

FAKULTI KEJURUTERAAN ELEKTRIK universiti teknikal malaysia melaka

LAPORAN PROJEK SARJANA MUDA

DESIGN AND SIMULATION OF DC-DC SWITCHING BOOST CONVERTER FOR CURRENT RIPPLE REDUCTION

Nur Ani binti Nasrudin

Bachelor of Electrical Engineering

June 2013

"I hereby declare that I have read through this report entitle "Design and Simulation of a DC-DC Switching Boost Converter For Current Ripple Reduction" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Industrial Power)"

Signature	:
Supervisor"s Name	:
Date	:

DESIGN AND SIMULATION OF DC-DC SWITCHING BOOST CONVERTER FOR CURRENT RIPPLE REDUCTION

NUR ANI BINTI NASRUDIN

A report submitted in partial fulfilment of the requirements for the degree of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2013

C Universiti Teknikal Malaysia Melaka

I declare that this report entitle "Design and Simulation of a DC-DC Switching Boost Converter for Current Ripple Reduction" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	:
Date	:

To my beloved family,

Abah Mama Along Ana Apit Baby

ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest gratitude to god the Almighty without his blessings I would never be able to complete this Final Year Project.

I would like to thank University Teknikal Malaysia Melaka for providing me a path to further my studies. The excellent facilities are truly appreciated. Not to forget, this final year project would not have been possible without my supervisor, Ir. Dr. Rosli bin Omar, who has supported me throughout my project with his patience and knowledge while allowing me the room to work in my own way. Without his encouragement this project would not have been completed. One simply could not wish for a better or friendlier supervisor.

In the laboratory, I am grateful to have been aided by En. Anggun, who has helped me throughout the completion of the project whenever I am lost or in doubts.

In my daily work, I have been blessed with a friendly and cheerful group of fellow friends who have provided me with good arguments concerning about theoretical and experimental matters which helped me regain some sort of fitness of a healthy body and a healthy mind.

Last but not least, I would like to thank my parents and siblings for their love, encouragement and for always being there to support me whenever I am down or lost of hope

ABSTRACT

This project is to simulate and to design a DC-DC switching boost converter for current ripple reduction. Step up converter is also referred to boost converter where its characteristic is to have a voltage at the output that is larger than the voltage at the input. The converter operates by opening and closing an electronic switch such as a power MOSFET, IGBT's or thyristors periodically. Ripple exist during the switching process in the DC-DC converter where the change or switching from the ON state and OFF state produces current ripple in the inductor. By reducing the current ripple in the DC-DC switching boost converter, the efficiency of the DC-DC switching boost converter will increase. Methods that is available for current ripple reduction includes by increasing the value of the inductor, by using soft-switching techniques and also by the adaptation of interleaving technologies. The method of varying the value of inductance to reduce the current ripple in the DC-DC boost converter is presented in this paper.

Keywords: DC-DC converter, boost converter, current ripple, reduction

ABSTRAK

Projek ini adalah bertujuan untuk mensimulasi dan mereka bentuk satu arus terus peningkatan pensuisian arus terus penukar untuk pengurangan riak arus. Meningkatkan penukar juga dirujuk kepada peningkatan penukar di mana biasanya mempunyai nilai voltan di output yang lebih besar daripada nilai voltan di input. Penukar beroperasi dengan kondisi di mana suis elektronik di buka dan di tutup secara berkala oleh suis elektronik sperti MOSFET, IGBT atau thyristor. Gelombang atau riak ini wujud dalam proses pensuisan dalam arus terus penukar di mana perubahan dari kondisi buka kepada kondisi tutup menghasilkan riak dalam pengaruh. Dengan mengurangkan riak arus dalam arus terus penukar dapat ditingkatkan. Cara yang tersedia ada untuk mengurangkan riak arus terus termasuklah dengan menambahkan nilai pengarun, dengan menggunakan teknik penukar lembut dan juga oleh penyesuaian pengantara lembaran teknologi. Kaedah mempelbagaikan nilai aruhan untuk mengurangkan riak arus terus ini akan dibentangkan di dalam kertas tulis ini.

Kata kunci: Dc penukar DC, penukar peningkatan, riak arus, pengurangan

TABLE OF CONTENT

CHAPTER	TITLE	P	AGE
---------	-------	---	-----

ABSTRAK	i
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST ABBREVIATIONS	ix
LIST OF APPENDICES	

1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	2
1.4	Scope of Project	3
1.5	Chapter Summary	3

2

LITERATURE REVIEW

2.1	Chapt	er Introduction	4
2.2 Common Method for Current Ripple Reduction			4
	2.2.1	By increasing the value of the inductance	4
	2.2.2	Frequency control	5
	2.2.3	Interleaved technologies	5

- 2.7 DSP TMS320F2812 13
- 2.8Chapter Summary13

METHODOLOGY

2.3

2.4

2.5

2.6

3.1	Introduction	14
3.2	Project Flow Chart	15
3.3	MATLAB Simulink	16
3.4	Code Composer Studio DSP TMS320F2812	18
	3.4.1 Flow chart using Code Composer Studio	
	(CCS)	19
3.5	Program testing	20
3.6	Schematic Design Using Proteus 8 Professional	20
3.7	PCB Etching	22
3.8	Hardware testing	26
3.9	Chapter Summary	26

4

3

RESULTS

4.1	Introd	uction	27
4.2	Calculation Results		28
	4.2.1	Case 1: The effect towards current ripple	
		when the value of frequency is varied	29
	4.2.2	Case 2: The effect towards current ripple	
		when the value of duty cycle is varied	31
4.3	Simula	ation Results	33
	4.3.1	Case 1: The effect towards current ripple	
		when the value of frequency is varied	33
	4.3.2	Case 2: The effect towards current ripple	

		when the value of Duty Cycle Is Varied	40
4.4	Exper	imental Results	47
	4.4.1	Case 1: The effect towards current ripple	
		when the value of frequency is varies	47
	4.4.2	Case 2: The effect towards current ripple	
		when the value of duty cycle is varied	57
4.5	Chapt	er Summary	62
ANAI	LYSIS	AND DISCUSSION	
5.1	Chapt	er introduction	63
5.2	Analy	sis	63
	5.2.1	Analysis on the effect towards the current	
		ripple when varying the value of frequency	63
	5.2.2	Analysis on the effect towards the current	
		ripple when varying the value of duty cycle	67
5.3	Chapt	er Summary	70
CON	CLUSI	ON AND RECOMMENDATION	
6.1	Chapt	er introduction	71
6.2	Concl	usion	71

5

6

6.3 Recommendation 72

REFERENCES	73
APPENDICES	76

LIST OF TABLES

4.1	Parameters of a boost circuit (frequency is varied)	29
4.2	Current ripple, Δi_L when the value of frequency is varied	30
4.3	Parameters of a boost circuit (duty cycle is varied)	31
4.4	Current ripple, Δi_L when the value of duty cycle is varied	32
5.1	ΔiL (A) for calculation, simulation and experimental when varying the	
	value of frequency	64
5.2	Varying the value of duty cycle	68

LIST OF FIGURES

2.1	Boost converter	6
2.2	Equivalent circuit for switch closed	7
2.3	Equivalent circuit for switch open	8
2.4	Inductor current in continuous current mode	9
2.5	Inductor current discontinuous current mode	10
2.6	IGBT device symbol	11
2.7	Matlab simulink	12
2.8	DSP TMS 320F 2812	13
3.1	Project progress flow chart	15
3.2	Matlab Simulink	16
3.3	Model of a boost circuit	17
3.4	Creating a project	18
3.5	Progress flow chart for Code composer studio (CCS)	19
3.6	Proteus 8 professional	20
3.7	Isis schematic capture	21
3.8	ARES PCB layout	22
3.9	Positive acting PCB	23
3.10	Developing the PCB	23
3.11	Etching the PCB	24
3.12	(a) Drilling process (b) Boost converter box	25
3.13	Hardware testing	26
4.1	DC-DC boost circuit	28
4.2	Graph of pulse with a frequency, f of 10 kHz and the current ripple, Δi_L	

4.3	Graph of pulse with a frequency, f of 20 kHz and the current ripple, Δi_L	
	at the inductor	34
4.4	Graph of pulse with a frequency, f of 30 kHz and the current ripple, Δi_L	
	at the inductor	35
4.5	Graph of pulse with a frequency, f of 40 kHz and the current ripple, Δi_L	
	at the inductor	36
4.6	Graph of pulse with a frequency, f of 50 kHz and the current ripple, Δi_L	
	at the inductor	36
4.7	Graph of pulse with a frequency, f of 60 kHz and the current ripple, Δi_L	
	at the inductor	37
4.8	Graph of pulse with a frequency, f of 70 kHz and the current ripple, Δi_L	
	at the inductor	38
4.9	Graph of pulse with a frequency, f of 80 kHz and the current ripple, Δi_L	
	at the inductor	39
4.10	Graph of pulse with a duty cycle, D of 10% and the current ripple, Δi_L	
	at the inductor	40
4.1	Graph of pulse with a duty cycle, D of 20% and the current ripple, Δi_L	
	at the inductor	41
4.12	Graph of pulse with a duty cycle, D of 30% and the current ripple, Δi_L	
	at the inductor	41
4.13	Graph of pulse with a duty cycle, D of 40% and the current ripple, Δi_L	
	at the inductor	42
4.14	Graph of pulse with a duty cycle, D of 50% and the current ripple, Δi_L	
	at the inductor	43
4.15	Graph of pulse with a duty cycle, D of 60% and the current ripple, Δi_L	
	at the inductor	44
4.16	Graph of pulse with a duty cycle, D of 70% and the current ripple, Δi_L	
	at the inductor	44

33

4.17	Graph of pulse with a duty cycle, D of 80% and the current ripple, Δi_L	
	at the inductor	45
4.18	Graph of pulse with a duty cycle, D of 90% and the current ripple, Δi_L	
	at the inductor	46
4.19	Setup of the boost circuit	47
4.20	Output window	48
4.21	Relationship of T1PR command and T1CMPR command	49
4.22	Current ripple	50
4.23	Pulse with a frequency, f of 10 kHz and the current ripple, iL at the	
	inductor	51
4.24	Pulse with a frequency, f of 20 kHz and the current ripple, iL at the	
	inductor	52
4.25	Pulse with a frequency, f of 30 kHz and the current ripple, iL at the	
	inductor	53
4.26	Pulse with a frequency, f of 40 kHz and the current ripple, iL at the	
	inductor	54
4.27	Pulse with a frequency, f of 50 kHz and the current ripple, iL at the	
	inductor	55
4.28	Pulse with a frequency, f of 60 kHz and the current ripple, iL at the	
	inductor	56
4.29	Pulse with a frequency, f of 70 kHz and the current ripple, iL at the	
	inductor	56
4.30	Pulse with a duty cycle, D of 10% and the current ripple, iL at the	
	Inductor	57
4.31	Pulse with a duty cycle, D of 20% and the current ripple, iL at the	
	Inductor	58
4.32	Pulse with a duty cycle, D of 30% and the current ripple, iL at the	
	Inductor	58
4.33	Pulse with a duty cycle, D of 40% and the current ripple, iL at the	
	Inductor	59
4.34	Pulse with a duty cycle, D of 50% and the current ripple, iL at the	

	Inductor	60
4.35	Pulse with a duty cycle, D of 60% and the current ripple, iL at the	
	Inductor	60
4.36	Pulse with a duty cycle, D of 70% and the current ripple, iL at the	
	Inductor	61
4.37	Pulse with a duty cycle, D of 80% and the current ripple, iL at the	
	Inductor	61
5.1	Obtaining the result from graph	65
5.2	Graph of current ripple reduction by varying the value of frequency	67
5.3	Graph of performance of the current ripple by varying the value of	
	duty cycle, D	69
5.4	Graph of duty cycle, D versus output voltage, Vo	70

LIST OF ABBREVIATIONS

AC	-	Alternating Current
DC	-	Direct Current
SEPIC	-	Single Inductance Converter
IGBT	-	Insulated Gate Bipolar Transistor
DSP	-	Digital Signal Processing
MOSFET	-	Metal Oxide Semiconductor Field Effect Transistor
CCM	-	Continuous Current Mode
DCM	-	Discontinuous Current Mode
Lmin	-	Minimum Inductance
V	-	Voltage
Vs	-	Voltage source
D	-	Duty cycle
f	-	Frequency
R	-	Resistance
CCS	-	Code Composer Studio
PCB	-	Printed Circuit Board

LIST OF APPENDICES

PAGES TITLE

А	Gantt Chart	76
В	Boost converter layout	77
С	Boost converter schematic	78
D	Input/ output connector and signal description	79
E	PWM coding using DSP TMS320F2812	80
F	Current transducer LA 100-P	84
G	Experimental Setup	85
Н	Turnitin	86

CHAPTER 1

INTRODUCTION

1.1 Background

As the world evolves to an era where the parameters of a device or component in terms of size, weight, and performance of technologies are concerned, the power electronic industry escalates to rise. With the advantage of having a compact system with low losses, high efficiency, availability, and reliability, new switching circuit topologies, high speed of response, power electronic operates with digital or analog electronic control circuits with the conjunction of semiconductor device circuit. Power electronics is the combination of three important elements which are power, electronics and control. Power electronic device allows the conversion of voltage and current to a specified output without the need of a transformer. There are six types of power electronic circuits which includes diode rectifier, AC-DC converters (controlled rectifier), AC-AC converters (AC voltage controller), DC-DC converters (DC choppers or switching regulator), and static switches. Each type can be divided into a broader range of implementation depending on its function. In line with the topic of the project, the scope is directly focused to the DC-DC converter. Based on the industrial demand, fixed voltage DC source are required to be converted into a DC voltage source that is variable while maintaining the system to have acceleration control that is smooth, high efficiency and also to have fast dynamic response. The types of converters can be divided to buck converter (also known as the step down converter), boost converter (as step up converter), buck-boost converter, cuk converter, single inductance converter (SEPIC) and also interleaved converter (multiphasing). The boost converter or also known as the step up converter is a switching converter that uses semiconductor devices such as diode, thyristor, IGBT and transistor as switches that is periodically open and closes.

The boost converter has the characteristic of having an output voltage higher than the input voltage. A problem exists in the converter as it is a switching converter. The interrelation between the ON and OFF state of the semiconductor devices as switches (diode, thyristor, and transistor) causes current ripple at the inductor. This project consist of the pulse generated from a program from the digital signal processing (DSP), a gate drive to drive the IGBT of the boost circuit, and the boost circuit itself.

1.2 Problem Statement

Current ripple reduction in a DC-DC boost converter is crucial in order to cater the escalating demand of electronic devices that faces challenges in designing in terms of battery life, power dissipation and many more. Ripple exist during the switching process in the DC-DC converter. The change or switching from the ON state and OFF state produces current ripple in the inductor. The converter will suffer from efficiency reduction as the higher the switching frequency, the more losses it would have. By reducing the current ripple of the DC-DC boost converter; it would overcome the problem faced as the DC-DC converter will improve its efficiency, dynamic response and provides smooth acceleration control. Therefore, this project simulates and designs the DC-DC switching boost converter for current ripple reduction.

1.2 Objectives

The objectives of the project includes

- 1. To design and to obtain the correct parameters of a DC-DC switching boost converter for current ripple reduction
- 2. To understand the effect of switching to current ripple
- 3. To model, simulate and analyze the DC-DC switching boost converter for current reduction designed using MATLAB software
- 4. To develop a hardware prototype of the DC-DC converter

1.4 Scope of Project

The scope is limited to simulate, design and to analyze an open loop DC-DC switching boost converter with a continuous current mode operation. MATLAB is used to simulate the DC-DC switching boost converter in terms of the relationship of related parameters that would affect the current ripple in the DC-DC switching boost converter which includes by varying the value of frequency and by varying the value of duty cycle. The pulse width for the switching controller is generated by using programming developed by DSP TMS320F2812. And the hardware implementation of the DC-DC switching boost converter is based on the simulation done in the MATLAB software.

1.5 Chapter summary

This chapter states the background or motivation of this project, the problem statement, the objectives that are identified that needs to be accomplish throughout the project and the scope that is to limit the research area and what to focus on. The next chapter which is chapter 2 will discuss regarding the literature to show a brief overview regarding the projec

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter describes the general overview of components and criteria's or software involved in the process of developing this project. The literature review part is to provide a general overview regarding the DC-DC boost converter. It is also to supports theoretically regarding the implementation of this project.

2.2 Common Methods for Current Ripple Reduction

2.2.1 By increasing the value of the inductance

As stated in [4] the value of the inductance used in a converter holds a huge significance to the existence of current ripple in a circuit thus affecting the efficiency or performance of the circuit. [4] States that if the load current in the converter increases, the inductance reduces as it is forced towards saturation. In [11] states that the higher the value of the inductor, the slower the start up time. [11] Describes that the inductance that is to be used in the circuit must be based on the maximum current ripple that is allowed during the minimum duty cycle, D at the maximum input voltage.

2.2.2 Frequency control

Micro-technology forces manufacturers to produce miniature products. The voltage needed for a microprocessor requires low voltage but increasing current rating. With little amount of inductance in the circuit, large current ripple will result during the switching process. Research in [8] states that the peak to peak current and conduction mode of the converter will be affected by the changes of switches.

2.2.3 Interleaved technologies

In an interleaved boost converter, the phase number, the size of inductance, the amplitude of switching frequency, the input voltage, the desired output voltage and the load that is connected to the circuit effects the current ripple in the circuit of the DC-DC boost converter. Based on research [7] that uses the method of interleaved DC-DC boost converter, the research that is conducted results that the inappropriate usage of components (inductors, input voltage source and MOSFET would could cause effect to the input current amplitude during the interval of the switching process, the current in the inductor is not equal to zero as resonance exist in the circuit. Research [7] includes optimal control, components selection and input filter as techniques to reduce the input current ripple. For optimal control high consideration are given upon selecting optimal base angle and phase shift angle. The input current ripple will be minimized as the switching frequency increases but the downside is that it would produce high power dissipation. The second technique introduced in [7] includes components selections (MOSFET and inductance). High inductance causes smaller current ripple but it would impact the speed response, power density and also efficiency. [7] States that other parameters such as the temperature rise, saturation current and magnetic core material characteristic should be taken into consideration. The third technique introduced by [7] is the input filter. To minimize the input current ripple, a series of damped filter (output impedance of the input filter must be less than input impedance of the converter) is attached to the circuit thus causing it to affect its stability to be better.

5

2.3 Overview of Boost Converter

DC-DC converters are invented to cater the need of industrial application as the demand of a variable voltage source is needed. DC-DC boost converter or also known as stepup converters are converters where the output voltage is higher than the voltage at its input. It operates by periodically opening and closing an electronic switch. The information and details on the DC-DC switching boost convert includes the discussion on its mode of operation, the Figure 2.1: illustrates the basic structure of a DC-DC boost converter.

Figure 2.1: Boost converter [4]

The basic component of a DC-DC boost converter is a voltage source, inductor, diode, capacitor, resistor and a switching device which can be any semiconductor device such as MOSFET, IGBT or thyristor as can be seen in figure 2.1 above. Based on research conducted by previous researchers, current ripple can be reduced by several methods which includes by increasing the value of inductance, through frequency control, by varying the value of inductance and by using interleaving technologies. In this project only two methods are implemented which is through varying the value of frequency and by varying the value of its duty cycle.