52		
	4.7.2	Signal to Noise Ratio Plot for MRR	52		
	4.7.3	Validation for MRR	53		
4.8	Analysis	s of Variance (ANOVA) for MRR	54		
4.9	Overall	Result of MRR	57		
4.10	Analysis	s Result of Electrode Wear Rate (EWR) Response	58		
	4.10.1	Signal to Noise Ratio of EWR	58		
	4.10.2	Signal to Noise Ratio Plot for EWR	59		
	4.10.3	Validation for EWR	60		
4.11	Analysis	s of Variance (ANOVA) for EWR	60		
4.12	Overall	Result of EWR	63		
4.13	Surface	Crater Observation	64		
	4.13.1	Surface Crater of the Smooth Surface	64		
	4.13.2	Surface Crater of the Rough Surface	65		
CHA	PTER 5: (CONCLUSION AND FUTURE WORK	66		
5.1	Conclus	ion	66		
5.2	Future V	Work	65		
REFI	ERENCES	5	68		
APPE	ENDIXES		71		
А	Final Ye	ear Project Planning	71		
В	Full Dat	Full Data Obtained From Experiments			
С	Results	Results of Surface Roughness 7			
D	Workpiece Surface Pictures				

LIST OF TABLES

2.1	Types of EDM machines	7
3.1	Mechanical, Physical, Electrical and Thermal properties of LM6	30
3.2	Properties of copper electrode	32
3.3	Factors and levels for the experiments based on journal	33
3.4	Factors and levels selected for the experiments	34
4.1	Factors and levels selected for experiments	41
4.2	The orthogonal array for all the combination parameter for the	42
	effective factors	
4.3	Result of the Experiment	43
4.4	Result of the Surface Roughness	44
4.5	Response Table for Signal to Noise Ratios of Ra	45
4.6	Validation Test of Ra	47
4.7	Mean Versus Current for Ra	47
4.8	Mean Versus Pulse On Time for Ra	48
4.9	Mean Versus Pulse Off Time for Ra	49
4.10	Result of Taguchi Method and ANOVA for Ra	50
4.11	Result of the Material Removal Rate	51
4.12	Response Table for Signal to Noise Ratios of MRR	52
4.13	Validation Test of MRR	53
4.14	Mean Versus Current for MRR	54
4.15	Mean Versus Pulse On Time for MRR	55
4.16	Mean Versus Pulse Off Time for MRR	56
4.17	Result of Taguchi Method and ANOVA for MRR	57
4.18	Result of the Electrode Wear Rate	58
4.19	Response Table for Signal to Noise Ratios of EWR	59
4.20	Validation Test of EWR	60
4.21	Mean Versus Current for EWR	60

4.22	Mean Versus Pulse On Time for EWR	61
4.23	Mean Versus Pulse Off Time for EWR	62
4.24	Result of Taguchi Method and ANOVA for EWR	63

LIST OF FIGURES

2.1	Concept of EDM	6		
2.2	Sinking Electrical Discharge Machining			
2.3	Schematic representation of the phases of an electric discharge in	11		
	EDM and the definition of duty factor τ			
2.4	Actual profile of single EDM pulse	13		
2.5	Pulse wave form of pulse generator	13		
2.6	Coordinate used for surface roughness measurement	17		
2.7	Sample of surface texture and craters	18		
3.1	Experimental methodology	27		
3.2	EDM die sinking Sodick AQ35L Series	28		
3.3	Precise Digital Balance	29		
3.4	Surface Roughness Equipment	29		
3.5	Digital Image Microscope	30		
3.6	Aluminum Alloy LM6 Dimension	31		
3.7	Electrode Dimension	32		
3.8	Design of Experiment process flow	36		
3.9	The factor and level design are selected	37		
3.10	The Taguchi Method is selected with L9	37		
3.11	The table of factor	38		
3.12	The orthogonal array in Taguchi Method	38		
4.1	Main Effects Plot for Signal to Noise Ratios of Ra	46		
4.2	Boxplot Mean Versus Current for Ra	48		
4.3	Boxplot Mean Versus Pulse On Time for Ra	49		
4.4	Boxplot Mean Versus Pulse Off Tiime for Ra	50		
4.5	Main Effects Plot for Signal to Noise Ratios of MRR	53		
4.6	Boxplot Mean Versus Current for MRR	55		
4.7	Boxplot Mean Versus Pulse On Time for MRR	56		

4.8	Boxplot Mean Versus Pulse Off Time for MRR	57
4.9	Main Effects Plot for Signal to Noise Ratios of EWR	59
4.10	Boxplot Mean Versus Current for EWR	61
4.11	Boxplot Mean Versus Pulse On Time for EWR	62
4.12	Boxplot Mean Versus Pulse Off Time for EWR	63
4.13	Sample 3 surface observed VIS Digital Imaging Microscope with	64
	230 times magnification	
4.14	Sample 8 surface observed by VIS Digital Imaging Microscope	65
	with 230 times magnification	

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

А	-	Ampere
ANOVA	-	Analysis Of Variance
CNC	-	Computer Numerical Control
DC	-	Direct Current
DOE	-	Design of Experiment
Ea	-	Electrode Weight after machining
Eb	-	Electrode Weight before machining
EDE	-	Electro-Discharge Erosion
EDM	-	Electrical Discharge Machine
EDG	-	Electric Discharge Grinding
EWR	-	Electrode Wear Rate
HAZ	-	Heat Affected Zone
HB	-	Higher is better
Ip	-	Peak Current
LB	-	Lower is better
MRR	-	Material Removal Rate
NB	-	Nominal is best
OA	-	Orthogonal Array
Ra	-	Surface Roughness
Rq	-	Root- Mean Squire Average

Sil_2	-	Silicate
S/N	-	Signal to Noise
TiC	-	Titanium Carbide
TWR	-	Tool Wear Rate
V	-	Voltage
Wa	-	Material Weight after machining
Wb	-	Material Weight before machining
îe	-	Peak Current
n	-	Number of Reading
td	-	Time Delay
te	-	Period of Time
tm	-	Machining time
to	-	Interval of Time
t _{off}	-	Pulse Off Time
t _{on}	-	Pulse On Time
ие	-	Low Discharge Voltage
ûi	-	Open Circuit Voltage
μm	-	Micrometer
μs	-	Microsecond

CHAPTER 1 INTRODUCTION

This section explains the background of the area of the study, the aims and objectives of this study, and why this study interesting and relevant to the engineering field.

1.1 Background of the Project

Electrical discharge machine (EDM) die-sinking is an important non-traditional manufacturing method which it known as EDM die-sinking is a process of machining electrically conductive materials by using controlled sparks that happen between an electrode and a work piece in the existence of a dielectric fluid. These materials would have been difficult to machine by conventional methods, but EDM die-sinking has made it relatively simple to machine intricate shapes that would be impossible to produce with conventional cutting tools. In EDM die-sinking process, the shapes of mold cavities are directly copied from that of tool electrodes, so time consuming preparation work must be done on the fabrication of the corresponding tool electrodes (Iqbal A. and Khan A. A.,2010).

The uses of EDM die-sinking in the production of forming tools are to produce plastics moldings, die castings, forging dies etc., has been firmly established in recent years. This machining process is continually finding further applications in the metal machining industry. Although, the application of EDM die-sinking is limited to the machining of electrically conductive work piece materials, the process has the

capability of cutting these materials regardless of their hardness and toughness (Lee and Li, 2001).

The case study of this project are to determine the best material removal rate (MRR), electrode wear rate (EWR), surface roughness (Ra), and texture & cracking of craters. Using this testing, the best performance of the of machining for EDM diesinking can be archived when the the best combination of parameters should be studied to produce an optimum result.

In this project, the effect of EDM die-sinking parameters such as pulse on time, pulse off time and current on the surface integrity. The condition by using EWR, MRR, Ra, and texture & cracking of craters will be evaluated with copper beryllium using electrolytic copper show that usefulness of EDM die-sinking process.

The advantages of the EDM die-sinking machines are it can use to cut of any material that is electrically conductive, burr is free when using the EDM die-sinking process, and complex dies will can be produce by EDM die-sinking machine with accurately, low costs and faster. It also needed the hardened tool material must be harder than workpiece material to get the good effect and the very important is very fine holes can be easily drilled.

1.2 Problem Statement

In using electrical discharge machine (EDM) die-sinking can be caused poor performance if not choose the suitable material of the electrode and it will effected of the test parameters such as pulse on time (t_{on}), pulse off time (t_{off}), voltage (V) and peak current (Ip). Meanwhile, it also influences the surface integrity when using EDM like electrode wear rate (EWR), material removal rate (MRR), surface roughness (Ra), and texture & cracking of craters when it is apply on the aluminum alloy LM6 containing silicate and titanium carbide. So that, design of experiment (DOE) will be performed in order to obtain the optimum parameters. Besides that, erosion of the workpiece must be maximized and the electrode must be minimized in order to increase the machining efficiency. Therefore, studying the electrode wear and related significant factors would be effective to enhance the machining productivity and process reliability.

1.3 Objectives

The objectives of this project are:

- To study the effect of machining EDM die-sinking parameters such as pulse on time, pulse off time, voltage and current on the EDM die-sinking characteristics of aluminium alloy LM6.
- b) To evaluate machining characteristics of aluminum alloy LM6 in surface roughness (Ra), material removal rate (MRR), electrode wear rate (EWR) and appearance observation.
- c) To optimize the machining characteristics using taguchi method and to analyze the percentage of contribution using analysis of varice (ANOVA)

1.4 Scope of the Project

These projects will analysis about the various type of machining parameter relate to the machining characteristics while EDM die-sinking process. In this process, the material that use is silicate and titanium carbide and the electrode is copper. The scope should be low cost and short time use to finishing the process. To analyze the result and the data collections, the calculations is very important to calculate the machining characteristics which are electrode wear rate (EWR) and material removal rate (MRR). The higher friction coefficients are needed when to get surface roughness and the presence of crater is observed under digital image microscope.

Nowadays, more knowledge about electrical discharge machine is very important. So that, hopefully with this project can gain a lot of understanding of EDM die-sinking and get more experience to handle and use it because EDM die-sinking broad industrial applications.

1.5 Outline of the report

This report is divided in five chapters as follows:

- a) Chapter 1 background of the project, problem statements, objectives of the project and the scopes of the project.
- b) Chapter 2 literature review of EDM, machining parameters and characteristics
- c) Chapter 3 gives information on electrode and material, testing procedure that involve in the experiment.
- d) Chapter 4 result and analysis of the experiments.
- e) Chapter 5 summarize the results and discussion as well as conclusion of the case study.

CHAPTER 2 LITERATURE REVIEW

This section basically analysis of patent, journal paper, article and conference paper to the research purpose. The similarities and differences between what other people investigated had been taken out as well as the machine design. In order to establish a new machining method for EDM, the research question and purpose of each review have been evaluated.

2.1 EDM Machining Operation

Electrical Discharge Machining (EDM) is most widely and successfully applied process in machining of hard metals or those that would be very difficult to machine with traditional techniques. The material is removed from the work piece by the thermal erosion process which is by a series of recurring electrical discharges between a cutting tool acting as an electrode and a conductive work piece in the presence of a dielectric fluid. This discharge occurs in a voltage gap between the electrode and work heat from the discharge vaporizes minute particles of work piece material, which are then washed from the gap by the continuously flushing dielectric fluid (Reddy *et. al.* 2010) as shown in Figure 2.1.

