

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FABRICATION AND ANALYSIS OF JOINING PARTS FOR OIL AND GAS PIPING SYSTEM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process) (Hons.)

by

MUHAMMAD HAFIZ BIN SAMSUDIN B050910062 900726145887

FACULTY OF MANUFACTURING ENGINEERING 2013

FABRICATION AND ANALYSIS OF JOINING PARTS FOR OIL AND GAS PIPING SYSTEM

MUHAMMAD HAFIZ BIN SAMSUDIN B050910062

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2013

[-		-
	B050910062	
	BACHELOR OF MANUFACTURING ENGINEERING (MANUFACTURING PROCESS) (HONS.)	
	2013 UTeM	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESA	HAN STATUS LAPORAN PROJEK SARJANA MUDA
TAJUK: Fabrication and A	nalysis of Joining Parts for Oil and Gas Piping System
SESI PENGAJIAN: 2012/2013	3 Semester 2
Saya MUHAMMAD HAFIZ	Z BIN SAMSUDIN
•	poran PSM ini disimpan di Perpustakaan Universiti JTeM) dengan syarat-syarat kegunaan seperti berikut:
2. Perpustakaan Universiti untuk tujuan pengajian	a milik Universiti Teknikal Malaysia Melaka dan penulis. Teknikal Malaysia Melaka dibenarkan membuat salinan sahaja dengan izin penulis. In membuat salinan laporan PSM ini sebagai bahan susi pengajian tinggi.
SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Alamat Tetap: E-6-4 PPR BATU MUDA, JLN BATU MUDA, JLN IPOH BATU 51100 KUALA LUMPUR.	
Tarikh:	

DECLARATION

I hereby, declared this report entitled "Fabrication and Analysis of Joining Parts for Oil and Gas Piping System" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Muhammad Hafiz Bin Samsudin
Date	:	28 th June 2013

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) Hons. The member of the supervisory is as follow:

.....

(Project Supervisor)

ABSTRAK

Sistem perpaipan di Petronas Sdn Bhd Melaka telah digunakan secara meluas dalam penghantaran, pengedaran dan pemprosesan pengeluaran minyak dan gas. Sistem perpaipan telah digunakan dalam jangka masa yang panjang menyebabkan sistem perpaipan yang sudah lama. Dalam keadaan ini, Petronas memerlukan proses fabrikasi baru di beberapa bahagian paip. Oleh itu, kajian ini membentangkan tentang teknik fabrikasi pada bahagian sistem perpaipan minyak dan gas. Di samping itu, terdapat analisis produk baru yang yang direka. Proses analisis yang dijalankan ke atas produk baru yang direka berdasarkan reka bentuk, ciri-ciri dan kos pembuatan. Sistem reka bentuk paip terdiri daripada bebibir dan paip berongga sebagai satu komponen. Satu teknik fabrikasi baru untuk fabrikasi sebahagian bahan kerja telah diperkenalkan dengan menggunakan keluli ringan dan bahan Teflon sebagai bahan terpilih bagi sistem perpaipan. Teknik fabrikasi yang yang dirujuk daripada reka bentuk komponen dan keperluan dimensi. Proses fabrikasi khusus untuk produk baru yang berbeza daripada produk yang sedia ada yang terdiri daripada bahagian-bahagian bahan Teflon sahaja. Bahagian lama sedia ada digantikan dengan produk baru yang direka. Siasatan pada produk yang direka ditambah dengan maklumat tambahan berbanding dengan produk yang sedia ada.

ABSTRACT

Piping system in Petronas Sdn Bhd Melaka has been widely used in transmission, distribution and processing of oil and gas production. The piping system has been used in such a long time resulting of the seasoned piping system. In this condition, Petronas requires a new fabrication process on some of its piping parts. Therefore, this research presents the fabrication technique of joining parts for oil and gas piping system. In addition, there are analyses of the new fabricated product provided. The analysis process is conducted on the new fabricated product based on the design, properties and manufacturing cost. The pipe system fabrication design consists of a flange and hollow pipes as a component. A fabrication technique to fabricate a joining part has been introduced by applying mild steel and Teflon material as selected material of piping system components. Fabrication techniques referred from the component design and the dimensional requirement. This fabrication process proposes for the new product that differs from the existing product that consists of Teflon material parts only. The existing seasoned part is replaced with the new fabricated product. Investigation on fabricated product turn out the additional information compared with the existing product.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor, Dr. Mohd Hadzley Bin Abu Bakar for his guidance, constant motivation and research support throughout my degree program. His technical advice and suggestions helped me overcome hurdles and kept me enthusiastic and made this work a wonderful learning experience. I am grateful to my parents Mr. Samsudin Ahmad and Mrs. Mariah Matros and my sister Siti Nurayuni for their love, support and guidance. They have always been supportive of my academic pursuits and stood by me every step of the way regardless of my decisions. I would also like to acknowledge the support received from the University Teknikal Malaysia Melaka towards the successful completion of this thesis.

TABLE OF CONTENT

Absti	rak	i
Absti	ract	ii
Ackn	owledgement	iii
Table	e of Content	iv-vii
List o	of Tables	viii
List o	of Figures	ix-x
СНА	PTER 1: INTRODUCTION	1
1.1	Introduction	1-4
1.2	Aim and Objectives of research work	4
1.3	Scope of the report	5
1.4	Gantt Chart of the Report	6
СНА	PTER 2: LITERATURE REVIEW	7
2.1	Piping system	7
2.2	Design of the piping system	9
	2.2.1 Detailed Part Drawing	10
	2.2.1.1 Part 1A	10
	2.2.1.2 Part 1B	11
	2.2.1.3 Part 2A	12
	2.2.1.4 Part 2B	13
	2.2.1.5 Part 3A	14
	2.2.1.6 Part 3B	15
	2.2.2 Pipe Size	16
	2.2.3 Component of Pipe System	17
	2.2.3.1 Joints	17
	2.2.3.2 Flange	18
	2.2.3.3 Valve	19
	2.2.3.4 Bolting	20

2.3 Piping Material	21
2.3.1 Plastic Pipe Material	21
2.3.1.1 Polytetrafluorethylene (PTFE) Teflon Material	23
2.3.1.2 Preparation of PTFE Monomer	23
2.3.1.3 Structure and Properties of PTFE Material	24-26
2.3.1.4 Processing of PTFE Material	27
2.3.1.5 Application of PTFE Material	28
2.3.2 Metallic Pipe	28
2.3.2.1 Low Carbon Steel (CS) Mild Steel Pipe	29
2.3.3 Component Selection Criteria of Piping	30
2.3.3.1 Corrosion	30
2.3.3.2 Availability	31
2.3.3.3 Physical Strength	31
2.3.3.4 Fatigue Behaviour	32
2.3.3.5 Aging and Long Term Degradation	32
2.3.3.6 Acoustic Transmission	32
2.3.3.7 Abrasion	32
2.3.3.8 Permeability	33
2.3.3.9 Leeching	33
2.3.3.10 Elevated Temperature Considerations	33
2.3.3.11 Long Term Hydrostatic Strength	34
2.3.3.12 Corrosion Resistance	34
2.2.3.13 Stress	35
2.4 Fabrication of Pipe	36
2.4.1 Turning	36
2.4.1.1 Cutting condition in turning	37
2.4.1.2 Operation in turning	37
2.4.2 Threading	38
2.4.2.1 Thread Basic	38
2.4.2.2 Thread Cutting	39
2.4.2.3 Tap and Die	39
2.4.2.4 Single Point Thread	40
2.4.3 Hydraulic Pressing	40

2.4.4 Machining and Finishing of Pipe	41
2.5 Manufacturing Cost	42
2.5.1 Direct Cost	42
2.5.2 Indirect Cost	43
CHAPTER 3: METHODOLOGY	44
3.0 Introduction of methodology	44
3.1 Fabrication of Joining parts for piping system	44
3.1.1 Fabrication Process Flow	45
3.1.2 Preparing the equipment and instrument	46
3.1.2.1 Vernier Calliper	46
3.1.2.2 Ruler	46
3.1.2.3 Measuring Tape	47
3.1.2.4 Sand paper	47
3.1.3 Preparing machine and tool specification	48
3.1.3.1 Lathe machine	48
3.1.3.2 Hydraulic Press machine	49
3.1.3.3 Bandsaw machine	49
3.1.4 Design and Dimension of fabricated pipe	50-52
3.1.5 Part Preparation	53
3.1.6 Material Preparation	54-55
3.1.7 Original Part Dimension recorded	56-57
3.1.8 Part 2B machining	58-63
3.1.9 Part 3A machining	63
3.1.10 Part 3B machining	65
3.1.11 Part 1A machining	65-66
3.1.12 Threading Process	67
3.1.13 Assembly Process	68
3.1.10 Analysis of new product	68
3.1.10.1 Design	68
3.1.10.2 Properties	69
3.1.10.3 Manufacturing Cost	69

CHAPTER 4: RESULT AND DISCUSSION	70
4.0 Definitions of result and discussion	70
4.1 Complete Fabricated Product	71
4.1.1 Discussion on Fabrication Process of Prefabricated Product	72
4.2 Analysis of Part Weight	73-75
4.2.1 Discussion on Part Weight	76
4.3 Analysis of Stress Distribution by Finite Element Modeling	77
4.3.1 Stress distribution on Existing Piping Part	77-81
4.3.2 Stress Distribution on Prefabricated Pipe Part	82-84
4.3.3 Discussion on Stress Distribution by Finite Element Modeling	85
4.4 Analysis of Strain of Pipe Part	86
4.4.1 Strain Hardening Part Modeling	86-88
4.4.2 Discussion on strain Distribution by Finite Element Modeling	89
4.5 Analysis of Thermal Distribution by Finite Element Modeling	89-94
4.5.1 Discussion on Thermal Distribution	95
4.6 Analysis of total cost in pipe fabrication process	96
4.6.1 Direct Costs Associated with Piping	96
4.6.1.1 Material Cost	96
4.6.1.2 Labor and Fabrication Cost	97
4.6.2 Cost of old Product and Prefabricated Product	98
4.6.3 Indirect Cost Associated with Piping	99
4.6.4 Discussion on total cost in pipe fabrication process	100
CHAPTER 5: CONCLUSION	101
5.0 Conclusion	101
5.1 Recommendation for Future Work	102
5.1.1 Provide a Support System	102
5.1.2 Connection Design Optimization	103
REFERENCES	104

LIST OF TABLES

1.1	Gantt Chart For Final Year Report 1&2	6
2.1	Typical Properties of PTFE	25-27
3.1	Measuring Process of Provided Part	56
3.2	Machining process of part 2B	58-63
3.3	Machining process of part 3A	64
3.4	Machining of Part 3B	65
3.5	Machining of Part 1A	66
3.6	Threading process of Teflon and part 1B, 3B and 2A	67
4.1	Overview of the complete fabricated product	71
4.2	Analysis of weight value properties of old design pipe part	73-74
4.3	Analysis of weight value properties of prefabricated pipe part	74-75
4.4	Movement of displacement vector under certain scaling factor	79
4.5	Von Misses Stress	81
4.6	Von Misses Stress	84
4.7	The evolution of plastic strain to the propagation of the shear	87
	band	
4.8	The evolution of plastic strain to the propagation of shear band on	88
	the new part	
4.9	Teflon Properties correspond of thermal distribution analysis	90
4.10	Teflon Properties correspond of thermal distribution analysis	90
4.11	Analysis based on thermal properties on the part	92
4.12	Typical price rate based on the material apply	96
4.13	Labor Cost of Old and Prefabricated Product	97
4.14	Total Part Cost of Old Product	98
4.15	Total Part Cost of Prefabricated Product	98
4.16	Total indirect cost Estimation	99

LIST OF FIGURES

1.1	Ejector Part	2
1.2	Specific Drawing of joining parts	3
1.3	Existing part of Ejector	4
2.1	Piping System	8
2.2	Pipe Design	9
2.3	Detailed Drawing Part 1 A	10
2.4	Detailed Drawing Part 1 B	11
2.5	Detailed Drawing Part 2 A	12
2.6	Detailed Drawing Part 2 B	13
2.7	Detailed Drawing Part 3 A	14
2.8	Detailed Drawing Part 3 B	15
2.9	Compression Joint	17
2.10	Quick Connect Joint	17
2.11	Butt Fusion Joint	17
2.12	Self Restrained Joint	17
2.13	Flange Pipe component	18
2.14	Flange Joint	18
2.15	Pipe valve	19
2.16	Nut and Bolt Pipe	20
2.17	Pipe Flange Bolt	20
2.18	Plastic Pipe Material	21
2.19	Structure of PTFE Material	25
2.20	Low Carbon Steel Pipe	30
2.21	Turning motion	36
2.22	Different turning operations	37
2.23	Drawing of threads	38
3.1	Fabrication Flowchart	45

3.2	Vernier Calliper	46
3.3	Ruler	46
3.4	Measuring Tape	47
3.5	Sandpaper	47
3.6	Lathe Machine	48
3.7	Hydraulic Press machine	49
3.8	Band saw machine	49
3.9	Complete design of fabrication of joining part	52
3.10	Part Preparations	53
3.11	Mild steel hollow pipe	54
3.12	Teflon Pipe	55
3.13	Flange Part	55
4.1	Apply load and restraint	77
4.2	Part deformation (Front Side)	78
4.3	Colour coded of displace vector	79
4.4	Boundary displacement area	79
4.5	Principle stress on boundary	80
4.6	Edge and Point mode	80
4.7	Stress generate process	81
4.8	Steel Material as outer part and Teflon as inner part material	82
4.9	Apply load and restraint	83
4.10	Part Deformation	83
4.11	Principle stress acting on the part	84
4.12	Strain-Hardening Material Models of Old and Prefabricated Part	86
4.13	Pipe Analysis of Heating around old pipe parts and prefabricated	91
	parts	
4.14	Nodal Solution	93
4.15	Thermal flux diffusion	93
4.16	Thermal flux in vectorial presentation	94

CHAPTER 1

INTRODUCTION

1.1 Introduction

Pipe system plays a key role in the day-to-day activities while making possible the delivery of available fuels, including natural gas. They are used in a wide range of transportation services. The major and most important use of pipelines is undoubtedly the energy transportation, such as oil and natural gas [George (2003)]. An interesting use of the pipes can be found in, example, in the Malaysia- Thailand Joint Development Area (JDA), Trans Asean Pipeline system, where gas transportation lines are interconnected by a 1540 km long pipeline system.

In industry and engineering discipline, a pipe is a round-stiff tubular section of the gas system that is made of carbon steel or plastic in function of the inner, outer or nominal diameter and the wall thickness. These measures are imposed by applicable industrial standards, such as ASME/ANSI B36.10/B36.19. The size of a pipe is based on its function and may vary from around 5 cm (2 in) to over 150 cm (60 in) in diameter [Henry (2003)].

Gas pipelines are usually buried underground about 1-2 meters (3-6 ft) in lands or rights-of-way acquired by, or granted to the pipeline company. Whenever burying the pipe becomes less convenient, the strategy is to place the pipeline 5-6 feet above the ground (under strict specifications to withstand environmental conditions) in order to allow for wildlife or any other factor that might damage the pipe [Mohitpur (2007)].

In Petronas Penapisan Melaka, there are sections of operation processing, transmission and testing section. Each section was set up a piping system to operate the plant. Operations are carried out without continuously every day for gas processing and transmission because of the requirement by the customer in the power, industrial and commercial sectors throughout Peninsular and East Malaysia. However, because of the long time usage, some parts are already seasoned thereby require some fabrication of those parts.

Therefore, the aim of this study will be on the fabrication of joining parts for oil and gas piping system as shown in figure 1.1 below. The study involves with the investigation of existing products in term of design, properties, and manufacturing cost. The existing product will be redesigned with the additional of strengthening structures to improve the product. The fabrications then take place after the design is conform. The figure 1.2 below had shown the specific drawing of the parts.

Figure 1.1: Ejector Part [Petronas (2012)].

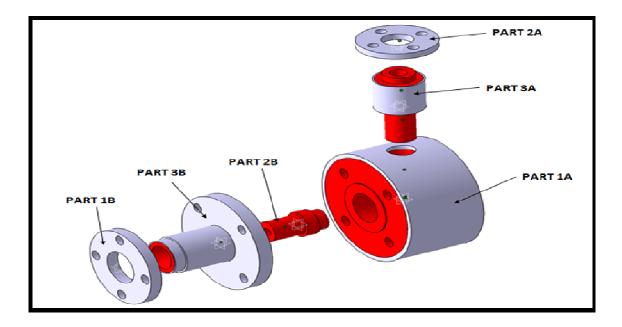


Figure 1.2: Specific Drawing of joining parts [Petronas (2012)].

The method approach of this study based on the fabrication technique for assembly the ejector part by existing product and drawing provided as a reference material. Figure 1.3 below had shown the existing product that from the ejector part that required for investigation process. Analysis of existing product design, properties and manufacturing cost will be conducted comparing with the new joining part fabrication after the fabrication process. Analysis of the result contributes to the improvement of the existing part with the new fabricated product.

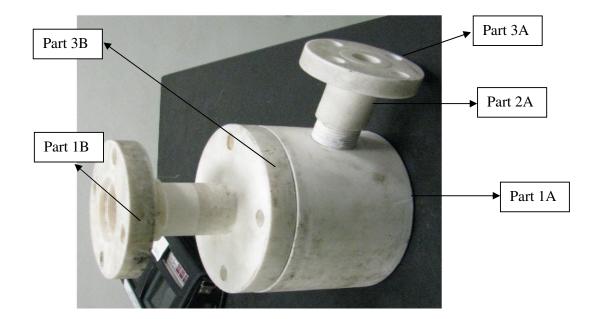


Figure 1.3: Existing Part of Ejector [Petronas (2012)].

This study's important to the oil and gas company where it can be a guideline for the company in implementing the suitable design and pipe fabrication processing and future work for piping fabrication. Besides that, the application of the proposed piping system can help them to increase the productivity and maintain high piping resistibility. In addition, this study's importance to become reference material for further piping development research and studying.

1.2 Aim and Objectives of the Research Work

This study essentially consisted of the following major categories which encompass,

- I. Fabrication of joining parts for oil and gas piping system
- II. Investigation of the existing product in terms of design, properties and manufacturing cost.

1.3 Scope of the Report

This report is divided into two phases which is Final Year Project (FYP 1) and 2. Overall, this report contains 6 chapters. There are introduced, literature review, methodology, result and discussion, and conclusion and recommendation.

In Chapter 1: Introduction, is briefly explained the background of the study, the design and fabrication of joining part for oil and gas piping system, followed with the problem statement, objective of the study, scope, importance of this study and the organization of the report.

In chapter 2: Literature review, the theory of piping selection and selected component with support ideas that taken from journal, books, and articles are explained in detail.

In Chapter 3: Methodology, all methods that will be discussed to achieve objectives and obtained the result explained. The systematic planning and process flow diagram (PFD) also provided to show the overall study flow.

In Chapter 4: Result and Discussion focuses on the result and data being collected from the study. Beside, the discussion of the result been gained is explained further in this chapter.

In Chapter 5: Finding and Conclusion, the final chapter of this report concludes all the finding of the study and present the suggestion and recommendation in order to improve this study in future.

1.4 Gantt Chart of the report

Table 1 shows the Gantt chart of the study for FYP 1 and 2. It illustrates the duration of the study start from August 2012 until Jun 2013. The Gantt chart pictured the whole tasks that are needed to be done for the specific of the project.

No.	Year		2012									2013																		
	Activity	Auş	gust	S	epter	nber	(Octo	ber	N	oven	ıber	Ι	Decei	mbei	r	Jan	uary		Febr	uary		Ma	rch		Ap	oril		Ma	ay
1	PSM title confirmation																					T							Π	
2	Problem statement identification																	Π											Π	
3	Objective and scope of the study																	Π											Π	
4	Finding literature review																										Π		Π	
5	PSM 1 report writing															Τ		Π		Γ							Π		Π	
6	PSM 1 report review				Π													Π											Π	
7	PSM report submission				Π			Π										Π											Π	
8	Prepare for PSM 1 presentation																	Ħ											Π	
9	PSM 1 presentation				Π			Π										Π											Π	
10	Improvement on PSM 1				Π													Π											Π	
11	Data collection				Π																								Π	
12	Design development						Τ											Π											Π	
13	Data analysis				Π											ſ		Π											Π	
14	PSM report writing																	Π											Π	
15	PSM 2 review						Τ											Ħ		Γ									Π	
16	PSM 2 submission			T			Τ	Π		Π	\square			Π		╡			T			↑			╈	Π			П	
17	Preparation PSM 2 Presentation			T	\square	╡		Π	╎				T			Ť		Π	Т			↑	T		╎	Π			Π	
18	PSM 2 Presentation				\square			Π					T	Π		T			T	T	\square	Ť	T		T	Π			Π	

 Table 1.1: Gantt chart for Final Year Project 1&2 (PSM 1&2)

CHAPTER 2 LITERATURE REVIEW

2.1 Piping System

Term pipe is defined herein as a closed conduit, usually a circular cross section. It can be made of any appropriate material such as steel or plastic. The term pipeline refers to a long line connected segments of pipe, with pump valve control devices, and other equipment need for operating the system [Henry (2003)].

Piping system is a set of components including pipe, pipe fittings, flange, bolting, gasket, relief devices and the pressure retaining parts included in any stress analysis. It also includes the hangers, supports, and any other equipment necessary to prevent over stressing of the pressure retaining parts. It does not include the structure and equipment and foundations, except they may affect the stress analysis. That reason to define the design and fabrication of a system that offers a reasonable expectation of being safe when operated as intended [Philip (2005)].

When selecting a piping material for any component of piping-related system, the applicable piping code is of primary importance. Here, the allowable piping materials

had be listed as well as any restriction for their use. In addition the code will also stipulate various accepted standards that govern the manufacture, tolerance and installation of all components [Micheal (2003)].

Figure 2.1: Piping system [Allen (2010)].