raf

Software development of search and retrieval, object detection and obstacles avoidance algorithm for a mobile robot / Zaridah Mat Zain.

SOFTWARE DEVELOPMENT OF SEARCH AND RETRIEVAL, OBJECT DETECTION AND OBSTACLES AVOIDANCE ALGORITHM FOR A MOBILE ROBOT

ZARIDAH BINTI MAT ZAIN

9 NOVEMBER 2005

SOFTWARE DEVELOPMENT OF SEARCH AND RETRIEVAL, OBJECT DETECTION AND OBSTACLES AVOIDANCE ALGORITHM FOR A MOBILE ROBOT

ZARIDAH BINTI MAT ZAIN

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree of Bachelor In Electrical Engineering (Industry Power)

Fakulti Kejuruteraan Elektrik Kolej Universiti Teknikal Kebangsaan Malaysia

9 NOVEMBER 2005

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Industrial Power)."

Signature	· Out
	MR. FARIZ BIN ALI @ IBRAHIM
Supervisor's Name	:
Date	. 17 NOVEMBER 2001

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature	· MAN
	ZARIDAH BINTI MAT ZAIN
Name	:
	9 NOVEMBER 2005
Data	

-11

Special dedicated to my dearest parent, sisters and brothers

ACKNOWLEDGEMENTS

Alhamdulillah, thanks to the Almighty with his permission I have finished my Projek Sarjana Muda II within the given time. Firstly, I would like to express my gratitude and thanks to my project supervisor, Mr. Fariz Bin Ali @ Ibrahim for helping me without ceasing in guiding me through the documentation and information needed. Besides, I would like to say thanks to my friends for their support throughout this project.

My warmest gratitude also goes to all my colleagues and others that may not mentioned their name here, thanks for giving me all these supports. Without it my project may not be completed successfully.

Last but not least, to all my beloved family members, who were there to give their full support when I most need it.

ABSTRACT

This project is namely software development of search and retrieval, object detection and obstacles avoidance algorithm for a mobile robot is to build a mobile robot by using microcontroller PIC16F877 that capable of searching an object within three meters by using infrared sensor without any external connection. I've used PicBasic PRO for the programming and built a microcontroller circuit by using PIC16F877 microcontroller. Supposedly the robot will move towards the object after receiving signal from IR transmitter.

ABSTRAK

Projek ini dinamakan pembinaan perisian untuk robot mencari dan mengesan objek dengan menggunakan microcontroller PIC16F877 yang berkemampuan mencari objek yang ditetapkan pada jarak tiga meter dengan sendirinya dengan menggunakan infra red tanpa sambungan dari perkakasan luar. Saya telah menggunakan perisian PicBasic PRO untuk menulis aturcara dan telah membina perkakasan iaitu litar microcontroller untuk PIC16F877. robot ini sepatutnya akan bergerak ke hadapan ke arah objek selepas menerima isyarat daripada IR transmitter.

CONTENTS

CHAPTER	TIT	LE	PAGE
	TIT	LE	i
	DEC	CLARATION	ii
	DEL	DICATION	iii
	ACI	KNOWLEDGEMENTS	iv
	ABS	TRACT	v
	ABS	STRAK	vi
	CON	NTENTS	vii
	LIST	T OF TABLES	x
	LIST	T OF FIGURES	xi
	LIST	Γ OF APPENDICES	xiii
1	INT	RODUCTION	1
•	1.1	Overview	1
	1.2	Title and Objectives	2
	1.3	Scopes	3
	1.4		3
	1.5	Work Schedules	5
2	LIT	ERATURE REVIEW	6
	2.1	Introduction	6
	2.2	What Is A Microcontroller	6
	2.3	Why Use A Microcontroller	8
	2.4	PIC Microcontroller Overview	10
		2.4.1 12-bit instruction core	11

		2.4.2	14-bit instruc	etion core	11
		2.4.3	16-bit instruc	ction core	13
		2.4.4	Pic16F877 m	nicrocontroller	13
			2.4.4.1	CPU and ALU	14
			2.4.4.2	Program memory	15
			2.4.4.3	Hardware stack	15
			2.4.4.4	Data memory	15
			2.4.4.5	I/O ports	16
			2.4.4.6	EEPROM	17
			2.4.4.7	Timer	17
			2.4.4.8	PWM	18
			2.4.4.9	Synchronous serial port	18
			2.4.4.10	Interrupts	19
			2.4.4.11	USART	20
			2.4.4.12	Analogue to digital converter	20
		2.4.5	Software for	PIC	21
		2.4.6	Assembly lar	nguage	21
		2.4.7	PicBasic com	npiler	22
III	HAR	DWAR	E DEVELOP	MENT	24
	3.1	Introd	uction		24
	3.2	Circui	t Design And l	Explanations	25
		3.2.1	PIC microcon	ntroller circuit	25
		3.2.2	Price list		27
IV	SOFT	ΓWARE	DEVELOPN	MENT	29
	4.1	Introdu	uction		29
	4.2	Progra	mming Strateg	gy	29
	4.3	The Co	ompiler		32
	4.4	PIC Pr	ogramming O	verview	32
	4.5	Softwa	are and Hardw	are	32
	4.6	PicBas	sic Pro Compil	er	33
		4.6.1	ADCON		34

viii

			ix
	4.6.2	Pin and variable names	34
	4.6.3	Ports and other registers	35
	4.6.4	Pins	36
	4.6.5	Comments	37
	4.6.6	GOTO	37
	4.6.7	High pin	37
	4.6.8	Low pin	38
	4.6.9	Input pin	39
	4.6.10	Ifthen	40
	4.6.11	Pause period	41
	4.6.12	Math operators	42
4.7	Advan	tages of PicBasic Compiler	43
4.8	Micro	code Studio	44
4.9	How to	o Use Microcode Studio	45
	4.9.1	Step1: writing code (the basic program)	45
	4.9.2	Step 2: using the compiler	50
		4.9.2.1 Target processor	50
		4.9.2.2 Compile "F9"	51
	4.9.3	Step 3: programming the PIC chip	51
4.10	IC-PR	OG Setting Procedure	52
	4.10.1	Selecting device	52
	4.10.2	Selecting programmer	53
	4.10.3	Option setting	54
	4.10.4	Oscillator setting	56
	4.10.5	Fuse setting	56
	4.10.6	Verify programming setting	56
ANAI			

 \mathbf{v}

5.15.2

Introduction

5.2.1 Testing PIC16F877

5.2.1.2 Part list

5.2.1.1 Project guidelines

Analysis

58

58

59

59

60

		5.2.2	Testing running lights	62
			5.2.2.1 Project guidelines	63
			5.2.2.2 Part list	63
		5.2.3	Testing 7 segment: dice	65
			5.2.3.1 Project guidelines	66
			5.2.3.2 Part list	66
		5.2.4	Testing DC motor	68
			5.2.4.1 Project guidelines	69
			5.2.4.2 Part list	70
VI	DISC	CUSSIO	N AND CONLUSION	72
	6.1	Introd	luction	72
	6.2	Discu	ssion	72
	6.3	Recon	nmendation	73
		6.3.1	Detect smallest obstacles	73
		6.3.2	Display distance of obstacles	74
		6.3.3	Adjustable frequency	74
		6.3.4	Use more sensors	74
		6.3.5	Use servomotor	74
	6.4	Concl	usion	75
	REF	ERENC	ES	75
	APP	ENDIX		77

LIST OF TABLES

NO.	TITLE	PAGE
1.1	Work Schedule for PSM 1	5
2.1	8-bit microcontrollers and their features	9
2.2	12-bit instruction core	11
2.3	14-bit instruction core	12
2.4	16-bit instruction core	13
2.5	Price list	27
5.1	Project guidelines for testing PIC16F877	59
5.2	Part list for testing PIC16F877	60
5.3	Project guidelines for testing running lights	63
5.4	Part list for testing for testing running lights	63
5.5	Project guidelines for testing 7 segment: dice	66
5.6	Part list for testing 7 segment: dice	66
5.7	Project guidelines for testing DC motor	69
5.8	Part list for testing DC motor	70

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Project Workflow	4
2.1	PIC16F877 pins and functions	14
3.1	PIC16F877 microcontroller circuit	25
3.2	Microcontroller circuit on board	26
3.3	Oscillator	27
4.1	Programming flow chart	31
4.2	Microcode studio environment page	45
4.3	JDM programmer	52
4.4	IC-prog menu	53
4.5	Programmer setting menu	54
4.6	First option setting	55
4.7	Second option setting	55
4.8	Verify programming setting	57
5.1	Testing 16F877 circuit	61
5.2	Testing running lights circuit	65
5.3	7 segment circuit	67
5.4	Testing DC motor circuit	69

LIST OF APPENDICE

APPENDIX	TITLE	PAGE
	PIC16F877 DATASHEET	77

CHAPTER 1

INTRODUCTION

OVERVIEW 1.1

The aim of developing this project, namely software development of search and retrieval, object detection and obstacles avoidance algorithm for a mobile robot is to build a mobile robot by using microcontroller PIC16F877 that capable of searching an object within three meters by itself without any external connection. This project is a simple robot and the tasks are limited but this is a starting for building a real robot which can be use in dangerous job such as put out fire and bomb.

In this project, BASIC language has been selected as the programming language and the program that I used is PicBasic PRO. PicBasic PRO is simple, easy to learn and construct. The most important reason is it can be programmed in modular forms and its compiler was small enough to fit on a diskette with ample room for programs as well.

This chapter will cover title and objectives, scopes, project workflow and the work schedule of this project.

1.2 TITLE AND OBJECTIVES

The Title of this project is "Software Development of Search and Retrieval, Object Detection and Obstacles Avoidance Algorithm for a Mobile Robot". The main objective of this project is to develop a robot program and microcontroller circuit.

The main project objective can be defined in detail as below:

- To provide hands on skill in designs and programming.
- To enhance knowledge in computer interfacing.
- At the end of the project, we shall demonstrate on how the robot operates by using PIC16F877 microcontroller and the sensor.
- To study how to control the DC motor to make them move forward and backward by using PIC16F877 microcontroller output ports.
- To study the PIC16F877 microcontroller and how to program it with PIC programmer.

1.3 SCOPES

The scopes of this project are:

- Mastering the software that is used in this project; such as MPLAB,
 Proteus and others.
- Understanding the principles and theory of dc motor movement and how to program it with PicBasic PRO.
- c. Understanding the hardware that is used in the project. The hardware included the PIC16F877 microcontroller.

1.4 PROJECT WORKFLOW

First of all I need to know the fundamental of this project, besides, a good procedure is needed to implement this project from beginning to the end. The workflow of my project is provided as shown in figure 1.1:

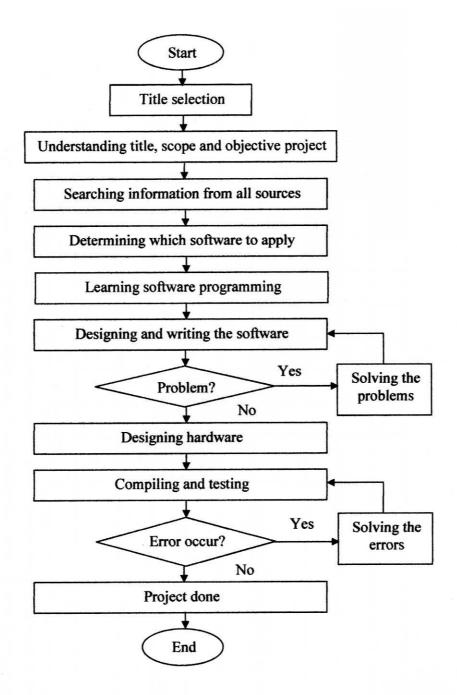


Figure 1.1: Project Workflow

Table 1.1: Work Schedule for PSM 1 and 2

PERAN	PERANCANGAN PROJEK	N PRO	EK									
PRC	PROJECT PLANNING	4NNINC										
Senaraikan aktiviti-aktiviti utama bagi projek yang dicadangkan. Nyatakan jangka masa yang diperlukan bagi setiap aktiviti.	dangkan.	Nyataka	an jangk	a masa	yang di	perluka	n bagi se	etiap ak	tiviti.			
List major activities involved in the proposed project. Indicate duration of each activity to the related month(s).	yect. Indic	cate dur	ation of	each a	ctivity to	the rel	om pət	nth(s).				
	2004						2005					
Aktiviti Projek Project Activities	z	Q	-	F.	∢	Σ	7	ר	4	w	0	z
1. Title selection												
2. Make a proposal of the project												
3. Literature review					-							
4. Draw flow chart					-							
5. Understanding software instructions, and how to execute the Hardware		SPATTER										
6. Write the programming												
7. Troubleshooting												
8. Report												

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

PIC microcontroller is a main element for this project because PIC can be used to control next elements. The type of PIC microcontroller used is PIC16F877. PIC microcontrollers are inexpensive, easy to purchase through various sources and the development tools for them are also inexpensive.

2.2 WHAT IS A MICROCONTROLLER?

A microcontroller, which is self sufficiency and cost effectiveness is use to control devices. The different between a microcontroller and microprocessor is a microcontroller contains all the memory including RAM (read access memory) and ROM (read only memory) and I/O interfaces needed, whereas a microprocessor requires additional chips to provide those necessary functions.

A microcontroller contains a CPU, memory for the program (ROM or Flash memory), memory for data (RAM), timers (customizable ones and watchdog timers), and I/O lines to communicate with external peripherals and complementary resources in a single integrated circuit. A microcontroller is different from a CPU chip because it is quite easy to make into a working computer, with a minimum of external support chips. To overcome this situation, the microcontroller will be placed in the device to control, hooked up to power and any information it needs.

A traditional microprocessor won't allow you to the task as it need to be handling by other chips. For example, some number of RAM memory chips must be added. The amount of memory provided is more flexible in the traditional approach, but at least a few external memory chips must be provided, and additionally requires that many connections must be made to pass the data back and forth to them.

A typical microcontroller usually will have a built in clock and memory such as EEPROM. To make it work, it needs software to control it and a timing crystal. Microcontrollers will also usually have a variety of input/output devices. For example, analog-to-digital converters, timers, UARTs, Serial Peripheral Interface and Controller Area Network.

Some modern microcontrollers include a built-in high-level programming language; BASIC is quite common for this.

Microcontrollers trade away speed and flexibility to gain ease of equipment design and low cost. There's only so much room on the chip to include functionality, so for every I/O device or memory increase the microcontroller includes, some other circuitry has to be removed. Finally, it must be mentioned that some microcontroller

architectures are available from many different vendors in so many varieties that they could rightly belong to a category of their own. [23]

2.3 WHY USE A MICROCONTROLLER?

Microcontroller is cheap and it's ability to store and run unique programs make it popular. For example, we can program a microcontroller to make decision (perform functions) based on predetermined situations (I/O line logic) and selections. Besides, microcontroller also can perform mathematic and logic functions which allows it to mimic sophisticated logic and electronic circuit. A microcontroller also can be design like a neural circuit or a fuzzy logic controller.

There are hundreds types of microcontrollers on the market. Listed here are some of the popular 8-bit microcontroller and their features. These devices are the lowest cost representative devices from respective manufactures. [24]

Table 2.1: 8-bit microcontrollers and their features

COMPANY	DEVICE	ON-CHIP MEMORY	OTHER FEATURES
Atmel	Attiny II	1-Kbyte flash	8-bit timer, analog comparator, watchdog, on- chip oscillators, one external interrupt.
Hitachi	H8/3640	8-Kbyte ROM 512 Byte RAM	Three, 8-bit timers, one 16-bit PWM timer, one watchdog, two SCI ports, eight 8-bit ADC, 32 KHz sub clock generator.
Microchip	PIC16CR54C	768-byte ROM 25-byte Ram	Twelve I/O pins, 8-bit timer, high current sink/source fro direct LED drive, watchdog, and timer RC oscillator.
Motorola	68HC705KJ1	1240-byte OTP 64-byte RAM	15-stage multifunction timer, on-chip oscillator, low voltage reset, watchdog, keyboard, interrupt, high current I/O port.
Zilog	Z8E000	0.5-Kbyte OTP 32-byte RAM	One 16-bit timer, Watchdog, four hardware interrupts, 13 I/O pins.